当前位置:文档之家› 典型轴类零件加工工艺与编程

典型轴类零件加工工艺与编程

典型轴类零件加工工艺与编程
典型轴类零件加工工艺与编程

四川科技职业学院

毕业设计(论文)

论文题目:典型轴类零件加工工艺分析与编程

年级:XXXX

学号:XXXXX

姓名:XXXX

专业:数控技术

指导老师:XXXXX

2010年02月

四川科技职业学院毕业设计(论文) 第Ⅰ页

院系 XXXXXX 专业 XXXXXX

年级 XXXX 姓名 XXXXX

题目典型轴类零件加工工艺分析与编程

指导教师唐昌建

评语

指导教师 (签章)

评阅人

评语

评阅人 (签章) 成绩

答辩委员会主任 (签章)

年月日

毕业设计(论文)任务书

班级 XXXX 学生姓名 XXXX 学号 XXXXXXXXXX

发题日期:年月日完成日期: 2 月 28日

题目典型轴类零件加工工艺分析与编程

1、本论文的目的、意义通过本论文的设计,使学生更加全面系统的掌握大学三年所学习的专业知识,把各知识有机的结合起来,更加的系统化,更具连贯性。同时,在设计过程中,学生不断查阅各种相关书籍、文献或借助网络资源扩展自身专业知识体系,达到查漏补缺,扩展知识结构的目的。在设计中学会应用各种软件以及同学之间、师生之间共同探讨共同完善。

通过对轴类零件加工工艺分析与编程,体现数控技术的现状和发展趋势、数控加工的特点、工艺分析、工艺设计方法、编程等。

2、学生应完成的任务

针对题目内容,分别完成以下内容:

1、数控基础知识的介绍;

2、数控加工工艺设计:零件图的工艺分析、工序的划分、加工顺序和走刀路线的确定、刀具的选择、切削用量的选择等;

3、数控加工程序的编制:加工工艺分析、数学处理、加工程序清单等;

3、论文各部分内容及时间分配:(共 20 周)

第一部分选题 (1周) 第二部分收集整理资料 (3周) 第三部分写出提纲 (2周) 第四部分初稿(7周) 第五部分结论 (7周) 评阅及答辩( 周)

备注

指导教师:年月日

审批人:年月日

摘要

随着机电一体化的加工技术的迅猛发展,数控机床的应用已日趋普及,机械制造业正在越来越多地采用数控技术来改善其生产加工方式,社会对其相应技术人才的需求也越来越高.为此,我国机电产品呈现机电一体化发展的趋势,在机械设计中开始应用可靠性设计,优化设计和计算机辅助设计等现代设计方法,消化了引进先进技术和新材料,新工艺在产品设计中的推广采用.技术标准向国际标准靠拢,标准化工作也有了新的发展,因而大大提高了机械设计和产品水平。

数控加工的目的是让加工精度更高,效率更高,减少人为的加工失误.为了满足和适应这个新的形势.因此,本人概述了轴类典型零件的加工工艺及加工方案,通过自己所学专业知识和实际加工经验并把数控机床与普通机床合理的结合在一起,更好的应用到实际当中.

对于企业来说,产品的质量是企业生存的基础,那么产品工艺合理性就是根本中的根本.本人经过工艺编制,将普通机床与数控机床合理的结合,使现有资源合理化,从而实现低成本高收益,首先进行轴类加工方案的确定,然后选择满足图定尺寸要求的机床,从而确定加工工艺。

本次毕业设计主要的内容是轴类零件的数控加工工艺设计.采用普通机械加工和数控加工相结合的方式,设计编制轴类零件的普通加工工艺规程和数控加工工艺规程,并编制精加工的数控加工程序。这次对于减速机输出轴的加工采用数控车床C616A进行加工,采用线切割技术把毛坯切好进行热处理,再用车床进行粗加工,先把轴的端面车好,留下一定的余量,对加速轴的两外端进行倒角。接着对键槽用铣刀进行半精加工,最后用C616A数控车床进行精加工磨砂保证亮端面的平行度偏差不超过0.1,外圆的尺寸保证在φ68。让各部位尺寸都达到标准。

关键词:机械加工数控加工加工工艺

Abstract

With the mechanical and electrical integration of the rapid development of processing technology, CNC machine tool applications have become increasingly popular, machinery manufacturing industry is increasingly using CNC technology to improve their production and processing, and social needs of its corresponding technical personnel have an increased higher. To this end, China's mechanical and electrical integration of mechanical and electrical products showed the trend of development to start in the mechanical design applications reliability design, design optimization and computer-aided design, modern design methods, digested the introduction of advanced technology and new materials, new processes in product design The promotion of the use. Closer to international standards, technical standards, standardization work has been a new development, thus greatly improving the mechanical design and product level.

CNC machining precision aim is to enable more efficient, reduce human processing errors. In order to meet and adapt to this new situation. Therefore, I outlined a typical shaft parts processing technology and processing program, have learned through their own professional knowledge and practical experience and processing of CNC machine tools and general machine tools to a reasonable combination of better applied to in practice.

For enterprises, the product quality is the basis for enterprises to survive, then the product process is the fundamental rationale of the fundamental. I through process planning, machine tools and CNC machine tools will be ordinary and reasonable combination, so that the rationalization of existing resources, to achieve low-cost, high-yield, first of all to determine the shaft processing program, and then select the map set size to meet the requirements of machine tools, to determine the processing process.

The main contents of Graduation Design CNC machining shaft parts process design. Using ordinary machining and CNC machining a combination of design preparation shaft parts of the general process planning and CNC machining process planning, and preparation of finishing CNC machining process. The reducer output shaft for the processing and use of CNC lathes C616A processing, using wire cutting technology to cut a good heat-treated rough, and then lathe to rough, first-axis face a good car, leaving a certain margin of speed up the shaft 2 to the outer end chamfer. Then right Keyway milling cutter with the semi-finishing, and finally C616A CNC lathe to finish grinding to ensure bright face of the parallelism deviation is less than 0.1, the size of cylindrical ensure φ68. Let each part of size are up to par.

key words:Machining CNC Machining Process

目录

第一章绪论 (1)

1.1数控起源与发展 (1)

1.1.1数控(NC)阶段(1952~1970年) (1)

1.1.2计算机数控(CNC)阶段(1970年~现在) (1)

1.2 国内数控机床量的现状 (2)

第二章数控加工工艺与分析 (3)

2.1 数控加工工艺的基本特点和主要内容 (3)

2.2 零件图的数控加工工艺分析 (4)

2.3 数控加工工艺设计 (5)

2.3.1 零件表面数控加工方案的选择 (6)

2.3.2 工序的划分 (7)

2.3.3 定位与夹紧方式的确定 (8)

2.3.4 加工顺序的安排 (8)

2.3.5 确定走刀路线和工步顺序 (8)

2.3.6 对刀点与换刀点的确定 (9)

第三章刀具的选择 (10)

3.1 对数控刀具的要求 (10)

3.2 刀具快换、自动更换和尺寸预调 (11)

3.2.1刀具快换或自动更换 (11)

3.2.2 数控刀具尺寸预调 (12)

3.2.3 数控刀具的工具系统 (12)

3.2.4 数控车刀的类型与选择 (13)

第四章轴类零件加工 (16)

4.1 轴类零件的功用、结构特点及技术要求 (16)

第五章轴类零件的毛坯,材料及热处理 (17)

5.1轴类零件的毛坯和材料 (17)

5.1.1 轴类零件的毛坯 (17)

5.1.2 轴类零件的材料 (17)

5.2 轴类零件的热处理 (17)

第六章轴的加工工艺 (19)

6.1 轴类零件典型工艺路线 (19)

6.2 轴类零件机械加工工艺文件的制订(对传动轴的分析) (19)

6.2.1 零件的工艺分析 (19)

6.2.2 毛坯的选择 (20)

6.2.3 定位基准的选择 (20)

6.2.4 工艺路线的拟定 (21)

第七章切削用量选择 (25)

7.1 切削用量的选用原则 (25)

7.2切削用量的选取方法 (25)

第八章轴的实例加工与编程 (28)

第九章展望 (33)

致谢 (35)

参考文献 (36)

第一章绪论

1.1数控起源与发展

1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。它与人类在农业、工业社会中创造的那些只是增强体力劳动的工具相比,起了质的飞跃,为人类进入信息社会奠定了基础。

6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床,其数控系统采用的是电子管电路。从此,传统机床产生了质的变化。近半个世纪以来,数控系统经历了两个阶段和六代的发展。

1.1.1数控(NC)阶段(1952~1970年)

早期计算机的运算速度低,对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。人们不得不采用数字逻辑电路"搭"成一台机床专用计算机作为数控系统,被称为硬件连接数控(HARD-WIRED NC),简称为数控(NC)。随着元器件的发展,这个阶段历经了三代,即1952年的第一代--电子管;1959年的第二代--晶体管;1965年的第三代--小规模集成电路。

1.1.2计算机数控(CNC)阶段(1970年~现在)

到1970年,通用小型计算机业已出现并成批生产。于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(CNC)阶段(把计算机前面应有的"通用"两个字省略了)。到1971年,美国INTEL公司在世界上第一次将计算机的两个最核心的部件--运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微处理器(MICROPROCESSOR),又可称为中央处理单元(简称CPU)。

到1974年微处理器被应用于数控系统。这是因为小型计算机功能太强,控制一台机床能力有富裕(故当时曾用于控制多台机床,称之为群控),不如采用微处理器经济合理。而且当时的小型机可靠性也不理想。早期的微处理器速度和功能虽还不够高,但可以通过多处理器结构来解决。由于微处理器是通用计算机的核心部件,故仍称为计算

机数控。

到了1990年,PC机(个人计算机,国内习惯称微机)的性能已发展到很高的阶段,可以满足作为数控系统核心部件的要求。数控系统从此进入了基于PC的阶段。

总之,计算机数控阶段也经历了三代。即1970年的第四代--小型计算机;1974年的第五代--微处理器和1990年的第六代--基于PC(国外称为PC-BASED)。

还要指出的是,虽然国外早已改称为计算机数控(即CNC)了,而我国仍习惯称数控(NC)。所以我们日常讲的"数控",实质上已是指"计算机数控"了。

1.2 国内数控机床量的现状

近年来我国企业的数控机床占有率逐年上升,在大中企业已有较多的使用,在中小企业甚至个体企业中也普遍开始使用。在这些数控机床中,除少量机床以FMS模式集成使用外,大都处于单机运行状态,并且相当部分处于使用效率不高,管理方式落后的状态。

2001年,我国机床工业产值已进入世界第5名,机床消费额在世界排名上升到第3位,达47.39亿美元,仅次于美国的53.67亿美元,消费额比上一年增长25%。但由于国产数控机床不能满足市场的需求,使我国机床的进口额呈逐年上升态势,2001年进口机床跃升至世界第2位,达24.06亿美元,比上年增长27.3%。目前,中国机床工业厂多人众。2000年,金切机床制造厂约358家(20.6万人),成形机床制造厂191家(约6.5万人),共计549家(27.1万人)。其中生产数控金切机床的约150家,生产数控成形机床的约30家,共计约180家,占厂家总数的1/3。2001年金切机床产量19.2万台内数控金切机床1.752万台,约占9%。

第二章数控加工工艺与分析

所谓数控加工工艺,就是采用数控机床加工零件的一种方法。在数控机床上加工零件,首先要考虑的是工艺问题。数控机床加工工艺与普通机床加工工艺大体相同,只是数控机床加工的零件通常相对于普通机床加工的零件要复杂的多,而且数控机床具备一些普通机床所不可能实现的功能。为了充分发挥数控机床的

优势,必须熟悉其性能,掌握其特点及使用方法,并在编程前正确的制定加工工艺方案,进行工艺设计并优化后再进行编程。

2.1 数控加工工艺的基本特点和主要内容

1、数控加工工艺的基本特点:

数控机床加工与普通机床加工在方法和内容上有相似之处,也有许多不同,其主要区别在控制方式上。在普通机床上加工零件时,是用工艺规程或工艺卡片来规定每道工序的加工内容,操作者按工艺卡上规定的加工内容和加工要求加工零件。而在数控机床上加工零件时,必须有编程人员把被加工零件的全部工艺过程、工艺参数和位移数据等编制成数控加工程序,然后将程序输入数控系统,用它控制数控机床,加工出要求的零件。由此可见,数控机床加工工艺与普通机床加工工艺在原则上基本相同,但数控加工的整个过程是自动进行的,因而又有其特点。

2、数控加工工艺的主要内容:

①选择在数控机床上进行加工的零件,并确定加工的工序内容。

②分析被加工零件的加工部位形状,明确加工内容与加工要求,在此基础上确定零件的加工方案,制定零件数控加工的工艺路线,如工序的划分、加工顺序的安排与普通加工工序的衔接等。

③设计数控加工工序。如工步的划分、零件的定位和夹具的选择、刀具的选择、切削用量的确定等。

④数控加工中运行轨迹各节点的计算。

⑤调整数控加工工序的程序。如对刀点、换刀点的选择、加工路线的确定、刀具的补偿等。

⑥合理分配数控加工中的容差。

⑦处理数控机床上的部分工艺指令。

2.2 零件图的数控加工工艺分析

分析零件图是工艺制订中的首要工作,它主要包括以下内容:

1、零件结构工艺性分析

零件结构工艺性是指零件对加工方法的适应性,即所分析的零件结构应便于加工成型。在进行零件结构分析时,若发现零件的结构不合理等问题应向设计人员或有关部门提出修改意见。

2、零件图的完整性与正确性的分析

零件轮廓是数控加工的最终轨迹,也是数控编程的依据。手工编程时,要依据这些条件计算每个节点的坐标;自动编程时,则要根据这些条件才能对构成零件的所有几何元素进行定义,无论哪一条件不明确,变成都无法进行。因此,在分析零件图样时,务必要分析几何元素的给定条件是否充分,发现问题及时与设计人员协商解决。

3、零件技术要求

零件的技术要求主要指尺寸精度、形状精度、位置精度、表面粗糙度及热处理等。只有在分析这些要求的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。精度及技术要求分析的内容:

①分析精度及各项技术要求是否齐全、合理。

②分析本工序的数控车削加工精度能否达到图样要求,若达不到,需采取其他措施(如磨削)弥补的话,则应给后续工序留有加工余量。

③找出图样上有位置精度要求的表面,这些表面应尽量在一次安装下完成。

④对表面粗糙度要求较高的表面,应采用圆周恒线速度切削。

4、零件材料分析

为满足零件功能的前提下,应选用廉价、切削性能好的材料。而且,材料选择应立足国内,不要轻易选用贵重或紧缺的材料。

5、零件的结构工艺分析

零件的结构工艺是指所设定的零件在满足使用要求的前提下制造的可行性和经济性。良好的结构工艺性,可使零件加工容易,节省工时和材料。而较差的结构工艺性,会使零件加工困难,浪费工时和材料,有的甚至会使零件无法加工。因此,零件各部位

的结构工艺性应符合数控加工特点。

6、零件图的数学处理

零件图的数学处理主要是计算零件加工轨迹的尺寸,即计算零件加工轮廓的基点和节点的坐标或刀具中心轮廓的基点和节点的坐标,以便编制加工程序。

①基点坐标的计算内容:

刀具切削过程中每条运动轨迹的起点和终点在选定的工件坐标系中的坐标值,刀具切削圆弧时的圆心坐标值。

基点坐标计算的方法比较简单,一般可根据零件图样所给的已知条件用人工完成。即依据零件图样上给定的尺寸运用代数、三角、几何或解析几何的有关知识,直接计算出数值。在计算时,要注意小数点后的位数要留够,以保证在数控加工后有足够的精度。

②节点坐标的计算内容:

对于一些平面轮廓是非圆曲线方程Y=F(X)组成,如渐开线、阿基米德螺线等,只能用能够加工的微小直线段和圆弧段去逼近它们。这时数值计算的任务就是计算节点的坐标。

节点坐标的计算难度和工作量都较大,通常由计算机完成,必要时也可由人工计算,常用的有直线逼近法(等间距法、等步长法、和等误差法)和圆弧逼近法,求出所有节点的坐标值。

有人用AutoCAD绘图,然后捕获节点的坐标值,在精度允许的范围内,这也是一个简易而有效的方法。

2.3 数控加工工艺设计

数控加工工艺的一般过程(如图):

2.3.1 零件表面数控加工方案的选择

一般应根据零件的加工精度、表面粗糙度、材料、结构形状、尺寸和生产类型等因素来确定零件表面的车削加工方案。

数控车削加工外圆回转体零件与端面加工方案的选择:

①加工精度为IT7~IT8级、表面粗糙度Ra1.6~3.2μm的除淬火钢以外的常用金属,可以采用普通型数控车床,按粗车、半精车、精车的方案进行加工;

②加工精度为IT5~IT6级、表面粗糙度Ra0.2~0.8μm的除淬火钢以外的常用金属,可以采用普通型数控车床,按粗车、半精车、精车的方案进行加工;

③加工精度高于IT5、表面粗糙度Ra<0.08μm的除淬火钢以外的常用金属,可以采用高档精密型数控车床,按粗车、半精车、精车、精密车的方案进行加工;

④对淬火钢等难加工材料,在淬火前可以采用粗车、半精车的方法,淬火后

安排磨削加工。

数控车削加工内圆回转体零件加工方案的确定

①加工精度为IT8~IT9级、表面粗糙度Ra1.6~3.2μm的除淬火钢以外的

常用金属,可以采用普通型数控车床,按粗车、半精车、精车的方案进行加工;

②加工精度为IT5~IT6级、表面粗糙度Ra0.2~0.8μm的除淬火钢以外的

常用金属,可以采用精密型数控车床,按粗车、半精车、精车的方案进行加工;

③加工精度高于IT5、表面粗糙度Ra<0.08μm的除淬火钢以外的常用金属,

可以采用高档精密型数控车床,按粗车、半精车、精车的方案进行加工;

④对淬火钢等难加工材料,在淬火前可以采用粗车、半精车的方法,淬火后安排磨削加工。

2.3.2 工序的划分

工序的划分可以采用两种不同的原则,即工序集中原则和工序分散原则。

①工序集中原则

每道工序包括尽可能多的加工内容,从而使工序的总数减少。其优点是:有利于采用高效的专用设备和数控机床,提高生产效率;减少工序数目、缩短工艺路线,简化生产计划和生产组织工作;减少机床数量、操作工人数和占地面积;减少工件装夹次数,不仅保证了各加工表面的相互位置精度,而且减少了夹具数量和装夹工件的辅助时间。但专用夹具设备和工艺装备投资大、调整维修比较麻烦、生产准备周期较长,不利于转产。

②工序分散原则

将工件的加工分散在较多的工序内进行,每道工序的加工内容很少。其优点:加工设备和工艺装备结构简单,调整和维修方便,操作就爱你但,转产容易;有利于选择合理的切削用量,减少机动时间。但工艺路线较长,所需设备及工人人数多,占地面积大工序划分方法

①按所用刀具划分。以一次安装完成的那一部分工艺过程为一道工序,这种方法适用于工件的待加工表面较多,机床连续工作时间长,加工程序的编制和检查难度较大等情况。

②按安装次数划分。以一次安装完成的那一部分工艺过程为一道工序。这种方法适用于工件的加工内容不多的工件,加工完成后就能达到待检状态。

③按粗、精加工划分。即粗加工中完成的那一部分工艺过程为一道工序,精加工中完成的那一部分工艺过程为一道工序。这种划分方法适用于加工后变形较大,需粗、精加工分开的零件,如毛坯为铸件、焊件或锻件。

④按加工部位划分。即以完成相同型面的那一部分工艺过程为一道工序,对于加

工表面多而复杂的零件,可按其结构特点划分多道工序。

2.3.3 定位与夹紧方式的确定

正确、合理地选择工件的定位与夹紧方式,是保证加工精度的必要条件。工件定位基准的选择与夹紧方案的确定,应注意下列三点。

①力求设计基准、工艺基准与编程原点统一,以减少基准不重和误差和数控编程中的计算工作量。

②设法减少装夹次数,尽可能做到一次定位装夹后能加工出工件上全部或大部分待加工表面,以减少装夹误差,提高加工表面之间的相互位置精度,充分发挥数控机床的效率。

③避免采用占机人工调整式方案,以免占机时间太多,影响加工效率。

2.3.4 加工顺序的安排

在选定加工方法、划分工序后,接下来要做的主要内容就是合理安排这些加工方法和加工顺序。零件的加工工序通常包括切削加工工序、热处理工序和辅助工序(表面热处理、清洗和检验等),这些工序的顺序直接影响到零件的加工质量、生产效率和加工成本。切削加工工序的安排:

①基面先行原则

②先粗后精原则

按照粗加工→半精加工→精加工的顺序进行,逐步提高加工精度。

③先主后次原则

零件的主要工作表面、装配基面应先加工,次要表面可穿插进行。

④先面后孔原则

⑤先近后远原则

一般情况下,离对刀点近的部位先加工,离对刀点远的后加工,以便缩短刀具移动距离,减少空行程。还利于保持坯件或半成品的刚性,改善其切削条件。

2.3.5 确定走刀路线和工步顺序

走刀路线是刀具刀位点在整个加工工序中的运动轨迹,它不但包含了工步的内容,

也反映了工步的顺序。

走刀路线的确定非常重要,因为它与零件的加工精度和表面质量密切相关。

走刀路线确定原则:

①应能保证零件的加工精度和表面粗糙度要求。

②应使走刀路线最短,减少刀具空行程时间或切削进给时间,提高加工效率。

2.3.6 对刀点与换刀点的确定

对刀点的选择原则:

①便于数字处理和简化编程。

②容易找正、便于检查。

③引起的加工误差小。

换刀点选择原则:

换刀点应设在工件或夹具的外部,刀架转位时刀具不与其他部位干涉为原则。

第三章刀具的选择

机械加工自动化生产可分为以自动生产线为代表的刚性专用化自动生产和以数控机床为主的柔性通用化自动生产。就刀具而言,在刚性专用化自动生产中,是以提高刀具专用复合化程度来获得最佳经济效益的。而在柔性自动化生产中,为适应随机多变加工零件的需求,尽可能通过提高刀具及其工具系统的标准化、系列化和模块化程度来获得最佳经济效益。

本章简述对数控刀具的特殊要求:车削类、镗铣类数控刀具系统;刀具预调、磨损与破损的自动监测。

3.1 对数控刀具的要求

刀具的选择是数控加工工艺中的重要内容之一,它不仅影响机床的加上效率,而是直接影响加上质量。编程时,选择刀具通常要考虑机床的加工能力、工序内容、工件材料等多方面的因素。以数控机床为主的柔性自动化加工是按预先编好的程序指令自动地进行加工。应适应加工品种多、批量小的要求,刀具除应具备普通机床用刀具应有的性能外,还应满足下列要求:

①刀具切削性能应稳定可靠,避免刀具过早地损坏,而造成频繁地停机。由于刀具和工件材料性能的分散性,以及刀具制造工艺和工作条件控制不言,有相当一部分刀具的切削性能远低于平均性能,使刀具切削性能稳定可靠性差。因此必须严格控制刀具材料的质量,严格贯彻刀具制造工艺,特别是热处理和刃磨工序。严格检查刀具质量,确保刀具切削性能稳定可靠。

②刀具寿命应有较高的寿命。应选用切削性能好、耐磨性高的涂层刀片以及合理地选择切削用量。

③保证可靠地断屑、卷屑和排屑。加工时,应不产生紊乱的带状切屑,缠绕在刀具、工件上;不易断屑的刀具应保证切屑顺利的卷曲和排出;避免形成细碎的切屑;精加工是切屑不划伤已加工表面;切屑流出时不妨碍切削液浇注。为了确保可靠地断屑、卷屑和排屑,可采取一下措施:合理选用可转位刀片的断屑槽槽形;合理地调整切削用量;在刀体中设置切削液通道,将切削液直接输送至切削区,有助于清除切屑;利用高压切削液强迫断屑。

④能快速地换刀或自动换刀。

⑤能迅速、精确地调整刀具尺寸。

⑥必须从数控加工特点出发来制定数控刀具的标准化、系列化和通用化结构体系。数控工具系统应是一种模块式、层次化可分级更换、组合的体系。

⑦对于刀具及其工具系统的信息,应建立完整的数据库及其管理系统。

⑧应有完善的刀具组装、预调、编码标识与识别系统。

⑨应建立切削数据库,以便合理利用机床与刀具。

3.2 刀具快换、自动更换和尺寸预调

3.2.1刀具快换或自动更换

①刀片转位或更换刀片

为了减少换刀时间,数控机床加工时一般都使用可转位刀具。刀具磨损后只需将刀片转位或更换新刀片就可继续切削。它的换刀精度决定与刀片精度和定位精度。目前中等精度刀片适用于粗加工,精密级刀片只适用于半精加工。在精加工时仍需尺寸调整。

②更换刀头模块

生产中正在推广使用模块式车削类工具系统。它具有能完成车、镗、切断、攻螺纹和检测等刀头模块。刀头模块通过中心拉杆来实现快速夹紧或松开。在拉紧时,能使拉紧孔产生微小弹性变形而获得很高的精度和刚度,其径向、轴向精度分别为±2um和±5um,自动换刀时间为2s。

③更换刀夹

刀具与刀夹一起从数控车床上取下。刀片转位或更换后,在调刀仪上进行调刀。它的特点是可使用较低精度的刀片和刀杆,但刀夹精度要求较高。

④手动更换刀柄

在数控铣床上需连续对工件进行钻、铰、镗、铣、攻螺纹等加工。此时,将各种刀具分别装在刀柄上,并在调刀仪上调整相应尺寸。加工时根据加工顺序连续手动更换刀柄。调刀时的安装基准和刀具在机床上的安装基准一致,均为7:24锥柄,可减少安装误差。

⑤自动换刀

图为带转塔刀架的加工中心。转塔刀架上配制了加工零件所需的刀具。加工时按加工指令转塔刀架转过一个或几个位置来进行自动换刀。换刀动作减少,换刀速度较快。如图所示,在加工中心的刀库中存储着加工所需的刀具。按指令,使机床和刀库的运动互相配合来实现自动换刀,也可通过机械手实现自动换刀,其过程如图所示,在生产批量大的柔性制造系统(FMS)中,为了提高生产率,还可采用更换机床主轴箱来自动换刀。

3.2.2 数控刀具尺寸预调

为了确保刀具快换后不经试切切就可获得合格的工件尺寸,数控刀具都在机外预先调整到预定的尺寸。

数控刀具尺寸的预调方法:刀具的轴向和径向尺寸的调整方法可根据刀具结构及其所配置工具系统。

数控刀具尺寸预调仪

数控刀具尺寸预调包括:轴向和径向尺寸、角度等调整和测量。以前用通用量具和夹具组成的预调装置来预调,其精度差又费时,目前已被性能完善的专用预调仪所取代。它具有下列特点:

①能对静止和回转的刀具自动检测。

②对长度、角度和半径尺寸的测量精度高。分辨率为0.5um;重复精度为±2um;分度台定位精度为±0.01。

③能确定回转型刀具的偏心和跳动误差。

④能自动对焦、可实现自动标定循环。

⑤配有刀具信息编码的集成读数头。

3.2.3 数控刀具的工具系统

数控刀具的工具系统是指用来联接机床主轴与刀具之间的辅助系统。它除了刀具本身之外,还包括实现刀具快换所必须的定位、夹持、拉紧、动力传递和刀具保护等部分。在柔性自动化生产中,使用刀具种类多,要求换刀迅速。为此,通过标准化、系列化和模块化来提高其通用化程度,且也便于刀具组装、预调、使用、管理以及数据管理。因此研究用较少种类的刀具满足多种工件的加工需求,建立包括刀具、刀夹、刀杆和刀座

轴类零件的加工工艺资料

轴类零件的加工工艺 绪论 本课题主要研究轴类零件加工过程,加工工艺注意点及改进的方法,通过总结非标件的加工以及典型半成品轴类零件的加工实例来加以说明。现在许多制造最终成品的工厂为了提高机器的某些性能或者降低成本,需要找机械加工厂定做的,常常会因为设备、技术或者工艺规程制定的不是很好,加工出来的部件无法满足使用要求,所以需要一次次的总结,改进加工工艺,从而完善产品。经过总结了生产上出现的问题,写下了这篇论文。 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。 图轴的种类 a)光轴 b)空心轴 c)半轴 d)阶梯轴 e)花键轴 f)十字轴 g)偏心轴 h)曲轴 i) 凸轮轴 1 轴类零件的功用、结构特点 轴类零件是机器中经常遇到的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等。它主要用来支承传动零部件,传递扭矩

和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 1.1轴类零件的毛坯和材料 1.1.1轴类零件的毛坯 轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。 根据生产规模的不同,毛坯的锻造方式有自由锻和模锻两种。中小批生产多采用自由锻,大批大量生产时采用模锻。 1.1.2轴类零件的材料 轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。 45钢是轴类零件的常用材料,它价格便宜经过调质(或正火)后,可得到较好的切削性能,而且能获得较高的强度和韧性等综合机械性能,淬火后表面硬度可达45~52HRC。 40Cr等合金结构钢适用于中等精度而转速较高的轴类零件,这类钢经调质和淬火后,具有较好的综合机械性能。 轴承钢GCr15和弹簧钢65Mn,经调质和表面高频淬火后,表面硬度可达50~58HRC,并具有较高的耐疲劳性能和较好的耐磨性能,可制造较高精度的轴。 精密机床的主轴(例如磨床砂轮轴、坐标镗床主轴)可选用38CrMoAIA氮化钢。这种钢经调质和表面氮化后,不仅能获得很高的表面硬度,而且能保持较软的芯部,因此耐冲击韧性好。与渗碳淬火钢比较,它有热处理变形很小,硬度更高的特性。 2 轴类零件一般加工要求及方法 2.1 轴类零件加工工艺规程注意点

典型轴类零件的数控加工工艺设计(doc 29页)

典型轴类零件的数控加工工艺设计(doc 29页)

摘要 数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造的渗透形成的机电一体化产品,即所谓的数字化装备。 本次设计就是进行数控加工工艺设计典型轴类零件,主要侧重于该零件的数控加工工艺和编程,包括完成该零件的工艺规程,主要工序工装设计,并绘制零件图、夹具图等。 通过本次毕业设计,对典型轴类零件的设计又有了深的认识。从而达到了巩固、扩大、深化所学知识的目的,培养和提高了综合分析问题和解决问题的能力以及培养了科学的研究和创新能力。 关键词:数控技术典型轴类零件加工工艺毕业设计

1.引言 数控技术集传统的机械制造技术、计算机技术、成组技术与现代控制技术、传感检测技术、信息处理技术、网络通讯技术、液压气动技术、光机电技术于一体,是现代先进制造技术的基础和核心。数控车床己经成为现代企业的必需品。随着数控技术的不断成熟和发展及市场日益繁荣,其竞争也越来越激烈,人们对数控车床选择也有了更加广阔的范围,对数控机床技术的掌握也越来越高。随着社会经济的快速发展,人们对生活用品的要求也越来越高,企业对生产效率也有相应的提高。数控机床的出现实现了广大人们的这一愿望。数控车削加工工艺是实现产品设计、保证产品的质量、保证零件的精度,节约能源、降低消耗的重要手段。是企业进行生产准备、计划调度、加工操作、安全生产、技术检测和健全劳动组织的重要依据。也是企业对高品质、高品种、高水平,加速产品更新,提高经济效益的技术保证。这不但满足了广大消费者的目的,即实现了产品多样化、产品高质量、更新速度快的要求,同时推动了企业的快速发展,提高了企业的生产效率。 数控工艺规程的编制是直接指导产品或零件制造工艺过程和操作方 法的工艺文件,它将直接影响企业产品质量、效益、竞争能力。本文通过对典型轴类零件数控加工工艺的分析,对零件进行编程加工,给出了对于典型零件数控加工工艺分析的方法,对于提高制造质量、实际生产具有一定的意义。根据数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度,加工效率,简化工序等方面的优势。 本人以严谨务实的认真态度进行了此次设计,但由于知识水平与实际经验有限。在设计中会出现一些错误、缺点和疏漏,诚请各位评审老师提出批评和指正。

典型轴类零件数控加工工艺设计

目录 摘要 (3) 绪论 (5) 一、选择本课题的目的及意义 (5) 二、数控机床及数控技术的应用与发展 (5) (一)数控机床的应用与发展 (5) (二)数控技术的应用与发展 (6) 三、对课题任务的阐述 (6) 第二章工艺方案分析 (7) 2.2零件图分析及毛坯的选择 (7) 2.3设备的选择 (8) 2.5确定加工方法 (10) 2.6确定加工方案 (10) 第三章确定零件的定位基准和装夹方式 (12) 1.粗基准选择原则 (12) 2.精基准选择原则 (12) 3.定位基准 (12) 4.装夹方式 (12) 第四章工艺过程 (13) 1.工序与工步的划分 (13) 2.工步的划分 (13) 第五章确定加工顺序及进给路线 (14) 1.零件加工必须遵守的安排原则 (14) 2.进给路线 (14) 第六章刀具及切削用量的选择 (14) 6.1选择数控刀具的原则 (14) 6.2选择数控车削用刀具 (15) 6.3设置刀点和换刀点 (16) 6.4切削用量的选择 (16) 1.背吃刀量的选择 (16) 选择背吃刀量: (16) 2.主轴转速的选择 (17) 3.进给量的选取 (17) 4.进给速度的选取 (17) 7.1轴类零件加工工艺分析 (18) 7.2典型轴类零件加工工艺 (20) 7.3加工坐标系设置 (21) 7.4手工编程 (22) 第八章结束语 (25)

第九章致谢词 (26) 参考文献 (27)

摘要 数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造的渗透形成的机电一体化产品,即所谓的数字化装备,数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,对国计民生的一些重要行业(IT、汽车、医疗、轻工等)的发展起着越来越重要的作用,因为这些行业所需要装备的数字化已是现代发展的大趋势。而数控加工技术是随着数控机床的产生、发展而逐步完善起来的一种应用技术,是机械制造业人员长期从事数控加工时间的经验总结。数控加工技术就是用数控机床加工零件的方法。在数控加工中,利用工件的旋转运动和刀具的直线运动或者曲线运动来改变毛坯的尺寸和形状,把毛坯加工成符合精度要求的零件。数控车削加工是利用工件相对于刀具的旋转运动对工件进行切削加工的方法。车削适合加工回转类零件、内外圆锥面、端面、圆弧面、沟槽、螺纹和回转成形面等,所用的刀具主要是车刀。数控车削加工是现代制造技术的典型代表,在制造业的各个领域得到广泛的应用如航天、汽车、精密机械等。总之,它是从零件图纸到获得数控加工程序的全过程。已经成为这些行业不可或缺的加工手段。 关键词:数控技术;车削加工;数控加工工艺;数控编程

典型轴类零件的数控加工工艺编制

典型轴类零件的数控加工工艺编制数控技术是用数字信息对机械运动和工作过程进行操纵的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造的渗透形成的机电一体化产品,即所谓的数字化装备。 本次设计确实是进行数控加工工艺设计典型轴类零件,要紧侧重于该零件的数控加工工艺和编程,包括完成该零件的工艺规程,要紧工序工装设计,并绘制零件图、夹具图等。 通过本次毕业设计,对典型轴类零件的设计又有了深的认识。从而达到了巩固、扩大、深化所学知识的目的,培养和提高了综合分析咨询题和解决咨询题的能力以及培养了科学的研究和创新能力。 关键词:数控技术典型轴类零件加工工艺毕业设计

摘要 (1) 目录 (2) 1.引言 (3) 1.引言 (3) 2.零件分析 (4) 2.1毛坯的选择 (4) 2.2 机床的选择 (4) 3.零件图加工艺分析 (7) 3.1零件的工艺分析 (7) 3.2 零件的加工工艺设计 (11) 4.零件图加工程序编写 (21) 4.1零件左端加工程序编写 (21) 4.2零件右端加工程序编写 (22) 5. 程序调试 (25) 致谢 (26) 参考文献 (27)

数控技术集传统的机械制造技术、运算机技术、成组技术与现代操纵技术、传感检测技术、信息处理技术、网络通讯技术、液压气动技术、光机电技术于一体,是现代先进制造技术的基础和核心。数控车床己经成为现代企业的必需品。随着数控技术的不断成熟和进展及市场日益繁荣,其竞争也越来越猛烈,人们对数控车床选择也有了更加宽敞的范畴,对数控机床技术的把握也越来越高。随着社会经济的快速进展,人们对生活用品的要求也越来越高,企业对生产效率也有相应的提高。数控机床的显现实现了宽敞人们的这一愿望。数控车削加工工艺是实现产品设计、保证产品的质量、保证零件的精度,节约能源、降低消耗的重要手段。是企业进行生产预备、打算调度、加工操作、安全生产、技术检测和健全劳动组织的重要依据。也是企业对高品质、高品种、高水平,加速产品更新,提高经济效益的技术保证。这不但满足了宽敞消费者的目的,即实现了产品多样化、产品高质量、更新速度快的要求,同时推动了企业的快速进展,提高了企业的生产效率。 数控工艺规程的编制是直截了当指导产品或零件制造工艺过程和操作方法的工艺文件,它将直截了当阻碍企业产品质量、效益、竞争能力。本文通过对典型轴类零件数控加工工艺的分析,对零件进行编程加工,给出了关于典型零件数控加工工艺分析的方法,关于提高制造质量、实际生产具有一定的意义。依照数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。通过整个工艺的过程的制定,充分表达了数控设备在保证加工精度,加工效率,简化工序等方面的优势。 本人以严谨务实的认真态度进行了此次设计,但由于知识水平与实际体会有限。在设计中会显现一些错误、缺点和疏漏,诚请各位评审老师提出批判和指正。

数控轴类零件加工工艺的设计

山东华宇职业技术学 院 毕业论文 题目:数控轴类零件加工工艺设计 姓名:高攀 所在学院:山东华宇职业技术学院 专业班级:机械制造及自动化 学号: 20082410127 指导教师:马合 日期:2010.10.25

摘要 随着数控技术的不断发展和应用领域的扩大,数控加工技术对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。而对于数控加工,无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,拟定加工方案,选择合适的刀具,确定切削用量,对一些工艺问题(如对刀点、加工路线等)也需做一些处理。并在加工过程掌握控制精度的方法,才能加工出合格的产品。 本文根据数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度,加工效率,简化工序等方面的优势。 关键词工艺分析加工方案进给路线控制尺寸

目录 第1章前言 (4) 第2章工艺方案分析 (5) 2.1 零件图 (5) 2.2 零件图分析 (5) 2.3 确定加工方法 (5) 2.4 确定加工方案 (6) 第3章工件的装夹 (7) 3.1 定位基准的选择 (7) 3.2 定位基准选择的原则 (7) 3.3 确定零件的定位基准 (7) 3.4 装夹方式的选择 (7) 3.5 数控车床常用的装夹方式 (7) 3.6 确定合理的装夹方式 (7) 第4章刀具及切削用量 (8) 4.1 选择数控刀具的原则 (8) 4.2 选择数控车削用刀具 (8) 4.3 设置刀点和换刀点 (8) 4.4 确定切削用量 (9) 第5章典型轴类零件的加工 (10) 5.1 轴类零件加工工艺分析 (10) 5.2 典型轴类零件加工工艺 (12) 5.3 加工坐标系设置 (15) 5.4 手工编程 (16)

典型轴类零件加工工艺分析

6.4典型轴类零件加工工艺分析 6.4.1 轴类零件加工的工艺分析 (1)轴类零件加工的工艺路线 1)基本加工路线 外圆加工的方法很多,基本加工路线可归纳为四条。 ① 粗车—半精车—精车 对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。 ② 粗车—半精车—粗磨—精磨 对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。 ③ 粗车—半精车—精车—金刚石车 对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。 ④ 粗车—半精—粗磨—精磨—光整加工 对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。 2)典型加工工艺路线 轴类零件的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。 对普通精度的轴类零件加工,其典型的工艺路线如下: 毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽、沟槽)—热处理—磨削—终检。 (1)轴类零件的预加工 轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。 校直毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校值, (2) 轴类零件加工的定位基准和装夹

1)以工件的中心孔定位在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面。 2)以外圆和中心孔作为定位基准(一夹一顶)用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。 3)以两外圆表面作为定位基准在加工空心轴的内孔时,(例如:机床上莫氏锥度的内孔加工),不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准。当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差。 4)以带有中心孔的锥堵作为定位基准在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准,见图6.9所示。 锥堵或锥套心轴应具有较高的精度,锥堵和锥套心轴上的中心孔即是其本身制造的定位基准,又是空心轴外圆精加工的基准。因此必须保证锥堵或锥套心轴上锥面与中心孔有较高的同轴度。在装夹中应尽量减少锥堵的安装此书,减少重复安装误差。实际生产中,锥堵安装后,中途加工一般不得拆下和更换,直至加工完毕。 图 6.9 锥堵和锥套心轴 a)锥堵 b)锥套心轴

典型轴类零件加工工艺标准规范标准分析

阶梯轴加工工艺过程分析 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。

(一)结构及技术条件分析 该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。 (二)加工工艺过程分析 1.确定主要表面加工方法和加工方案。

传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(Ra0.8μm),最终加工应采用磨削。其加工方案可参考表3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。 但下列情况不能用两中心孔作为定位基面: (1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。 (2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔;

轴类零件机械加工工艺规程设计

轴类零件机械加工工艺规程设计 零件图七

摘要 本设计所选的题目是有关轴类零件的设计与加工,通过设计编程,最终用数控机床加工出零件,数控加工与编程毕业设计是数控专业教学体系中构成数控加工技术专业知识及专业技能的重要组成部分,它是运用数控原理,数控工艺,数控编程,制图软件和数控机床实际操作等专业知识对零件进行设计,是对所学专业知识的一次全面训练。熟悉设计的过程有利于对加工与编程的具体掌握,通过设计会使我们学会相关学科的基本理论,基本知识,进行综合的运用,同时还会对本专业有较完善的系统的认识,从而达到巩固,扩大,深化知识的目的。 此次设计也是我们走出校园之前学校对我们的最后一次全面的检验以及提高我们的素质和能力。毕业设计和完成毕业论文也是我们获得毕业资格的必要条件。 设计是以实践为主,理论与实践相结合的,通过对零件的分析与加工工艺的设计,提高我们对零件图的分析能力和设计能力。达到一个毕业生应有的能力,使我们在学校所学的各项知识得以巩固,以更好的面对今后的各种挑战。 此次设计主要是围绕设计零件图七的加工工艺及操作加工零件来展开的,我们在现有的条件下保证质量,加工精度及以及生产的经济成本来完成,对我们来说具有一定的挑战性。其主要内容有:分析零件图,确定生产类型和毛坯,确定加工设备和工艺设备,确定加工方案及装夹方案,刀具选择,切削用量的选择与计算,数据处理,对刀点和换刀点的确定,加工程序的编辑,加工时的实际操作,加工后的检验工作。撰写参考文献,组织附录等等。 关键词 加工工艺、工序、工步、切削用量:切削速度(m/min)、切削深度(mm)、进给量(mm/n、mm/r)。

典型轴类零件加工工艺分析

阶梯轴加工工艺过程分析? 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。

(一)结构及技术条件分析??该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。?

(二)加工工艺过程分析? 1.确定主要表面加工方法和加工方案。 传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(Ra0.8μm),最终加工应采用磨削。其加工方案可参考表3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。 但下列情况不能用两中心孔作为定位基面: ?(1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。? (2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔;

轴类零件加工工艺过程分析

2016-2017学年第二学期课程论文 《机械制造工艺学》 专业:机械设计制造及其自动化班级:2014级机设1班 学号:201410470129 姓名:夏正懿 成绩: 机械工程学院

轴类零件加工工艺过程分析 摘要:轴类零件是比较常用极其重要的零件之一,好的加工工艺是决定轴类零件表面精度、粗糙度,能缩短生产时间从而降低成本,带来巨大经济效益,本论文从加工路线,刀具选择,切削量等的选用等概要说明了轴类工件的加工工艺。 关键词:数控加工轴类零件加工 1 轴类零件的功用、结构特点及技术要求 轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传动零部件,传递扭矩和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 2 轴类零件的毛坯和材料 2.1轴类零件的毛坯 轴类零件可根据使用要求、生产类型、设备条件及结构,选用棒料、锻件等毛坯形式。对于外圆直径相差不大的轴,一般以棒料为主;而对于外圆直径相差大的阶梯轴或重要的轴,常选用锻件,这样既节约材料又减少机械加工的工作量,还可改善机械性能。 2.2轴类零件的材料 轴类零件应根据不同的工作条件和使用要求选用不同的材料并采用不同的热处理规范(如调质、正火、淬火等),以获得一定的强度、韧性

和耐磨性。 3 轴类零件加工的定位基准和装夹 3.1以工件的中心孔定位 在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。中心孔不仅是车削时的定为基准,也是其它加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时, 还能够最大限度地在一次装夹中加工出多个外圆和端面。 3.2以外圆和中心孔作为定位基准(一夹一顶) 用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。 4 轴类零件的加工工艺分析 轴类零件的加工顺序安排,数控车床与普通车床基本一样,即遵循“先粗后精,由大到小”的基本原则。先粗后精,就是先后对零件整体进行粗加工,精加工;由大到小,就是先从最大直径处开始车削,然后依次往小直径处加工。在数控车床精车轴类零件时,一般从零件右端开始连续不断地完成整个零件的切削。 4.1分析 如图1所示,这是一个由螺纹.外圆和槽构成的轴类零件,其中ф

数控机床轴类零件加工工艺分析

数控机床轴类零件加工工 艺分析 Prepared on 22 November 2020

X X X学院 毕业 设计 任务书 论文 机械工程系数控技术专业 XX 班 毕业设计 题目 数控机床轴类零件加工工艺分析论文 专题题目 数控机床轴类零件加工工艺分析 发题日期:2010年11月15日设计、论文自2010年11月20日完成期限:至2010年月日答辩日期:2010年月日 学生姓名: 指导教师: 系主任:

毕业设计版权使用授权书 本人完全了解云南机电职业技术学院关于收集、保存、使用毕业设计的规定,同意如下各项内容:按照学校要求提交毕业设计的印刷本和电子版本;学校有权保存毕业设计的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存毕业设计;学校有权提供目录检索以及提供本

毕业设计全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交毕业设计的复印件和电子版;在不以赢利为目的的前提下,学校可以适当复制毕业设计的部分或全部内容用于学术活动。 作者签名: 年月日 作者签名: 年月日 摘要 世界制造业转移,中国正逐步成为世界加工厂。美国、德国、韩国等国家已经进入发展的高技术密集时代与微电子时代,钢铁、机械、化工等重化工业发展中期。 由于数控机床综合应用了电子计算机、自动控制、伺服系统、精密检测与新型机械结构等方面的技术成果,具有高的高柔性、高精度与高度自动化的特点,因此,采用数控加工手段,解决了机械制造中常规加工技术难以解决甚至无法解决的单件、小批量,特别是复杂型面零件的加工,应用数控加工技术是机械制造业的一次技术革命,使机械制造的发展进入了一个新的阶段,提高了机械制造业的制造水平,为社会提供高质量,多品种及高可靠性的机械产品。 本次设计主要是对数控加工工艺进行分析与具体零件图的加工,首先对数控加工技术进行了简单的介绍,然后根据零件图进行数控加工分析。第一,根据本零件材料的加工工序、切削用量以及其他相关因素选用刀具及

车工工艺教案轴类零件的加工工艺分析与实例

轴类零件的加工工艺分析与实例 在职业学校机械加工实习课中,轴类零件的加工是学生练习车削技能的最基本也最重要的项目,但学生最后完工工件的质量总是很不理想,经过分析主要是学生对轴类零件的工艺分析工艺规程制订不够合理。 轴类零件中工艺规程的制订,直接关系到工件质量、劳动生产率和经济效益。一零件可以有几种不同的加工方法,但只有某一种较合理,在制订机械加工工艺规程中,须注意以下几点。 1.零件图工艺分析中,需理解零件结构特点、精度、材质、热处理等技术要求,且要研究产品装配图,部件装配图及验收标准。 2.渗碳件加工工艺路线一般为:下料→锻造→正火→粗加工→半精加工→渗碳→去碳加工(对不需提高硬度部分)→淬火→车螺纹、钻孔或铣槽→粗磨→低温时效→半精磨→低温时效→精磨。 3.粗基准选择:有非加工表面,应选非加工表面作为粗基准。对所有表面都需加工的铸件轴,根据加工余量最小表面找正。且选择平整光滑表面,让开浇口处。选牢固可靠表面为粗基准,同时,粗基准不可重复使用。 4.精基准选择:要符合基准重合原则,尽可能选设计基准或装配基准作为定位基准。符合基准统一原则。尽可能在多数工序中用同一个定位基准。尽可能使定位基准与测量基准重合。选择精度高、安装稳定可靠表面为精基准。 内圆磨具主轴 针对上述要求,现举例说明如下。一渗碳主轴(如上图),每批40件,材料20Cr,除内外螺纹外S0.9~C59。渗碳件工艺比较复杂,必须对粗加工工艺绘制工艺草图(如图)。 工艺草图

主轴加工工艺过程

该轴类零件加工过程中几点说明: 1.采用了二中心孔为定位基准,符合前述的基准重合及基准统一原则。 2.该零件先以外圆作为粗基准,车端面和钻中心孔,再以二中心孔为定位基准粗车外圆,又以粗车外圆为定位基准加工锥孔,此即为互为基准原则,使加工有一次比一次精度更高的定位基准面。3号莫氏圆锥精度要求很高。因此,需用V型夹具以2-ф30js5外圆为定位基准达到形位公差要求。车内锥时,一端用卡爪夹住,一端搭中心架,亦是以外圆作为精基准。 3.半精加工、精加工外圆时,采用了锥堵,以锥堵中心孔作为精加工该轴外圆面的定位基准。 对锥堵要求: ①锥堵具有较高精度,保证锥堵的锥面与其顶尖孔有较高同轴度。 ②锥堵安装后不宜更换,以减少重复安装引起的安装误差。 ③锥堵外径靠近轴端处须制有外螺纹,以方便取卸锥堵。 4.主轴用20Cr低碳合金钢渗碳淬硬,对工件不需要淬硬部分发(M30×1.5-6g左、M30×1.5-6g、M12-6H、M6-6H)表面留2.5-3mm去碳层。 5.螺纹因淬火后,在车床上无法加工,如先车好螺纹后再淬火,会使螺纹产生变形。因此,螺纹一般不 允许淬硬,所以在工件中的螺纹部分的直径和长度上必需留去碳层。对于内螺纹,在孔口也应留出3mm 去碳层。 6.为保证中心孔精度,工件中心孔也不允许淬硬,为此,毛坯总长放长6mm。 7.为保证工件外圆的磨削精度,热处理后须安排研磨中心孔的工序,并要求达到较细的表面粗糙度。外 圆磨削时,影响工件的圆度主要是由于二顶尖孔的同轴度,及顶尖孔的圆度误差。 8.为消除磨削应力,粗磨后安排低温时效工序(烘)。 9.要获高精度外圆,磨削时应分粗磨、半精磨、精磨工序。精磨安排在高精度磨床上加工。 当然,实习产品质量的提高还需要学生扎实的基本功。

轴类零件工艺制定实例

一、轴类零件是机器中经常遇到的典型零件之一。它主要用来支承传动零部件,传递扭矩 和承受载荷。轴类零件是旋转体零件,其长度大于直径,一般由同心轴的外圆柱面、圆锥面、内孔和螺纹及相应的端面所组成。根据结构形状的不同,轴类零件可分为光轴、阶梯轴、空心轴和曲轴等。 轴的长径比小于5的称为短轴,大于20的称为细长轴,大多数轴介于两者之间。 轴用轴承支承,与轴承配合的轴段称为轴颈。轴颈是轴的装配基准,它们的精度和表面质量一般要求较高,其技术要求一般根据轴的主要功用和工作条件制定,通常有以下几项: (一)尺寸精度起支承作用的轴颈为了确定轴的位置,通常对其尺寸精度要求较高 (IT5~IT7)。装配传动件的轴颈尺寸精度一般要求较低(IT6~IT9)。 (二)几何形状精度轴类零件的几何形状精度主要是指轴颈、外锥面、莫氏锥孔等的 圆度、圆柱度等,一般应将其公差限制在尺寸公差范围内。对精度要求较高的内外圆表面,应在图纸上标注其允许偏差。 (三)相互位置精度轴类零件的位置精度要求主要是由轴在机械中的位置和功用决定 的。通常应保证装配传动件的轴颈对支承轴颈的同轴度要求,否则会影响传动件(齿轮等)的传动精度,并产生噪声。普通精度的轴,其配合轴段对支承轴颈的径向跳动一般为0.01~0.03mm,高精度轴(如主轴)通常为0.001~0.005mm。 (四)表面粗糙度一般与传动件相配合的轴径表面粗糙度为Ra2.5~0.63μm,与轴承相 配合的支承轴径的表面粗糙度为Ra0.63~0.16μm。 一、概述 (一)、轴类零件的功用与结构特点 1、功用:为支承传动零件(齿轮、皮带轮等)、传动扭矩、承受载荷,以及保证装在主轴上的工件或刀具具有一定的回转精度。 2、2、分类:轴类零件按其结构形状的特点,可分为光轴、阶梯轴、空心 轴和异形轴(包括曲轴、凸轮轴和偏心轴等)四类。

典型轴类零件数控加工工艺

典型轴类零件数控加工工艺设计 姓名:邢荣腾 职业:数控车工 身份证号:3723717 鉴定等级:技师 单位:济南铁路高级技工学校 二〇一一年十二月

在机械制造工业中并不是所有的产品零件都具有很大的批量,单件与小批量生产的零件(批量在10~100件)约占机械加工总量的80%以上。尤其是在造船、航天、航空、机床、重型机械以及国防工业更是如此。 为了满足多品种,小批量的自动化生产,迫切需要一种灵活的,通用的,能够适用产品频繁变化的柔性自动化机床。数控机床就是在这样的背景下诞生与发展起来的。它为单件、小批量生产的精密复杂零件提供了自动化的加工手段。 根据国家标准GB/T8129-1997,对机床数字控制的定义:用数字控制的装置(简称数控装置),在运行过程中,不断地引入数字数据,从而对某一生产过程实现自动控制,叫数字控制,简称数控。用计算机控制加工功能,称计算机数控(computerized numerical ,缩写CNC)。 数控机床即使采用了数控技术的机床,或者说装备了数控系统的机床。从应用来说,数控机床就是将加工过程所需的各种操作(如主轴变速、松加工件、进刀与退刀、开车与停车、选择刀具、供给切削液等)和步骤,以及刀具与工件之间的相对位移量都用数字化的代码来表示,通过控制介质将数字信息送入专用的或通用的计算机,计算机对输入的信息进行处理与运算,发出各种指令来控制机床的伺服系统或其他执行元件,是机床自动加工出所需要的零件。

一.前言 (2) 二.摘要 (4) 三.零件图工艺分析 (4) 四.数控加工工艺基本特点 (6) 五.设备选择 (6) 六.确定零件的定位基准和装夹方式 (7) 七.加工方法的选择和加工方案的确定 (9) 八.确定加工顺序及进给路线 (10) 九.刀具的选择 (10) 十.切削用量的选择 (11) 十一. 编程误差及其控制 (15) 十二.程序编制及模拟运行、零件加工、精度自检 (15) 结束语 (19)

数控轴类零件加工工艺设计毕业论文

数控轴类零件加工工艺设计毕业论文 目录 第1章前言 (1) 第2章工艺方案分析 (2) 2.1 零件图 (2) 2.2 零件图分析 (2) 2.3 确定加工方法 (2) 2.4 确定加工方案 (2) 第3章 (4) 3.1 定位基准的选择 (4) 3.2 定位基准选择的原则 (4) 3.3 确定零件的定位基准 (4) 3.4 装夹方式的选择 (4) 3.5 数控车床常用的装夹方式 (4) 3.6 确定合理的装夹方式 (4) 第4章刀具及切削用量 (5) 4.1 选择数控刀具的原则 (5) 4.2 选择数控车削用刀具 (5) 4.3 设置刀点和换刀点 (6) 4.4 确定切削用量 (6) 第5章典型轴类零件的加工 (7) 5.1 轴类零件加工工艺分析 (7) 5.2 典型轴类零件加工工艺 (9) 5.3 加工坐标系设置 (11) 5.4 手工编程 (12) 第6章结束语 (15) 第7章致谢词 (16) 参考文献 (17)

第一章前言 在机械加工工艺教学中,机械制造专业学生及数控技术专业学生都要学习数控车床操作技术。让学生了解相关工种的先进技术,同时培养工作岗位的前瞻性。数控车工基础工艺理论及技能有机融合,包括夹具的使用、量具的识读和使用、刃具的刃磨及使用、基准定位等,分类叙述了车床操作、数控车床自动编程仿真操作、数控车床编程与操作的初、中级容。以机械加工中车工工艺学与数控车床技能训练密切结合为主线,常用量具识读及工件测量、刀具及安装、工件定位与安装、金属切削过程及精加工,较清晰地展示了数控车工必须掌握的知识和技能的训练途径。对涉及与数控专业相关的基础知识、专业计算,都进行了有针对性的论述,目的在于塑造理论充实、技能扎实的专业技能型人才。 本文以与切削用量的选择,工件的定位装夹,加工顺序和典型零件为例,结合数控加工的特点,分别进行工艺方案分析,机床的选择,刀具加工路线的确定,数控程序的编制,最终形成可以指导生产的工

典型轴类零件加工工艺分析

典型轴类零件加工工艺分 析 Revised final draft November 26, 2020

阶梯轴加工工艺过程分析 图6—34为减速箱传动轴工作图样。表6—13为该轴加工工艺过程。生产批量为小批生产。材料为45热轧圆钢。零件需调质。 (一)结构及技术条件分析该轴为没有中心通孔的多阶梯轴。根据该零件工作图,其轴颈M、N,外圆P,Q及轴肩G、H、I有较高的尺寸精度和形状位置精度,并有较小的表面粗糙度值,该轴有调质热处理要求。(二)加工工艺过程分析1.确定主要表面加工方法和加工方案。 传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要表面M,N,P,Q的公差等级较高(IT6),表面粗糙度值较小(μm),最终加工应采用磨削。其加工方案可参考表3-14。 2.划分加工阶段 该轴加工划分为三个加工阶段,即粗车(粗车外圆、钻中心孔),半精车(半精车各处外圆、台肩和修研中心孔等),粗精磨各处外圆。各加工阶段大致以热处理为界。 3.选择定位基准 轴类零件的定位基面,最常用的是两中心孔。因为轴类零件各外圆表面、螺纹表面的同轴度及端面对轴线的垂直度是相互位置精度的主要项目,而这些表面的设计基准一般都是轴的中心线,采用两中心孔定位就能符合基准重合原则。而且由于多数工序都采用中心孔作为定位基面,能最大限度地加工出多个外圆和端面,这也符合基准统一原则。但下列情况不能用两中心孔作为定位基面:(1)粗加工外圆时,为提高工件刚度,则采用轴外圆表面为定位基面,或以外圆和中心孔同作定位基面,即一夹一顶。(2)当轴为通孔零件时,在加工过程中,作为定位基面的中心孔因钻出通孔而消失。为了在通孔加工后还能用中心孔作为定位基面,工艺上常采用三种方法。 ①当中心通孔直径较小时,可直接在孔口倒出宽度不大于2mm的60o内锥面来代替中心孔; ②当轴有圆柱孔时,可采用图6—35a所示的锥堵,取1∶500锥度;当轴孔锥度较小时,取锥堵锥度与工件两端定位孔锥度相同;

轴类零件加工工艺分析

江苏省徐州机电工程高等职业学校 毕业论文 (2016届) 题目:轴类零件的加工工艺分析 姓名:张开诚 学号: 系部:数控技术系 班级: 11高职数控6班 指导教师:郁岩 2016年5月 轴类零件的加工工艺分析 张开诚 11高职数控6班 摘要:随着数控技术的不断发展和应用领域的扩大,数控加工技术对国计民 生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,本文根据数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度,加工效率,简化工序等方面的优势。 关键词:工艺分析;加工方案;进给路线;控制尺寸

图1 零件图 技术要求 1 去除毛刺尖角倒钝 2 未注倒角均为1*45° 3 无热处理和硬度要求 一、工艺方案分析 (一)零件图分析 该零件属于抽油机里面的装配零件,表面由圆柱、顺圆弧、逆圆弧、圆锥、槽、螺纹等表面组成。尺寸标注完整,对精度要求较高,我们选用毛坯为45#钢,Φ55mm×150mm。 (二)确定加工方法 加工方法的选择原则是保证加工表面的加工精度和表面粗糙度的要求。由于获得同一级精度及表面粗糙度的加工方法一般有许多,因而在实际选择时,要结合零件的形状、尺寸大小和形位公差要求等全面考虑。 图上几个精度要求较高的尺寸,因其公差值较小,所以编程时没有取平均值,而取其基本尺寸。 在轮廓线上,有个锥度10度坐标P1、和一处圆弧切点P2,在编程时要求出其坐标,P1(45.29 ,75) P2(35,56.46)。 通过以上数据分析,考虑加工的效率和加工的经济性,最理想的加工方式为车削,考虑该零件为大批量加工,故加工设备采用数控车床。 根据加工零件的外形和材料等条件,选用CJK6032数控机床。(三)确定加工方案 零件上比较精密表面的加工,常常是通过粗加工、半精加工和精加工逐步达到的。对这些表面仅仅根据质量要求选择相应的最终加工方法是不够的,还应正确地确定从毛坯到最终成形的加工方案。 毛坯先夹持左端,车右端轮廓113mm处,右端加工Φ39mm、SΦ42mm、 R9mm、Φ35mm、锥度为10度的外圆,Φ52mm.调头装夹已加工Φ52mm外圆,左端加工Φ25mm×33mm、切退刀槽、加工螺纹M25mm ×1.5mm. 该典型轴加工顺序为: 预备加工---车端面---粗车右端轮廓---精车右端轮廓---切槽---工件调头 ---车端面---粗车左端轮廓---精车左端轮廓---切退刀槽---粗车螺纹---精车螺纹。

轴类零件的加工及工艺分析

数控加工是机械制造中的先进的加工技术是一种高效率,高精度与高柔性特点的自动加工方法,数控加工技术可有效解决复杂、精密、小批多变零件的加工问题,充分适应了现代化生产的需要,制造自动化是先进制造技术的重要组成部分,其核心技术是数控技术,数控技术是综合计算机、自动技术、自动检测及精密机械等高新技术的产物,它的出现及所带来的巨大利益,已引起了世界各国技术与工业界的普遍重视,目前,国内数控机床使用越来越普及,如何提高数控加工技术水平已成为当务之急,随着数控加工的日益普及,越来越多的数控机床用户感到,数控加工工艺掌握的水平是制约手工编程与CAD/CAM 集成化自动编程质量的关键因素。 数控加工工艺是数控编程与操作的基础,合理的工艺是保证数控加工质量发挥数控机床的前提条件,从数控加工的实用角度出发,以数控加工的实际生产为基础,以掌握数控加工工艺为目标,在介绍数控加工切削基础,数控机床刀具的选用,数控加工的定位与装夹以及数控加工工艺基础等基本知识的基础上,分析了数控车削的加工工艺。

前言 第一章设计概要 (1) 第一节设计题目及目的 (1) 第二节选用设计软件 (1) 第二章实体设计 (2) 第一节 CAXA平面图的绘制 (2) 第二节零件实体的构造 (4) 第三章工艺分析 (7) 第一节零件工艺分析 (8) 第二节刀具的选择 (9) 第三节刀具卡片 (10) 第四节确立工件的定位与夹具方案 (10) 第五节确定走刀顺序和路线 (11) 第六节切削用量的选择 (15) 第七节数控加工工艺文件的填写 (16) 第八节保证加工精度的方法 (17) 第四章数控加工程序 (18) 第五章零件仿真加工 (23) 第一节仿真软件简介 (23) 第二节仿真加工过程 (25) 结论 (30)

典型零件加工工艺(轴类,盘类,箱体类,齿轮类等

典型零件加工工艺(轴类,盘类,箱体类,齿轮类等 实际中,零件的结构千差万别,但其基本几何构成不外是外圆、内孔、平面、螺纹、齿面、曲面等。很少有零件是由单一典型表面所构成,往往是由一些典型表面复合而成,其加工方法较单一典型表面加工复杂,是典型表面加工方法的综合应用。下面介绍轴类零件、箱体类和齿轮零件的典型加工工艺。 第一节轴类零件的加工 一轴类零件的分类、技术要求 轴是机械加工中常见的典型零件之一。它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等其中阶梯传动轴应用较广,其加工工艺能较全面地反映轴类零件的加工规律和共性。 根据轴类零件的功用和工作条件,其技术要求主要在以下方面: ⑴尺寸精度轴类零件的主要表面常为两类:一类是与轴承的内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位置并支承轴,尺寸精度要求较高,通常为IT 5~IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,常为IT6~IT9。 ⑵几何形状精度主要指轴颈表面、外圆锥面、锥孔等重要表面的圆度、圆柱度。其误差一般应限制在尺寸公差范围内,对于精密轴,需在零件图上另行规定其几何形状精度。 ⑶相互位置精度包括内、外表面、重要轴面的同轴度、圆的径向跳动、重要端面对轴心线的垂直度、端面间的平行度等。 ⑷表面粗糙度轴的加工表面都有粗糙度的要求,一般根据加工的可能性和经济性来确定。支承轴颈常为0.2~1.6μm,传动件配合轴颈为0.4~3.2μm。 ⑸其他热处理、倒角、倒棱及外观修饰等要求。 二、轴类零件的材料、毛坯及热处理 1.轴类零件的材料 ⑴轴类零件材料常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20CrMnTi、20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。 ⑵轴类毛坯常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。 2.轴类零件的热处理 锻造毛坯在加工前,均需安排正火或退火处理,使钢材内部晶粒细化,消除锻造应力,降低材料硬度,改善切削加工性能。 调质一般安排在粗车之后、半精车之前,以获得良好的物理力学性能。 表面淬火一般安排在精加工之前,这样可以纠正因淬火引起的局部变形。 精度要求高的轴,在局部淬火或粗磨之后,还需进行低温时效处理。 三、轴类零件的安装方式 轴类零件的安装方式主要有以下三种。 1.采用两中心孔定位装夹 一般以重要的外圆面作为粗基准定位,加工出中心孔,再以轴两端的中心孔为定位精基准;尽可能做到基准统一、基准重合、互为基准,并实现一次安装加工多个表面。中心孔是工件加工统一的定位基准和检验基准,它自身质量非常重要,其准备工作也相对复杂,常常以支

相关主题
文本预览
相关文档 最新文档