当前位置:文档之家› 2018中考数学考前指导及知识梳理

2018中考数学考前指导及知识梳理

2018中考数学考前指导及知识梳理
2018中考数学考前指导及知识梳理

2018中考数学考前指导及知识梳理

中考数学试题分为三种题型,选择题,填空题,解答题。其中分为基础题、中档题、压轴题三类。 合理运用以下几点应试技巧来解各种题型:

在做选择题可运用各种解题的方法:如直接法,特殊值法,排除法,验证法,图解法,假设法(即

反证法)动手操作法(比如折一折,量一量等方法),对于选择题中有“或”的选项一定要警惕,看看要不要取舍。

注意一题多解的情况。

(2)计算题一定要细心,最后答案要最简,要保证绝对正确。

(3)先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入。

(4)解分式方程一定要检验,应用题中也是如此。

(5)解直角三角形问题。注意辅助线的作法,解题步骤。关注直角、特殊角。取近似值时一定要按照题目

要求。

(6)实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式。最后

要注意验根和答。

(7)概率题:要通过画树状图、列表或列举,列出所有等可能的结果,然后再计算概率。

(8)证明题:在证明时只能直接用教材中所列的证明的依据,其余遇有用到平时补充结论,要合情推理。

(9)若压轴题最后一步确实无从下手,可以放弃,不如把时间放在检验别的题目上,对于存在性问题,要

注意可能有几种情况不要遗漏。对于运动型问题,注意要通过多画草图的方法把运动过程搞清楚,也要考虑可能有几种情况。

(10)中考对答题的要求很高,所以同学们在答题前应设计好答案的整个布局,分成几栏来答题,字要大

小适中,不要把答案写在规定的区域以外的地方。否则扫描时不能扫到你所写的答案。

画图添加辅助线用2B 铅笔多描几次,答卷用0.5毫米的黑色中性笔。

若试题难,遵循“你难我难,我不怕难”的原则, 若试题易,则遵循“你易我易,我不大意”的原则。

考试时牢记以上几点,老师相信同学们一定能考出理想的成绩!

第一大类:选择题与填空题知识点

【知识点一】相反数、倒数、平方根、算术平方根、立方根、绝对值 1、3-的相反数是( )倒数是( )绝对值是( )

2、平方根等于它本身的数是 . 3= ;

的平方根是 4、估计

19

的值在整数 与 之间

【知识点二】整式、整指数幂的运算与整式的运算及基本公式:

16

(1)

同底数幂的乘法法则:n m

n m

a a a

+=? 幂的乘方法则:()

mn n

m

a a =(m 、n 都为正整数)

;积的乘方:()n n n b a ab =; 同底数幂的除法:n m n m a a a -=÷ (a ≠0)

(2)

零指数公式:0

a =1(a≠0)负整指数公式:1

(0,)p

p

a

a p a -=

≠是正整数 (3)平方差公式:()()2

2b a b a b a -=-+ 完全平方公式:()2222b ab a b a +±=±

1、下列运算中,结果正确的是( )

A .4

44a

a a +=

B .3

25a

a a =g C .824a a a ÷=

D .23

6(2)6a

a -=-

2、下列计算正确的是( )

A.3a +4b =7ab

B.(ab 3)3

=ab 6

C .x 12

÷x 6

=x 6

D.(a +2)2

=a 2

+4 【知识点三】科学计数法

科学记数法的形式:n

a 10?±,其中1≤a <10,n 为正整数 ; 1、用科学计数法:0.000021= 、将3

10

24.1-?用小数表示为

2、第九届海峡交易会5月18日在榕城开幕,推出的重点招商项目总投资约450亿元人民币.将450亿元用科学记数法表示为( ) A .11

0.4510?元

B .94.5010?元

C .10

4.5010?元

D .8

45010?元

【知识点四】分式、分解因式、方程与不等式 1.一元二次方程有关公式:

(1)一般式:

)0(02≠=++a c bx ax

(2)求根公式()

42422≥-=?-±-=

ac b a ac

b b x

(3)根的判别式为△=ac b 42

-???

????无实数根有两个相等的实数根=有两个不相等的实数根000有两个实数根?≥???

?

??0 1、若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个实数根,则k 的取值范围是( ▲ ) A. k <5 B. k ≤5且k ≠1 C. k <5且k ≠1 D. k >5

2.、.解分式方程.....一定要检验.....

;若关于x 的分式方程113

1=-+-x

x m 的解为正数,则m 的取值范围是 4、解不等式时,若两边同时乘以或除以同一个负数,不等式方向一定要改变.

已知不等式组3x+a <2(x+2)15-x <x+23

3??

??

?有解但没有整数解,则a 的取值范围为 .

5.分解因式:2

2a

a -= .分解因式:269x x -+=

【知识点五】函数及其图象 1.函数y x m =+与(0)m

y m x

=

≠在同一坐标系内的图象可以是( )

x

x

2、若函数

m

x

m y )1(+=是正比例函数,则该函数的图象经过第 象限.

3、在函数y= 中,自变量x 的取值范围是 .

4、如右图,过反比例函数

x

k

y =

图像上三点A 、B 、C 分别作直角三角形和矩形,图中S 1+S 2=5,则S 3= 5、将抛物线的解析式y=

向上平移3个单位长度,在向右平移1个单

位长度后,得到的抛物线的解析式是 . 【知识点六】图形变换,中心对称图形,三视图,

① P (x ,y )关于x 轴对称P 1(x ,-y )(即x 不变) ② P (x ,y )关于y 轴对称P 2(-x ,y )(即y 不变); ③ P (x ,y )关于原点对称P 3(-x ,-y )(即x ,y 都变); 1、下列图案中既是轴对称又是中心对称图形的是:

2、如图,是某几何体的三视图及相关数据,则该几何体的表面积是( )

A .39π

B .29π

C .24π

D .19π

3、如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为_____cm.

4、如图,正方形ABCD 的边长为8,点M 在边DC 上,且DM=2,点N 是边AC 上一动点,则线段DN+MN 的最小值为( ).

(3

题) (4题)

【知识点七】统计与概率

1、下列事件中,是必然事件的为( )

A .我市夏季的平均气温比冬季的平均气温高;

B .每周的星期日一定是晴天;

C .打开电视机,正在播放动画片;

D .掷一枚均匀硬币,正面一定朝上

2、一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( ) A.3,3,0.4 B.2,3,2 C.3,2,0.4 D.3,3,2

3、甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差=

2

甲S 4,乙同学成绩的方差=

2

乙S 3.1,则对他们测试成绩的稳定性判断正确的是( )

A .甲的成绩较稳定

B .乙的成绩较稳定

C .甲、乙成绩的稳定性相同

D .甲、乙成绩的稳定性无法比较 4、随机掷两枚硬币,落地后全部正面朝上的概率是( ) A .1 B .

12C .13

D .

1

4

O

A

B

C

D

5.小明用S 2

=

10

1[(x 1﹣5)2+(x 2﹣5)2+…+(x 10﹣5)2

]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10= .

【知识点八】几何部分(直线型,圆,相似形等)

1、如图,AB∥CD,BC∥DE,若∠B=40°,则∠D 的度数是( )

A .40°

B .140°

C .160°

D .60°

2、如图,点A 、B 、C 在⊙O 上,∠ABO =32°,∠ACO =38°,则∠BOC 等于( ) A .60° B .70° C.120° D .140°

3、.下列说法正确的是( ) A.有一个角是直角的平行四边形是正方形 B.五边形的外角和为540度

C.顺次连接矩形四边中点得到的四边形是菱形

D.三角形的外心是这个三角形三条角平分线的交点

圆锥侧面展开图、扇形面积及弧长公式

4、已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为 cm 2

.(结果保留π)

5、如图,△ABC 中,点D在AB上,请填上一个你认为适合的条件 ,使得△ACD ~△ABC . 6.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,

则△AOB 与△DOC 的周长比是 .面积比是 【知识点九】其他题型

1、. 如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,

交弦AB 于点D ,连接CD ,则阴影部分的面积是 .

2、.在△ABC 中,∠BAC=90°,∠C=30°,BC=6,P 为直线AC 上的一点(不与A 、C 重合),满足∠APB=60°,则CP= .

3、矩形ABCD 的∠A 的平分线AE 分BC 成两部分的比为1∶3,若矩形ABCD 的面积为36,则其周长为 .【答案 30或143】

4.如图,在矩形ABCD 中,AB=4,BC=6,若点P 在AD 边上, 连接BP 、PC ,△BPC 是以PB 为腰的等腰三角形,则PB 的长

为 ▲ .【答案5或6】

5、在□ABCD 中,AB =AC ,CE 是AB 边上的高,若AB=AC=5,CE=4,则AD= ▲ . 【答案52或54】

6、如图,矩形ABCD 中, AD=10, AB=8,点E 为边DC 上一动点,连接AE ,把△ADE 沿AE 折叠,使点D 落在点D'处,当△DD'C 是直角三角形时,DE 的长为 ______ .

第二大类:解答题

【17.化简求值类】

1、先化简,再求值:(x +y )2-(x +y )(x -y )-2y 2,其中13+=x

,13-=y . 2、先化简,再求值:2

)2()2)(2(y x y x y x -+-+,其中23+=x ,23-=y .

【答案】解:原式=2222

444y xy x y x +-+- ………………………1分

=xy x

422

-. ………………………………2分

∵23+=x

,23-=y ,∴6252+=x ,1=xy .……4分

∴原式=14)62

5(2?-+=646+. ………………5分

A

B

C

O

2018年湘教版中考数学总复习资料

2018年中考数学总复习资料 代数部分 第一章:实数 基础知识点: 一、实数的分类: ?????? ???????????????????????????????????????无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。 2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。 3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。 二、实数中的几个概念 1、相反数:只有符号不同的两个数叫做互为相反数。 (1)实数a 的相反数是 -a ; (2)a 和b 互为相反数?a+b=0 2、倒数: (1)实数a (a ≠0)的倒数是a 1;(2)a 和b 互为倒数?1=ab ;(3)注意0没有倒数 3、绝对值: (1)一个数a 的绝对值有以下三种情况: ?? ???-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。 (3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。 4、n 次方根 (1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。 (2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。 (3)立方根:3a 叫实数a 的立方根。 (4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。 三、实数与数轴 1、数轴:规定了原点、正方向、单位长度的直线称为数轴。原点、正方向、单位长度是数轴的三要素。 2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用

2018-2019年中考数学专题(1)规律探索问题(含答案)

第二篇专题能力突破 专题一规律探索问题 一、选择题 1.(原创题)观察下列图形, 它们是按一定的规律排列的,依照此规律,第20个图形中的“★”有( ) A.57个B.60个C.63个D.85个 解析第1个图形有3个“★”,第2个图形有6=2×3个“★”,第3个图形有9=3×3个“★”,第4个图形有12=4×3个“★”,…,第20个图形有20×3=60个.故选B. 答案 B 2.(原创题)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律.若前n行点数和为930,则n=( ) A.29 B.30 C.31 D.32 解析前n行的点数和可以表示成2+4+6+…+2n=2(1+2+3+…+n)= 2×n(n+1) 2 =n(n+1),从而得到一元二次方程n(n+1)=930,可以求出n

=30.故选B. 答案 B 3.(原创题)符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=2,f (2)=4,f (3)=6,…;(2)f ? ????12=2,f ? ????13=3,f ? ?? ??14=4,…利用以上规律计算:f (2 014)-f ? ?? ??12 014等于 ( ) A .2 013 B .2 014 C.12 013 D.12 014 解析 根据题意,得f (2 014)-f ? ?? ??12 014=2 014×2-2 014=2 014.故选B. 答案 B 4.(原创题)观察下列一组图形中点的个数,其中第一个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第6个图形中共有点的个数是 ( ) A .38 B .46 C .61 D .64 解析 第1个图形中共有4个点, 第2个图形中共有10个点,比第1个图形中多了6个点; 第3个图形中共有19个点,比第2个图形中多了9个点;…,按此规律可知, 第4个图形比第3个图形中多12个点,所以第4个图形中共有12+19=31

2018年度中考数学压轴题

1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H,

∵AP=x ,∴BP=10﹣x ,BQ=2x ,∵△QHB ∽△ACB , ∴ QH QB AC AB = ,∴QH=错误!未找到引用源。x ,y=错误!未找到引用源。BP ?QH=1 2 (10﹣x )?错误!未找到引用源。x=﹣4 5 x 2+8x (0<x ≤3), ②当点Q 在边CA 上运动时,过点Q 作QH ′⊥AB 于H ′, ∵AP=x , ∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH ′∽△ABC , ∴'AQ QH AB BC =,即:' 14106 x QH -=错误!未找到引用源。,解得:QH ′=错误!未找到引用源。(14﹣x ), ∴y= 12PB ?QH ′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

2018年中考数学总复习规律探索专题

河北中考复习之规律探索 1、观察图4给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为 A .3n -2 B .3n -1 C .4n +1 D .4n -3 2、观察下面的点阵图形和与之相对应的等式,探究其中的规律: (1)请你在④和⑤后面的横线上分别写出相对应的等式: (2)通过猜想,写出与第n 个图形相对应的等式. 3、古希腊著名的毕达哥拉斯学派把1,3,6 ,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( ) A .13=3+10 B .25=9+16 C .36=15+21 D .49=18+31 4、将正方体骰子(相对面上的点数分别为1和6、2和 5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( ) A .6 B .5 C .3 D .2 5、如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”. 如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”. …… ① ② ③ ⑤ ④ 4×0+1=4×1-3; 4×1+1=4×2 -3; 4×2+1=4×3-3; ___________________; ___________________; …… 图 4 第2个 s =5 第1个 s =1 第3个 s =9 …… 第4个 s =13

如何进行中考数学复习

如何进行初中数学中考复习 辽中县肖寨门九年一贯制学校董春艳 初三数学复习的内容面广量大,知识点多,要想在短暂的时间内全面复习初中三年所学的数学知识,形成基本技能,提高解题技巧、解题能力,并非易事。如何提高复习的效率和质量,是每位初三的教师和学生所关心的。为此,我谈一些自己的想法,供大家参考。 一、注重考法研究,把握中考动向 中考复习前,初三数学组要进行考法研究,研究近几年中考数学命题的走向,研究考纲,研究中考复习策略。每位数学老师都进行专题发言。中考考法研究的专题研讨会,将对初三老师的复习起到指导作用,对初三老师把握中考动向,纠正复习偏差,产生积极而深刻的影响。 平时考试中,教师可以模拟中考命题,试题来源于课本改编及自编,注重信息的收集和新题型的探索,着重考查学生基本的数学思想和方法。每次考完后教师与学生都要及时做总结,这样既让教师对中考复习的把握更深,又有利于学生寻找差距,奋力拼争。 二、制定合理的复习计划 切实可行的复习计划能让复习有条不紊地进行下去,起到事半功倍的效果。我们认为,中考的数学复习最好是分四轮进行。 第一轮,摸清初中数学内容的脉络,开展基础知识系统复习。近几年的中考题安排了较大比例(70%以上)的试题来考查“双基”。全卷的基础知识的覆盖面较广,起点低,许多试题源于课本,在课本中能找到原型,有的是对课本原型进行加工、组合、延伸和拓展。复习中要紧扣教材,夯实基础,同时关注新教材中的新知识,对课本知识进行系统梳理,形成知识网络,同时对典型问题进行变式训练,达到举一反三、触类旁通的目的,做到以不变应万变,提高应能力。 近几年的中考题告诉我们学好课本的重要性。在复习时必须深钻教材,在做题中应注意解题方法的归纳和整理,做到举一反三,有些中考题就在书上的例题和习题的基础上延伸、拓展,因此,教师要引导学生重视基础知识的理解和方法的学习。基础知识就是初中所涉及的概念、公式、公理、定理等,掌握基础知识之间的联系,要做到理清知识结构,形成整体知识,并能综合运用。例如:中考涉及的动点问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中的相似三角形、比例推导等等。 第二轮,针对热点,抓住弱点,开展难点知识专题复习。根据历年中考试卷命题的特点,精心选择一些新颖的、有代表性的题型进行专题训练,就中考的特点可以从以下几个方面收集一些资料,进行专项训练:①实际应用型问题;②突出科技发展、信息资源的转化的图表信息题;③体现自学能力考查的阅读理解题;④考查学生应变能力的图形变化题、开放性试题;⑤考查学生思维能力、创新意识的归纳猜想、操作探究性试题;⑥几何代数综合型试题等。 第三轮,综合训练(模拟练习)。这一阶段,重点是提高学生的综合解题能力,训练学生的解题策略,加强解题指导,提高应试能力。具体做法是:从往年中考卷、自编模拟试卷中精选十份进行训练,每份的练习要求学生独立完成,老师及时批改,重点讲评。

2018年陕西中考数学各题型位次与分析

2018 年中考数学题型分析及知识点 一、选择题: 10 小题,每题 3 分,共 30 分 1、涉及知识点:相反数、倒数、正数、负数、绝对值、简单的幂运算例题: ( 06) 1.下列计算正确的是 A .321 B .22 C .3 ( 3)9 D .20 1 1 (07)1. 2的相反数为 A .2 B . 2 C . 1 D . 1 2 2 ( 08) 1.零上 13℃记作 +13 ℃,零下 2℃可记作 A .2 B .- 2 C . 2℃ D .- 2℃ ( 09) 1. 1 的倒数是A. 2 B . 2 C . 1 D . 1 2 2 2 (10)1 . 1 A. 3 B. -3 C. 1 1 3 3 D. - 3 ( 11) 1. 2 的倒数为 A . 3 B . 3 C . 2 D . 2 3 2 2 3 3 ( 12) 1. 如果零上 5 ℃记做 +5 ℃,那么零下 7 ℃可记作 A .-7 ℃ B .+7 ℃ C . +12 ℃ D . -12 ℃ ( 13) 1. 下列四个数中最小的数是() A . 2 B. 0 C. 1 D.5 3 1)-2 = ( 14) 11. 计算( - . 3 (15)1. 计算( - 2 )0 )A .1 B . 2 C .0 D . 2 3 =( - 3 3 ( 16) 1. 计算:(﹣ )× 2=() A. ﹣1 B . 1 C .4 D .﹣ 4 ( 17) 1. 计算:(﹣ ) 2 ﹣ 1=() 2、涉及知识点:屏幕,平面几何的入门知识,简单几何体的组合或切割后的三 视图 例题: (2011) 2、下面四个几何体中,同一个几何体的主视图和俯视图 相同的共有( ) A 、1 个 B 、2 个 C 、3 个 D 、4个 (2012) 2.如图,是由三个相同的小正方体组成的几何体,该几何体 的左视图是( ) ( 2016) 2.如图,下面的几何体由三个大小相同的小立方块组成,则它的 左视图是()

中考数学必考题型《规律探索》分类专项练习题

类型一 数式规律 1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为1 4尺,…,第n 天折断一半后得到的木棍长应为________尺. 12n 2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________. 第2题图 41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n =n (n +1) 2,∴第8行最后一个数为8×9 2=36=6, 则第9行从左至右第5个数是36+5=41. 3. 观察下列关于自然数的式子: 第一个式子:4× 12-12 ①

第二个式子:4× 22-32 ② 第三个式子:4×32-52 ③ … 根据上述规律,则第2019个式子的值是______. 8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1 n (n 为正整数)顺次排成一列:1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=1 2,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________. 63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个1 3的和为1,…;∵1+2+3+…+63=2016个数,则第2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3×1 64=63364. 类型二 图形规律 5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3, …,

【计划】2018年中考数学真题分类汇编第7讲分式方程无答案

【关键字】计划 第7讲分式方程 知识点1 分式方程的解 知识点2 分式方程的解法 知识点3 分式方程的增根 知识点4 分式方程的实际应用 知识点1 分式方程的解 (2018株洲)5、关于的分式方程解为,则常数的值为 A、B、C、D、 (2018张家界)2.若关于的分式方程的解为,则的值为( ) 知识点2 分式方程的解法 (2018德州)8.分式方程的解为( D ) A.B. C. D.无解 (2018龙东) (2018荆州)5.解分式方程时,去分母可得() A. B. C. D. (2018成都)8.分式方程的解是(A ) A.x=1 B. C. D. (2018兰州) (2018哈尔滨)

(2018海南) (2018黄石)13、分式方程的解为________________ (2018铜仁) (2018甘肃) (2018湘潭)11.(3分)分式方程=1的解为x=2. (2018无锡) (2018常德)10.分式方程的解为. (2018眉山)15.已知关于x的分式方程-2=有一个正数解,则k的取值范围为. (2018广州)13.方程的解是__x= 2__. 知识点3 分式方程的增根 (2018潍坊)14.当时,解分式方程会出现增根. (2018达州)13.若关于的分式方程无解,则的值为. (2018齐齐哈尔) 知识点4 分式方程的实际应用 (2018临沂)10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1-5月份.每辆车的销售价格比去年 降低1万元.销售数量与去年一整年的相同.销售总额比去年整年的少20%。今年1-5月份每辆车的销售价格是多少万元?设今年1-5月份每辆车的销售价格为x万元根据题意.列方程正确的是() A. () 5000120% 5000 1 x x - = + B. () 50001+20% 5000 1 x x = + C. () 5000120% 5000 -1 x x - = D. () 50001+20% 5000 -1 x x = (2018黔东南、黔南、黔西南)8.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是() A.10001000 2 30 x x -= + B. 10001000 2 30 x x -= + C.10001000 2 30 x x -= - D. 10001000 2 30 x x -= - (2018淄博)10.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,

2018中考数学重要知识点汇总

2018中考数学重要知识点汇总 知识点1:一元二次方程的基本概念 1一元二次方程3x2+x-2=0的常数项是-2 2一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2 3一元二次方程3x2-x-7=0的二次项系数为3,常数项是-7 4把方程3x-2=-4x化为一般式为3x2-x-2=0 知识点2:直角坐标系与点的位置 1直角坐标系中,点A在轴上。 2直角坐标系中,x轴上的任意点的横坐标为0 3直角坐标系中,点A在第一象限。 4直角坐标系中,点A在第四象限。 直角坐标系中,点A在第二象限。 知识点3:已知自变量的值求函数值 1当x=2时,函数=的值为1 2当x=3时,函数=的值为1 3当x=-1时,函数=的值为1 知识点4:基本函数的概念及性质 1函数=-8x是一次函数。 2函数=4x+1是正比例函数。

3函数是反比例函数。 4抛物线=-32-的开口向下。 抛物线=42-10的对称轴是x=3 6抛物线的顶点坐标是。 7反比例函数的图象在第一、三象限。 知识点:数据的平均数中位数与众数 1数据13,10,12,8,7的平均数是10 2数据3,4,2,4,4的众数是4 3数据1,2,3,4,的中位数是3 知识点6:特殊三角函数值 1s30°=。 2sin260°+s260°=1 32sin30°+tan4°=2 4tan4°=1 s60°+sin30°=1 知识点7:圆的基本性质 1半圆或直径所对的圆周角是直角。 2任意一个三角形一定有一个外接圆。 3在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。 4在同圆或等圆中,相等的圆心角所对的弧相等。 同弧所对的圆周角等于圆心角的一半。

中考数学专题复习——规律探索(详细答案)

中考数学复习专题——规律探索 一.选择题 1. (2018·湖北随州·3 分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3, 6,10…)和“正方形数”(如 1,4,9,16…),在小于 200 的数中,设最大的“三角形数”为 m ,最大的 “正方形数”为 n ,则 m +n 的值为( ) A .33 B .301 C .386 D .571 2.(2018?山东烟台市?3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆 下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( ) 3.(2018?山东济宁市?3 分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图 中空白处的是( ) A . B . B. C . D . 4. (2018 湖南张家界 3.00 分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28 =256…, 则 2+22+23+24+25+…+21018 的末位数字是( ) A .8 B .6 C .4 D .0 二、填空题 1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3 分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P 3A 2A 3,…都是等腰直角三角形,其直角顶点P (13, 3),P 2,P 3,…均在直线 y =﹣13 x+4 上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为 S 1,S 2,S 3,…,依据图形所反映的规律,S 2018

2018中考数学考前指导及知识梳理

2018中考数学考前指导及知识梳理 中考数学试题分为三种题型,选择题,填空题,解答题。其中分为基础题、中档题、压轴题三类。 合理运用以下几点应试技巧来解各种题型: 在做选择题可运用各种解题的方法:如直接法,特殊值法,排除法,验证法,图解法,假设法(即 反证法)动手操作法(比如折一折,量一量等方法),对于选择题中有“或”的选项一定要警惕,看看要不要取舍。 注意一题多解的情况。 (2)计算题一定要细心,最后答案要最简,要保证绝对正确。 (3)先化简后求值问题,要先化到最简,代入求值时要注意:分母不为零;适当考虑技巧,如整体代入。 (4)解分式方程一定要检验,应用题中也是如此。 (5)解直角三角形问题。注意辅助线的作法,解题步骤。关注直角、特殊角。取近似值时一定要按照题目 要求。 (6)实际应用问题,题目长,多读题,根据题意,找准关系,列方程、不等式(组)或函数关系式。最后 要注意验根和答。 (7)概率题:要通过画树状图、列表或列举,列出所有等可能的结果,然后再计算概率。 (8)证明题:在证明时只能直接用教材中所列的证明的依据,其余遇有用到平时补充结论,要合情推理。 (9)若压轴题最后一步确实无从下手,可以放弃,不如把时间放在检验别的题目上,对于存在性问题,要 注意可能有几种情况不要遗漏。对于运动型问题,注意要通过多画草图的方法把运动过程搞清楚,也要考虑可能有几种情况。 (10)中考对答题的要求很高,所以同学们在答题前应设计好答案的整个布局,分成几栏来答题,字要大 小适中,不要把答案写在规定的区域以外的地方。否则扫描时不能扫到你所写的答案。 画图添加辅助线用2B 铅笔多描几次,答卷用0.5毫米的黑色中性笔。 若试题难,遵循“你难我难,我不怕难”的原则, 若试题易,则遵循“你易我易,我不大意”的原则。 考试时牢记以上几点,老师相信同学们一定能考出理想的成绩! 第一大类:选择题与填空题知识点 【知识点一】相反数、倒数、平方根、算术平方根、立方根、绝对值 1、3-的相反数是( )倒数是( )绝对值是( ) 2、平方根等于它本身的数是 . 3= ; 的平方根是 4、估计 19 的值在整数 与 之间 【知识点二】整式、整指数幂的运算与整式的运算及基本公式: 16

2018中考数学三角形知识点汇总

2018中考数学三角形知识点汇总 相似三角形 所谓的相似三角形,就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。 三角对应相等,三边对应成比例的两个三角形叫做相似三角形。 相似三角形的判定方法有: 平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似, 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似, 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似, 如果两个三角形的三组对应边的比相等,那么这两个三角形相似, 直角三角形相似判定定理1:斜边与一条直角边对应成比例的两直角三角形相似。 直角三角形相似判定定理2:直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。 射影定理 相似三角形的性质 1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。 2.相似三角形周长的比等于相似比。 3.相似三角形面积的比等于相似比的平方 三角形的三边关系定理及推论: (1)三角形三边关系定理:三角形的两边之和大于第三边。 推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形; ②当已知两边时,可确定第三边的范围; ③证明线段不等关系 三角形的三边关系: 在三角形中,任意两边和大于第三边,任意两边差小于第三边。 设三角形三边为a,b,c 则 a+b>c a+c>b b+c>a a-b a-c b-c 在直角三角形中,设a、b为直角边,c为斜边。 则两直角边的平方和等于斜边平方。 在等边三角形中,a=b=c 在等腰三角形中,a,b为两腰,则a=b 在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下, c2=a2+b2-2abcosc 相似三角形的判定方法 由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。所以我们曾经给出过如下几个判定两个三角形相似的简单方法:

2018年中考数学总复习知识点总结(最新版)

中考数学复习资料

第一章实数 考点一、实数的概念及分类 1、实数的分类 正有理数 有理数零有限小数和无限循环小数实数负有理数 正无理数 无理数无限不循环小数 负无理数 2、无理数 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32 ,7等; π+8等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如 3(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o等 考点二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a= - b,反之亦成立。 2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它

本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 考点三、平方根、算数平方根和立方根 1、平方根 如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根)。 一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。 正数a 的平方根记做“a ±”。 2、算术平方根 正数a 的正的平方根叫做a 的算术平方根,记作“a ”。 正数和零的算术平方根都只有一个,零的算术平方根是零。 a (a ≥0) 0≥a ==a a 2 ;注意a 的双重非负性: -a (a <0) a ≥0 3、立方根 如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是

2018中考数学专题复习――探索规律

中考数学专题复习——探索规律 一、选择题 1.(2018年浙江省衢州市)32,3 3和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,3 6也能按此规律进行“分裂”,则3 6“分裂”出的奇数中最大的是( ) A 、41 B 、39 C 、31 D 、29 2.(2018湖南益阳)有一种石棉瓦(如图4),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n 为正整数)块石棉瓦覆盖的宽度为 A. 60n 厘米 B. 50n 厘米 C. (50n+10)厘米 D. (60n-10)厘米 3.(2018江苏宿迁)用边长为1的正方形覆盖33 的正方形网格,最多覆盖边长为1的正方形网格(覆盖一部分就算覆盖)的个数是( ) A.2 B.4 C.5 D.6 4.(2018 四川 泸州)两个完全相同的长方体的长、宽、高分别是5cm ,4cm ,3cm ,把它们按不同方式叠放在一起分别组成新的长方体,在这些新长方体中表面积最大的是( ) A .2 158cm B .2 176cm C .2 164cm D .2 188cm 5.(2018 湖南 益阳)如图1,骰子是一个质量均匀的小正方体,它的六个面上分别刻有1~6 个点.,小明仔细观察骰子,发现任意相对两面的点数和都相等. 这枚骰子向上的一面的点数是5,它的对面的点数是( ) A. 1 B. 2 C. 3 D. 6 6.(2018 河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( ) 32 3 5 33 9 11 34 13 15 17 19 7

2018中考数学试题质量分析报告书模板

2018年中考数学试卷质量分析报告 民族九年制学校王磊 一、试题概况 1、覆盖面:试题的考点覆盖了《课标》的重要知识点,各部分比例按要求设置,数与代数为49%(74分左右),图形与几何为37%(55分左右),统计与概率为14%(21分左右);易、中、难按5:3:2的题序定位及分配分值。 2、试题结构:1~10题为选择题,每小题3分共30分;11~18题为填空题,每小题4分共32分;19~28题为解答题,分值为88分,总题量为28道题目,总分值为150分。各种题型的题量、分数、结构合理,符合考试说明的要求。 3、试题的主要特点 (1)全面考查“四基”,突出对基础知识、基本技能、基本思想和基本活动经验的考查,有较好的教学导向性。 (2)注重考查数学能力 ①把握知识的内在联系,考查学生综合运用数学的能力。 ②注重考查学生的获取信息、分析问题、解决问题的能力。 ③试卷设计时,选择题、填空题和解答题的最后一题的难度略有变化,考查学生在新问题情境中分析和解决问题能力,较好的培养学生的数学素养和思维能力。 (3)关注学生的创新精神、实践能力、学习能力 ①重视与实际生活的联系,加强了对学生运用知识分析和解决实际问题的考查。 ②通过设置开放性试题、探索性试题,考查学生能否独立思考、能否

从数学的角度去发现和提出问题,并加以探索研究和解决,从而考查学生的思维能力和创新意识。 4、紧扣课程内容,考查数学素养,体现学科特点 试题对学生的“四基”、“四能”与“核心概念”的考查得到较好的体现。 (1)、题目立足于课标要求,全面考查“四基” 紧扣《课标》要求及教材,立足考查基础知识、基本技能、基本思想、基本活动经验。部分试题由教材中的题目改编而成。例如:第1、3、4、5、6、13、14、17、20、21、22等题都是由课本上的例题、练习题、习题改编而成。有些题也是学生见过的题目的合理改造而来。 (2)、注重考查数学能力 试题关注学生的“数感”、“符号意识”、“空间观念”、“几何直观”、“数据分析观念”、“运算能力”、“推理能力”、“模型思想”、“创新意识”、“应用意识”的形成。 (3)、关注学生的情感体验 试题中所设置的背景都是学生熟悉和可以理解的。另外注重图文并茂的呈现方式,借此考查学生正确地获取信息,并通过背景、数据及动手绘制图形来发现、分析与解决问题。 二、试题对数学教学的启示 1、课堂教学及复习要基于《课标》和《考试说明》。 试题以《课标》的课程内容标准要求为依据;体现了《课标》对学生在掌握数学和通过学习数学而达到的自身发展三大方面的要求:获得“四基”、发展能力、养成科学态度。阅读《考试说明》了解中考的考点。哪些是重要考点,哪些是必考考点。在复习中有意识的对这些知识点重点复习反复练习。对那些

最新广东中考数学专题训练规律探索

规律探索 类型一 数式规律 1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其 长为12尺,第二天再折断一半,其长为14尺,…,第n 天折断一半后得到的木棍长应为________尺. 1 2n 2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________. 第2题图 41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n =n (n +1)2 ,∴第8行最后一个数为8×92=36=6,则第9行从 左至右第5个数是36+5=41. 3. 观察下列关于自然数的式子: 第一个式子:4×12-12 ①

第二个式子:4×22-32 ② 第三个式子:4×32-52 ③ … 根据上述规律,则第2019个式子的值是______. 8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列: 1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=12,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________. 63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的 和为1,3个13的和为1,…;∵1+2+3+…+63=2016个数,则第 2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3×164= 63364. 类型二 图形规律 5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,

浙教版2018年 数学中考专题复习全集(含答案)

函数 一. 教学目标: 1. 会根据点的坐标描出点的位置,由点的位置写出它的坐标 2. 会确定点关于x轴,y轴及原点的对称点的坐标 3. 能确定简单的整式,分式和实际问题中的函数自变量的取值范围,并会求函数值。 4. 能准确地画出一次函数,反比例函数,二次函数的图像并根据图像和解析式探索并理解其性质。 5. 能用适当的函数表示法刻画某些实际问题中变量之间的关系并用函数解决简单的实际问题。 二. 教学重点、难点: 重点:一次函数,反比例函数,二次函数的图像与性质及应用 难点:函数的实际应用题是中考的重点又是难点。 三.知识要点: 知识点1、平面直角坐标系与点的坐标 一个平面被平面直角坐标分成四个象限,平面内的点可以用一对有序实数来表示平面内的点与有序实数对是一一对应关系,各象限内点都有自己的特征,特别要注意坐标轴上的点的特征。点P(x、y)在x轴上?y=0,x为任意实数, 点P(x、y)在y轴上,?x=0,y为任意实数,点P(x、y)在坐标原点?x=0,y=0。 知识点2、对称点的坐标的特征 点P(x、y)关于x轴的对称点P 1的坐标为(x,-y);关于y轴的对称轴点P 2 的坐标为(- x,y);关于原点的对称点P 3 为(-x,-y) 知识点3、距离与点的坐标的关系 点P(a,b)到x轴的距离等于点P的纵坐标的绝对值,即|b| 点P(a,b)到y轴的距离等于点P的横坐标的绝对值,即|a| 点P(a,b)到原点的距离等于:2 2b a+ 知识点4、与函数有关的概念 函数的定义,函数自变量及函数值;函数自变量的取值必须使解析式有意义当解析式是整式时,自变量取一切实数,当解析式是分式时,要使分母不为零,当解析式是根式时,自变量的取值要使被开方数为非负数,特别地,在一个函数关系中,同时有几种代数式,函数自变量的取值范围应是各种代数式中自变量取值范围的公共部分。

中考数学考前指导考前必看系列

模块一:考试技巧 一、选择题:前面几题都很简单,估计 1分钟可以完成,还是劝你不要粗心。 遇到不会做的题目怎么办? 第一种是回忆法 例1 ?在平行四边形、等边三角形、菱形、等腰梯形中,既是轴对称图形又是中心 对称图形的是() 第五种方法特殊化求解法 2019年中考数学考前指导 考前必看系列 A .平行四边形 B .等边三角形 梯形 C.菱形 D .等腰 第二种是直接解答法 例2.二次根式'12化简结果为( ) A . 3 2 B. 2 :3 C. 2 :6 D. 4 第三种方法是淘汰错误法,俗称排除法 例3.如图,菱形ABC [的边长为1,BD =1,E, F 分别 点,且满足A 曰CF=1, 设厶BEF 的面积为S,则S 的取值范围是( ) A . W S <1 16 4 33 .3 D .

特别强调,对于某些几何题在各种方法都不能作出判断时,可以按比例准确地画出图形,通过用刻度尺或量角器的测量得出答案。 第六种方法排除法: 例5:如果表示a, b两个实数的点在数轴上的位置如图所示,那么化简丨 a — b 1+ (7研的结果等于() A.—2b B. 2b C.—2a D. 2a 第七种方法特殊值法 例6:如果;X2x 0成立,那么x的取值范围是() A. x > 0 B. x>0 C x < 0 Dx<0 特殊值法不仅仅在选择题可以使用,在填空题也可以使用 1.旋转问题-确定旋转中心,并用圆规和尺子画出图形,注意旋转出现的等腰 三角形 2.求方程解,考的就是根的检验,将选项代入检验。 3.无奈之举:求角度的题目—量角器,求线段—尺子,并对比已知线段,对应线段 成比例。翻折—用草稿纸折 4.忽略隐含条件而错解:例7:关于x的方程x23k 1x 2k 1 0有实数解,则k的 取值范围_____ . 二、填空题注意事项: 1 .有些题目空格后没跟单位,写答案卷时必须记得写单位。 2 .弄清:仰角,俯角,外心,内心,角平分线,垂直平分线,正弦,余弦。

2018年中考数学几何证明题知识点分析

2018年中考数学几何证明题知识点 目录 1、考点总分析 2、知识点讲解 3、出题的类型 4、解题思路 5、相关练习题

几何证明题专题 本题的主要知识点(中考中第3道,分值为8分) 七年级上第4章几何图形初步七年级下第5章相交线与平行线 八年级上第11章三角形第12章全等三角形第13章轴对称 八年级下第17章勾股定理第18章平行四边形 九年级上第23章旋转第24章圆 九年级下第27章相似第28章投影与视图 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。 几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。 这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。 知识结构图

2018年中考数学必背知识点

重心定理: D 、 E 、 F 分别为ABC 三边中点,则A D 、BE 、CF 交于一点 G ,且 AG =2GD 、BG =2GE 、CG =2GF A B D E F G 2018年中考数学必背知识点 一.不为0的量。 1.分式A B 中,分母B ≠0; 2.一元二次方程ax 2+bx +c =0(a ≠0) 3.a 0=1(a ≠0) 4.一次函数y =kx +b (k ≠0) 5.反比例函数k y x =(k ≠0) 6.二次函数y = ax 2+bx +c (a ≠0) 二.非负数 1.│a (a ≥0) 3. a 2n ≥0(n 为自然数) 三.绝对值:(0) (0) a a a a a ≥?=? -?< 四.重要概念 1. 平方根与算术平方根:如果x 2=a (a ≥0),则称x 为a 的平方根,记作: x= a 的算术平方 根. 2. 负指数:1 p p a a -= , p p -b a a b )()(= 3. 零指数:a 0=1(a ≠0) 4. 科学计数法:a ×10 n (n 为整数,1≤a <10) 五.重要公式 (一)幂的运算性质 1.同底数幂的乘法法则: m n m n a a a +?= ( a ≠0,m,n 都是正数) 2.幂的乘方法则:()m n mn a a = (m,n 都是正数) 3.积的乘方法则:()n n n ab a b =(n 为正整数)。 4.同底数幂的除法法则: m n m n a a a -÷= (a ≠0,m 、n 都是正数,且m >n ). (二)整式的运算 1.平方差公式:22()()a b a b a b +-=- 2.完全平方公式:222()2a b a ab b ±=±+ )0,00,0)a b a b =≥≥≥> (四)一元二次方程: ①一元二次方程ax 2 +bx +c =0(a ≠0);②当△=b 2 -4ac ≥0时,x ③x 1+x 2= -b a ;x 1x 2=c a (五)二次函数 抛物线的三种表达形式: 一般式:y = ax 2+bx +c (a ≠0); 顶点式:2()y a x h k =-+ ;交点式:12()()y a x x x x =-- 其中2b h a =-,244ac b k a -=,12x x 、为抛物线与x 轴两交点的横坐标,且此两交点间距离 为 12x x - (六)统计 1.平均数:121()n x x x x n =++… ; 2.加权平均数:11221 ()k k x x f x f x f n =++…,其中12k f f f n ++ += 3.方差:222212n 1 ()()()s x x x x x x n ??=-+-+-? ?… (七)锐角三角函数 1. 2. sin A =cos(90° -A ),cos A =sin(90-A ),α α ααcos tan 1cos sin 2 2 = = +, (八)圆 1.面积2 S r π=, 2.周长2C r π=, 3.弧长180 n r l π=, 4.213602n R S lR π= =扇。 5.直角三角形内切圆半径1 ()2r a b c =+-c b a ab ++= 6.n 边形内角和:(n -2)180°; 7.正n 边形内角:(2)180n n - 或180°-n ?360; 8.正n 边形一个外角=中心角=360 n ; 9.正n 边形的边长=2R sin 180n ; 10. 正n 边形的边心距= R cos 180 n ; 11. 正n 边形面积=n n nR ??180cos 180sin 2 ; 12.n 边形对角线条数:1 (3)2n n - (九)面积 1. S △= 12底×高=12ab sin ∠C =12 (a +b +c )r (a 、b 、c 为三角形三边,∠C 为a 、b 边夹角,r 为三角形内切圆半径) 2.在△ABC 中, R 2sinC c sinB b sinA a ===(a 、b 、c 为△ABC 的各边长,R 为△ABC 外接圆半径) 3. S □ =底×高= ab sin ∠C (a 、b 为平行四边形两临边,∠C 为a 、b 边夹角,) 4.S 菱形= 1 2 a · b (a 、b 为菱形两对角线长) 5. S 正△2(a 为正三角形边长) (十)平面直角坐标系 1.中点坐标公式:坐标平面内两点A (x 1,y 1)、B (x 2,y 2)的中点坐标为1212 ,22x x y y ++?? ?? ? 2. 两点间坐标公式:A (x 1,y 1)、B (x 2,y 2六.重要定理 (一)角平分线 角平分线上一点到角两边距离相等;到角两边距离相等的点在角的平分线上. (二)线段中垂线 线段中垂线上一点到线段两端点距离相等,到线段两端点距离相等的点在线段中垂线上. (三)三角形 1.三角形第三边大于另两边之差,小于另两边之和. 2.三角形的中位线平行于三角形第三边,并等于第三边的一半. 3. 三角形的一个外角等于和它不相邻的两个内角的和;一个外角大于任意一个与它不相邻的内角. 4.重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。该点叫做三角形的重心。 (四)直角三角形 1. 直角三角形的两个锐角互余 2. 直角三角形斜边上的中线等于斜边的一半。 3. 直角三角形中30°所对直角边等于斜边的一半 4. ∠C=90°,则a 2+b 2=c 2 (五)等腰三角形 1.等边对等角 2.“三线合一” 3. 有一个角等于60°的等腰三角形是等边三角形 (六)平行四边形 1.两组对边分别平行的四边形是平行四边形 2.两组对角分别相等的四边形是平行四边形 3.两组对边分别相等的四边 形是平行四边形 4. 对角线互相平分的四边形是平行四边形 5. 一组对边平行且相等的四边形是平行四边形 (七)矩形 1.有一个内角是直角的平行四边形叫矩形。 2.有三个角是直角的四边形是矩形 3. 对角线相等的平行四边形是矩形 (八)菱形 1.一组邻边相等的平行四边形是菱形; 2.四边都相等的四边形是菱形; 3.对角线互相垂直的平行四边形是菱形

相关主题
文本预览
相关文档 最新文档