当前位置:文档之家› 直流伺服电机的结构与分类

直流伺服电机的结构与分类

直流伺服电机的结构与分类
直流伺服电机的结构与分类

直流伺服电机的结构与分类

直流伺服电机的品种很多,根据磁场产生的方式,直流电机可分为他励式、永磁式、并励式、串励式和复励式五种。永磁式用氧化体、铝镍钴、稀土钴等软磁性材料建立激磁磁场。在结构上,直流伺服电机有一般电枢式、无槽电枢式、印刷电枢式、绕线盘式和空心杯电枢式等。为避免电刷换向器的接触,还有无刷直流伺服电机。根据控制方式,直流伺服电机可分为磁场控制方式和电枢控制方式。永磁直流伺服电机只能采用电枢控制方式,一般电磁式直流伺服电机大多也用电枢控制方式。

在数控机床中,进给系统常用的直流伺服电机主要有以下几种:1.小惯性直流伺服电机

小惯性直流伺服电机因转动惯量小而得名。这类电机一般为永磁式,电枢绕组有无槽电枢式、印刷电枢式和空心杯电枢式三种。因为小惯量直流电机最大限度地减小电枢的转动惯量,所以能获得最快的响应速度。在早期的数控机床上,这类伺服电机应用得比较多。

2.大惯量宽调速直流伺服电机

大惯量宽调速直流伺服电机又称直流力矩电机。一方面,由于它的转子直径较大,线圈绕组匝数增加,力矩大,转动惯量比较其他类型电机大,且能够在较大过载转矩时长时间地工作,因此可以直接与丝杠

相连,不需要中间传动装置。另一方面,由于它没有励磁回路的损耗,它的外型尺寸比类似的其他直流伺服电机小。它还有一个突出的特点,是能够在较低转速下实现平稳运行,最低转速可以达到1r/min,甚至0.1r/min。因此,这种伺服电机在数控机床上得到了广泛地应用。

3.无刷直流伺服电机

无刷直流伺服电机又叫无整流子电机。它没有换向器,由同步电机和逆变器组成,逆变器由装在转子上的转子位置传感器控制。它实质是一种交流调速电机,由于其调速性能可达到直流伺服发电机的水平,又取消了换向装置和电刷部件,大大地提高了电机的使用寿命。

伺服电机的分类

伺服电机是自动控制系统和计算装置中广泛应用的一种执行元件,很多第一次接触到这个产品的朋友肯定一头雾水,不知道它到底是什么。下面小编就给大家详细介绍一下到底伺服电机是什么东西以及它的分类。 伺服电动机(或称执行电动机)是自动控制系统和计算装置中广泛应用的一种执行元件。其作用为把接受的电信号转换为电动机转轴的角位移或角速度。按电流种类的不同,伺服电动机可分为直流和交流两大类。 一、交流伺服电动机 结构和原理交流伺服电动机的定子绕组和单相异步电动机相似,它的定子上装有两个在空间相差90°电角度的绕组,即励磁绕组和控制绕组。运行时励磁绕组始终加上一定的交流励磁电压,控制绕组上则加大小或相位随信号变化的控制电压。转子的结构形式笼型转子和空心杯型转子两种。 笼型转子的结构与一般笼型异步电动机的转子相同,但转子做的细长,转子导体用高电阻率的材料作成。其目的是为了减小转子的转动惯量,增加启动转矩对输入信号的快速反应和克服自转现象。空心杯形转子交流伺服电动机的定子分为外定子和内定子两部分。外定子的结构与笼型交流伺服电动机的定子相同,铁心槽内放有两相绕组。 空心杯形转子由导电的非磁性材料(如铝)做成薄壁筒形,放在内、外定子

之间。杯子底部固定于转轴上,杯臂薄而轻,厚度一般在0.2—0.8mm,因而转动惯量小,动作快且灵敏。交流伺服电动机的工作原理和单相异步电动机相似,LL是有固定电压励磁的励磁绕组,LK是有伺服放大器供电的控制绕组,两相绕组在空间相差90°电角度。如果IL与Ik 的相位差为90°,而两相绕组的磁动势幅值又相等,这种状态称为对称状态。与单相异步电动机一样,这时在气隙中产生的合成磁场为一旋转磁场,其转速称为同步转速。旋转磁场与转子导体相对切割,在转子中产生感应电流。转子电流与旋转磁场相互作用产生转矩,使转子旋转。如果改变加在控制绕组上的电流的大小或相位差,就破坏了对称状态,使旋转磁场减弱,电动机的转速下降。电机的工作状态越不对称,总电磁转矩就越小,当除去控制绕组上信号电压以后,电动机立即停止转动。这是交流伺服电动机在运行上与普通异步电动机的区别。 交流伺服电动机有以下三种转速控制方式:(1)幅值控制控制电流与励磁电流的相位差保持90°不变,改变控制电压的大小。(2)相位控制控制电压与励磁电压的大小,保持额定值不变,改变控制电压的相位。(3)幅值—相位控制同时改变控制电压幅值和相位。交流伺服电动机转轴的转向随控制电压相位的反相而改变。

关于伺服电机你可能不知道的28个问题

关于伺服电机你可能不知道的28个问题工业机器人有4大组成部分,分别为本体、伺服、减速器和控制器。 工业机器人电动伺服系统的一般结构为三个闭环控制,即电流环、速度环和位臵环。一般情况下,对于交流伺服驱动器,可通过对其内部功能参数进行人工设定而实现位臵控制、速度控制、转矩控制等多种功能。 那么关于伺服电机有哪些需要知道的呢? 1.如何正确选择伺服电机和步进电机? 答:主要视具体应用情况而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位臵、转矩还是速度方式。供电电源是直流还是交流电源,或电池供电,电压范围。据此以确定电机和配用驱动器或控制器的型号。 2.选择步进电机还是伺服电机系统? 答:其实,选择什么样的电机应根据具体应用情况而定,各有其特点。 3.如何配用步进电机驱动器? 答:根据电机的电流,配用大于或等于此电流的驱动器。如果需要低振动或高精度时,可配用细分型驱动器。对于大转矩电机,尽可能用高电压型驱动器,以获得良好的高速性能。

4.2 相和5 相步进电机有何区别,如何选择? 答:2 相电机成本低,但在低速时的震动较大,高速时的力矩下降快。 5 相电机则振动较小,高速性能好,比 2 相电机的速度高30~50% ,可在部分场合取代伺服电机。 5.何时选用直流伺服系统,它和交流伺服有何区别? 答:直流伺服电机分为有刷和无刷电机。 有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 6.使用电机时要注意的问题? 答:上电运行前要作如下检查: 1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的 +/- 极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大); 2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线); 3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。 4)一定要搞清楚接地方法,还是采用浮空不接。 5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。 7.步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题? 一般要考虑以下方面作检查:

交流伺服电机内部结构图及原理

一、交流伺服电机结构图 二、原理

交流伺服电机在定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无"自转"现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大, 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广. 3、无自转现象)

直流伺服电机的结构与分类

直流伺服电机的结构与分类 直流伺服电机的品种很多,根据磁场产生的方式,直流电机可分为他励式、永磁式、并励式、串励式和复励式五种。永磁式用氧化体、铝镍钴、稀土钴等软磁性材料建立激磁磁场。在结构上,直流伺服电机有一般电枢式、无槽电枢式、印刷电枢式、绕线盘式和空心杯电枢式等。为避免电刷换向器的接触,还有无刷直流伺服电机。根据控制方式,直流伺服电机可分为磁场控制方式和电枢控制方式。永磁直流伺服电机只能采用电枢控制方式,一般电磁式直流伺服电机大多也用电枢控制方式。 在数控机床中,进给系统常用的直流伺服电机主要有以下几种:1.小惯性直流伺服电机 小惯性直流伺服电机因转动惯量小而得名。这类电机一般为永磁式,电枢绕组有无槽电枢式、印刷电枢式和空心杯电枢式三种。因为小惯量直流电机最大限度地减小电枢的转动惯量,所以能获得最快的响应速度。在早期的数控机床上,这类伺服电机应用得比较多。 2.大惯量宽调速直流伺服电机 大惯量宽调速直流伺服电机又称直流力矩电机。一方面,由于它的转子直径较大,线圈绕组匝数增加,力矩大,转动惯量比较其他类型电机大,且能够在较大过载转矩时长时间地工作,因此可以直接与丝杠

相连,不需要中间传动装置。另一方面,由于它没有励磁回路的损耗,它的外型尺寸比类似的其他直流伺服电机小。它还有一个突出的特点,是能够在较低转速下实现平稳运行,最低转速可以达到1r/min,甚至0.1r/min。因此,这种伺服电机在数控机床上得到了广泛地应用。 3.无刷直流伺服电机 无刷直流伺服电机又叫无整流子电机。它没有换向器,由同步电机和逆变器组成,逆变器由装在转子上的转子位置传感器控制。它实质是一种交流调速电机,由于其调速性能可达到直流伺服发电机的水平,又取消了换向装置和电刷部件,大大地提高了电机的使用寿命。

防爆伺服电机的分类和特点

南京德拜自动化科技有限公司https://www.doczj.com/doc/296994191.html, 防爆伺服电机的分类和特点 防爆伺服电机的分类和特点:随着我国防爆伺服电机工业的发展,石油、化工、化肥、煤炭等行业对大型防爆无刷励磁同步电动机的需求量越来越大,尤其是近年石化行业产量不断提升,大型防爆无刷励磁同步电动机功率也越来越大,接下来德拜自动化科技就带大家详细的了解一下国产防爆伺服电机的分类和特点。 1 技术特点与优势 对爆炸性气体环境区域的划分、常用的防爆形势如增安型电机、隔爆型电机、正压外壳型电机的防爆原理和优缺点进行介绍。 增安型防爆原理———采用不产生火花、电弧和危险温度的电气结构进行防爆。 隔爆型防爆原理———采用隔爆外壳和控制表面温度达到防爆目的。 正压外壳型防爆原理———采用密封壳体内保护气体压力保持高于外部环境压力,以阻止壳体内形成爆炸性气体环境进行防爆。 1. 1 增安型电机 ( 1) 只能在“2”区场所使用,并且温度组别只能达到T3 组; ( 2) 大容量的增安型电机,受电网容量的限制,电机的无火花等试验无法进行,国内增安型异步电动机较大功率为8 500kW。大型电机的TE时间很难满足

南京德拜自动化科技有限公司https://www.doczj.com/doc/296994191.html, 标准要求,也为电机的热保护带来困难。 ( 3) 按照IEC 和新的国家标准的规定,额定电压超过1kV 的高压增安型电机需要起动前预吹扫,并且新标准明确规定,用户在使用增安型电机时负有安全责任,即起动前预吹扫由用户负责。电机每次起车时均需要大量的保护气体对电机内腔重新进行吹扫换气。每次起车时都要等待30min 左右,不能适应石化等企业装置随时切换的要求。 1. 2 隔爆型电机 隔爆型电机可以在“1”区和“2”区防爆场所使用,但存在如下不足点。 ( 1) 电机容量较大时,由于电机体积越大,隔爆外壳需要不断增强,目前国内外一般隔爆型电机可以做到H800,超过一定尺寸时爆炸压力试验无法完成,目前国内隔爆防爆伺服电机功率为7.5kW。 ( 2) 高转速、四级防爆( dIICT4)隔爆型电机由于轴贯通部分间隙很小易出现抱轴事故。在工业运行中,容易因抱轴而导致电机无法运转,影响生产,从而给用户带来损失。因此该类电机容量一般不宜超过10kW。 1. 3 正压外壳型电机 正压外壳型电机有如下优点。 ( 1) 可使用在“1”区或“2”区的危险场所。 ( 2) 不受无火花试验及TE 时间的限制。 ( 3) 不受电机容量和转速的限制,可做成大功率的防爆产品( 目前可达到25 000KW) 。 ( 4) 无论从防爆原理还是电机自身运行的可靠性均取得极大提高。 ( 5) 温度组别可达到T4 组。 ( 6) 克服了增安型电机每次起车时吹扫等待的缺点,进入保压状态后可以随时起停车。

交流伺服电机内部结构图及原理

一、交流伺服电机结构图 二、原理 交流伺服电机在定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。

交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无"自转"现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大, 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广. 3、无自转现象) 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。 交流伺服电动机运行平稳、噪音小。但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W 的小功率控制系统。

伺服电机概述

伺服电机概述 2.1.1 伺服电机的用途与分类 伺服电机(又称为执行电机)是一种应用于运动控制系统中的控制电机,它的输出参数,如位置、速度、加速度或转矩是可控的。 伺服电机在自动控制系统中作为执行元件,把输入的电压信号变换成转轴的角位移或角速度输出。输入的电压信号又称为控制信号或控制电压,改变控制电压可以变更伺服电机的转速及转向。 伺服电机按其使用的电源性质不同,可分为直流伺服电机的交流伺服电机两大类。 交流伺服电机按结构和工作原理的不同,可分为交流异步伺服电机和交流同步伺服电机。交流异步伺服电机又分为两相交流异步伺服电机和三相交流异步伺服电机,其中两相交流异步伺服电机又分为笼型转子两相伺服电机和空心杯形转子两相伺服电机 等。同步伺服电机又分为永磁式同步电机、磁阻式同步电机和磁滞式同步电机等。 直流伺服电机有传统型和低惯量型两大类。直流伺服电机按励磁方式可分为永磁式和电磁式两种。传统式直流伺服电机的结构形式和普通直流电机基本相同,传统式直流伺服电机按励磁方式可分为永磁式和电磁式两种。常用的低惯量直流伺服电机有以下几种。 ①盘形电枢直流伺服电机。 ②空心杯形电枢永磁式直流伺服电机。 ③无槽电枢直流伺服电机。 随着电子技术的飞速发展,又出现了采用电子器件换向的新型直流伺服电机。此外,为了适应高精度低速伺服系统的需要,又出现了直流力矩电机。在某些领域(例如数控机床),已经开始用直线伺服电机。伺服电机正在向着大容量和微型化方向发展。 伺服电机的种类很多,本章介绍几种常用伺服电机的基本结构、工作原理、控制方式、静态特性和动态特性等。 2.1.2 自动控制系统对伺服电机的基本要求 伺服电机的种类虽多,用途也很广泛,但自动控制系统对它们的基本要求可归结为以下几点。

伺服电机选型计算

电机: 电机是指依据电磁感应定律实现电能转换或传递的一种电磁装置。电机在电路中是用字母M表示,它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源,发电机在电路中用字母G表示,它的主要作用是利用机械能转化为电能。 伺服电机: 伺服电机是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。 伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 工作原理: 1、伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标的任意变化的自动控制系统。伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就

会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护不方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 2、交流伺服电机也是无刷电机,分为同步和异步电机,运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 3、伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 交流伺服电机和无刷直流伺服电机在功能上的区别:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。

伺服电机原理及选型规则

伺服电机原理及选型规则
2011-8-4 8:00:00 来源:
[摘要]:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装 置。伺服电机是可以连续旋转的电-机械转换器。作为液压阀控制器的伺服电机,属 于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。 [关键词]:伺服系统 发动机 马达 变速装置 伺服电机 什么是伺服电机? 伺服电机:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装 置。伺服电机是可以连续旋转的电-机械转换器。作为液压阀控制器的伺服电机,属 于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。 伺服电机的作用:伺服电机可使控制速度,位置精度非常准确。 伺服电机的分类:直流伺服电机和交流伺服电机。 直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。具有起动转 矩大,调速范围宽,机械特性和调节特性的线性度好,控制方便等优点,但换向电刷 的磨损和易产生火花会影响其使用寿命。 近年来出现的无刷直流伺服电机避免了电刷 摩擦和换向干扰, 因此灵敏度高, 死区小, 噪声低, 寿命长, 对周围电子设备干扰小。 直流伺服电机的输出转速/输入电压的传递函数可近似视为一阶迟后环节,其机 电时间常数一般大约在十几毫秒到几十毫秒之间。而某些低惯量直流伺服电机(如空 心杯转子型、印刷绕组型、无槽型)的时间常数仅为几毫秒到二十毫秒。 小功率规格的直流伺服电机的额定转速在 3000r/min 以上,甚至大于 10000r/min。因此作为液压阀的控制器需配用高速比的减速器。而直流力矩伺服电机 (即低速直流伺服电机)可在几十转/分的低速下,甚至在长期堵转的条件下工作, 故可直接驱动被控件而不需减速。 直流伺服电机分为有刷和无刷电机。 有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护, 但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感 的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩 稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换 相。 电机免维护, 效率很高, 运行温度低, 电磁辐射很小, 长寿命, 可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同 步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着 功率增大而快速降低。因而适合做低速平稳运行的应用。 交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的 U/V/W 三相电形成电磁场,转子 在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈 值与目标值进行比较, 调整转子转动的角度。 伺服电机的精度决定于编码器的精度 (线

伺服电机的工作原理图

伺服电机的工作原理图? 伺服电机工作原理——伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单;(2)定子绕组散热快;(3)惯量小,易提高系统的快速性;(4)适应于高速大力矩工作状态;(5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2 交流永磁伺服系统的基本结构 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。

交流伺服电机及其调速分类和特点

交流伺服电机及其调速分类和特点 长期以来,在要求调速性能较高的场合,一直占据主导地位的是应用直流电动机的调速系统。但直流电动机都存在一些固有的缺点,如电刷和换向器易磨损,需经常维护。换向器换向时会产生火花,使电动机的最高速度受到限制,也使应用环境受到限制,而且直流电动机结构复杂,制造困难,所用钢铁材料消耗大,制造成本高。而交流电动机,特别是鼠笼式感应电动机没有上述缺点,且转子惯量较直流电机小,使得动态响应更好。在同样体积下,交流电动机输出功率可比直流电动机提高10﹪~70﹪,此外,交流电动机的容量可比直流电动机造得大,达到更高的电压和转速。现代数控机床都倾向采用交流伺服驱动,交流伺服驱动已有取代直流伺服驱动之势。 分类和特点 1.异步型交流伺服电动机 异步型交流伺服电动机指的是交流感应电动机。它有三相和单相之分,也有鼠笼式和线绕式,通常多用鼠笼式三相感应电动机。其结构简单,与同容量的直流电动机相比,质量轻1/2,价格仅为直流电动机的1/3。缺点是不能经济地实现范围很广的平滑调速,必须从电网吸收滞后的励磁电流。因而令电网功率因数变坏。 这种鼠笼转子的异步型交流伺服电动机简称为异步型交流伺服电动机,用IM表示。 2.同步型交流伺服电动机 同步型交流伺服电动机虽较感应电动机复杂,但比直流电动机简单。它的定子与感应电动机一样,都在定子上装有对称三相绕组。而转子却不同,按不同的转子结构又分电磁式及非电磁式两大类。非电磁式又分为磁滞式、永磁式和反应式多种。其中磁滞式和反应式同步电动机存在效率低、功率因数较差、制造容量不大等缺点。数控机床中多用永磁式同步电动机。与电磁式相比,永磁式优点是结构简单、运行可靠、效率较高;缺点是体积大、启动特性欠佳。但永磁式同步电动机采用高剩磁

伺服电机的基本结构和工作原理

伺服电机的基本结构和工作原理 交流伺服电机通常都是单相异步电动机,有鼠笼形转子和杯形转子两种结构形式。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。固定和保护定子的机座一般用硬铝或不锈钢制成。笼型转子交流伺服电机的转子和普通三相笼式电机相同。杯形转子交流伺服电机的结构如图3-12由外定子4,杯形转子3和内定子5三部分组成。它的外定子和笼型转子交流伺服电机相同,转子则由非磁性导电材料(如铜或铝)制成空心杯形状,杯子底部固定在转轴7上。空心杯的壁很薄(小于0.5mm),因此转动惯量很小。内定子由硅钢片叠压而成,固定在一个端盖1、8上,内定子上没有绕组,仅作磁路用。电机工作时,内﹑外定子都不动,只有杯形转子在内、外定子之间的气隙中转动。对于输出功率较小的交流伺服电机,常将励磁绕组和控制绕组分别安放在内、外定子铁心的槽内。 交流伺服电机的工作原理和单相感应电动机无本质上 的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应

能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 当电机原来处于静止状态时,如控制绕组不加控制电压,此时只有励磁绕组通电产生脉动磁场。可以把脉动磁场看成两个圆形旋转磁场。这两个圆形旋转磁场以同样的大小和转速,向相反方向旋转,所建立的正、反转旋转磁场分别切割笼型绕组(或杯形壁)并感应出大小相同,相位相反的电动势和电流(或涡流),这些电流分别与各自的磁场作用产生的力矩也大小相等、方向相反,合成力矩为零,伺服电机转子转不起来。一旦控制系统有偏差信号,控制绕组就要接受与之相对应的控制电压。在一般情况下,电机内部产生的磁场是椭圆形旋转磁场。一个椭圆形旋转磁场可以看成是由两个圆形旋转磁场合成起来的。这两个圆形旋转磁场幅值不等(与原椭圆旋转磁场转向相同的正转磁场大,与原转向相反的反转磁场小),但以相同的速度,向相反的方向旋转。它们切割转子绕组感应的电势和电流以及产生的电磁力矩也 方向相反、大小不等(正转者大,反转者小)合成力矩不为零,所以伺服电机就朝着正转磁场的方向转动起来,随着信号的增强,磁场接近圆形,此时正转磁场及其力矩增大,反转磁场及其力矩减小,合成力矩变大,如负载力矩不变,转子的速度就增加。如果改变控制电压的相位,即移相180o,旋转磁场的转向相反,因而产生的合成力矩方向也相反,伺

直流伺服电机的基本特性

直流伺服电机的基本特性 网络 2010-08-01 01:50:12 网络 1、机械特性 在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M变化而变化的规律,称直流电机的机械特性。 直流电机的机械特性曲线 K值大表示电磁转矩的变化引起电机转速的变化大,这种情况称直流电机的机械特性软;反之,斜率K值小,电机的机械特性硬。在直流伺服系统中,总是希望电机的机械特性硬一些,这样,当带动的负载变化时,引起的电机转速变化小,有利于提高重流电机的速度稳定性和工件的加工精度。功耗增大。 2、调节特性 直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压U a 变化而变化的规律,被称为直流电机的调节特性。

直流电机的调节特性曲线 斜率K反映了电机转速n随控制电压U a的变化而变化快慢的关系,其值大小与负载大小无关,仅取决于电机本身的结构和技术参数。 3、动态特性 从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性。 决定时间常数的主要因素有:惯性J的影响、电枢回路电阻R a的影响、机械特性硬度的影响。

直流伺服电机的种类和主要技术参数 1、按转动部分惯性大小来分: ?小惯量直流电机——印刷电路板的自动钻孔机 ?中惯量直流电机(宽调速直流电机)——数控机床的进给系统 ?大惯量直流电机——数控机床的主轴电机 ?特种形式的低惯量直流电机 2、主要技术参数:额定功率P e ?额定电压U e ?额定电流I e ?额定转速n e ?额定转矩M I e ?调速比D 直流伺服电机的选择,是根据被驱动机械的负载转矩、运动规律和控制要求来确定。 直流伺服电机结构和速度控制原理

伺服电机内部结构

伺服电机内部结构

伺服电机工作原理 伺服电机原理 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。 交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 2、运行范围较广 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S 2曲线)以及合成转矩特性(T-S曲线) 交流伺服电动机的输出功率一般是0.1-100W。当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。

伺服系统的特点、分类及发展方向

伺服系统的特点、分类及发展方向 伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 数控机床伺服系统的作用在于接受来自数控装置的指令信号,驱动机床移动部件跟随指令脉冲运动,并保证动作的快速和准确,这就要求高质量的速度和位置伺服。以上指的主要是进给伺服控制,另外还有对主运动的伺服控制,不过控制要求不如前者高。数控机床的精度和速度等技术指标往往主要取决于伺服系统。 一、伺服系统的基本要求和特点 1.对伺服系统的基本要求 (1)稳定性好:稳定是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后到达新的或者回复到原有平衡状态。 (2)精度高:伺服系统的精度是指输出量能跟随输入量的精确程度。作为精密加工的数控机床,要求的定位精度或轮廓加工精度通常都比较高,允许的偏差一般都在0.01~0.00lmm之间。 (3)快速响应性好:快速响应性是伺服系统动态品质的标志之一,即要求跟踪指令信号的响应要快,一方面要求过渡过程时间短,一般在200ms以内,甚至小于几十毫秒;另一方面,为满足超调要求,要求过渡过程的前沿陡,即上升率要大。 2、伺服系统的主要特点 (1)精确的检测装置:以组成速度和位置闭环控制。

直流无刷伺服电机运动控制系统设计

直流无刷伺服电机运动控制系统设计 Motionchip是一种性能优异的专用运动控制芯片,扩展容易,使用方便。本文基于该芯片设计了一款可用于直流有刷/无刷伺服电机的智能伺服驱动器,并将该驱动器运用到加氢反应器超声检测成像系统中,上位机通过485总线分别控制直流有刷电机和无刷电机,取得了很好的控制效果,满足了该系统的高精度要求。 在传统的电机伺服控制装置中,一般采用一个或多个单片机作为伺服控制的核心处理器。由于这种伺服控制器外围电路复杂,计算速度慢,从而导致控制效果不理想。近年来,许多新的电机控制算法被研究并运用于电机控制系统中,如矢量控制、直接转矩控制等。随着这些控制算法的日益复杂,必须具备高速运算能力的处理器才能实现实时计算和控制。为了适应这种需要,国外许多公司开发了控制电机专用的高档单片机和数字信号处理器(DSP)。现在,通常使用的伺服控制器的控制核心部分大都由DSP和大规模可编程逻辑器件组成,这种方案可以根据不同需要,灵活的设计出性能很好的专用伺服控制器,但是一般研制周期都比较长。 MotionChip的特点 MotionChip是瑞士Technosoft公司开发的一种高性能且易于使用的电机运动控制芯片,它是基于TMS320C240的DSP,外围设置了许多电机伺服控制专用的可编程配置管脚。TMS320C240是美国TI公司推出的电机控制专用16位定点数字信号处理器,其具有高速的运算能力和专为电机控制设计的外围接口电路。MotionChip很好的利用了该DSP的优点,并集成多种电机控制算法于一身,以简化用户设计难度为目的,设计成为一种新颖的电机专用控制芯片。MotionChip有着集成全部必要的配置功能在一块芯片的优点,它是一种为各种电机类型进行快速和低投入设计全数字、智能驱动器的理想核心处理器。具有如下特点: ?可用于控制5种电机类型:直流有刷/无刷电机、交流永磁同步电机、交流感应电机和步进电机,且易于嵌入到用户的硬件结构中; ?可以选择独立或主从方式工作,并可根据需要,设置成通过网络接口进行多伺服控制器协同工作; ?全数字控制环的实现,包括电流/转矩控制环、速度控制环、位置控制环; ?可实现各种命令结构:开环、转矩、速度、位置或外环控制,步进电机的微步进控制,并可实现控制结构的配置,其中包括交流矢量控制; ?可以配置使用各种运动和保护传感器(位置、速度、电流、转矩、电压、温度等); ?使用各种通讯接口,可以实现RS232/RS485通讯、CAN总线通讯; ?基于Windows95/98/2000/ME/NT/XP平台,强大功能的IPM Motion Studio 高级图形编程调试软件:可通过RS232快速设置,调整各参数与编程运动控制程序。其功能强大的运动语言包括:34种运动模式、判决、函数调用,事件驱动运动控制、中断。因此便于开发和使用。 ?可以通过动态链接库TMLlib,利用VC/VB实现PC机控制;也可以与Labview和PLC无缝连接,通过动态链接库,用户可以在上层开发电机的控制程序,研究控制策略。 运动控制系统设计

伺服电机的工作原理

https://www.doczj.com/doc/296994191.html,/ebook/2007/B10036766/5.html https://www.doczj.com/doc/296994191.html,/ebook/2007/B10036766/5.html https://www.doczj.com/doc/296994191.html, 伺服电机的工作原理2008-04-10 10:42伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降.。 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制滚珠丝杆,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。永磁交流伺服电动机20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。 永磁交流伺服电动机同直流伺服电动机比较,主要优点有:⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。⑵定子绕组散热比较方便。⑶惯量小,易于提高系统的快速性波纹管联轴器。⑷适应于高速大力矩工作状态。⑸同功率下有较小的体积和重量。 伺服和步进电机 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号)弹性联轴器,但

直流伺服电机的结构

直流伺服电机的结构,原理与调速 直流伺服电机具有良好的启动、制动和调速特性,可很方便地在宽范围内实现平滑无极调速,故多采用在对伺服电机的调速性能要求较高的生产设备中。 直流伺服电机的结构主要包括三大部分: (1)定子。定子磁极磁场由定子的磁极产生。根据产生磁场的方式,直流伺服电动机可分为永磁式和他激式。永磁式磁极由永磁材料制成,他激式磁极由冲压硅钢片叠压而成,外绕线圈通以直流电流便产生恒定磁场。 (2)转子。又称为电枢,由硅钢片叠压而成,表面嵌有线圈,通以直流电时,在定子磁场作用下产生带动负载旋转的电磁转矩。 (3)电刷与换向片。为使所产生的电磁转矩保持恒定方向,转子能沿固定方向均匀的连续旋转,电刷与外加直流电源相接,换向片与电枢导体相接。 直流伺服电动机的工作原理与一般直流电动机的工作原理是完全相同,如图4-4所示。他激直流电机转子上的载流导体(即电枢绕组),在定子磁场中受到电磁转矩M的作用,使电机转子旋转。由直流电机的基本原理分析得到: n=(u-I a R a)/k e 式中:n──电枢的转速,r/min; u──电枢电压; I a ──电机电枢电流; R a──电枢电阻; k e──电势系数(k e=C eφ)。 由式中可知,调节电机的转速有三种方法: (1)改变电枢电压u 。调速范围较大,直流伺服电机常用此方法调速; (2)变磁通量φ(即改变k e的值)。改变激磁回路的电阻R f以改变激磁电流I f,可以达到改变磁通量的目的;调磁调速因其调速范围较小常常作为调速的辅助方法,而主要的调速方法是调压调速。若采用调压与调磁两种方法互相配合,可以获得很宽的调速范围,又可充分利用电机的容量。 (3)在电枢回路中串联调节电阻R t(图中无表示),此时有 n=[u-I a(R a+R t)]/k e 从式中可知,在电枢回路中串联电阻的办法,转速只能调低,而且电阻上的铜耗较大,这种办法并不经济,仅用于较少的场合。

伺服驱动器的工作原理

伺服驱动器的工作原理 。速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的死循环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。换一种说法是:

1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为 2、5Nm:如果电机轴负载低于 2、5Nm时电机正转,外部负载等于 2、5Nm时电机不转,大于 2、5Nm时电机反转(通常在有重力负载情况下产生)。可以通过实时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位回馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由

相关主题
文本预览
相关文档 最新文档