当前位置:文档之家› comsol在非饱和土渗流的应用

comsol在非饱和土渗流的应用

comsol在非饱和土渗流的应用
comsol在非饱和土渗流的应用

基于comsol的非饱和土渗流研究

/comsol在岩土工程渗流的应用

摘要:岩土工程的核心难点即解决地下水问题,一般岩土工程事故都是由于对地下水的影响重视不够而造成的,然而解决这一难点关键在于解决地下水渗流问题。目前对于非饱和土渗流研究的理论仍相对落后,本文结合非饱和土渗流场基本方程以及由水土特征曲线得到的相关渗流参数(渗透系数,体积含水量),阐明了如何解决渗透模型要求渗流场方程的连续性与现场实测数据的非连续性之间的矛盾,并利用comsol Multiphysics 软件对某工程中非饱和土渗流问题进行了模拟,并验证了Fredlund和xing(1994)土水特征曲线方程的正确性。这种解决非饱和土渗流问题的思想可供学者参考。

关键词:非饱和土;渗流场;渗流参数;连续性矛盾;Comsol Multiphysics Study on seepage of unsaturated soil seepage based on comsol Abstract:The core difficulty of geotechnical engineering is to solve groundwater problems, the general geotechnical engineering accidents are due to the impact of groundwater caused by insufficient attention, however, the key to solve this difficult problem is to deal with the groundwater flow. At present, for the study of unsaturated soil seepage theory is still relatively backward, this paper combines basic equation of unsaturated soil seepage with soil-water characteristics curve and obtains the relevant flow parameters (hydraulic conductivity, volumetric water content) from them, and illustrates how to solve the conflict between the seepage field penetration model requiring Equation of continuity and the measured data of non-continuity, and using the software comsol Multiphysics to simulate unsaturated soil seepage problems in one project and verified the right of Fredlund and xing (1994) soil-water characteristic curve equation. The idea of solving unsaturated soil seepage problems may be referred by similar projects.

Key words: unsaturated soil; seepage field; seepage parameters; continuous conflict; Comsol Multiphysics

1引言

岩土工程设计与施工的难点在于解决地下水问题,一般岩土工程事故都是由于对地下水的影响重视不够而造成的,像2003年7月14日上海轨道交通4号线工程事故;2007年8月17日山东新汶煤矿透水事故;2008年11月15日杭州地铁工地塌陷事故以及2011年1月1日杭州余杭区-工地土方坍塌事故等等都是由于忽视地下水的影响而造成的。然而解决这一难题的关键在于解决地下水渗流问题。虽然众多国内外学者对土的渗流问题做了大量的研究,但是目前对于非饱和土渗流研究的理论以及实践应用仍相对落后。一般来说,解决非饱和土渗流设计的问题以及与其相关的工程实践问题,可以归结于就具体的非饱和土渗流工程概况而建立渗流场基本方程,然后解这一渗流场基本方程,从而得出相关的渗流流线(水位)分布、水流渗流力矢量分布、流速矢量分布和相关的趋势,最后以此来指导实践施工。然而在求解非饱和土渗流场基本方程时,首要要解决两个重要未知参数,即体积含水量θ和渗透系数k,这两个参数在实际工程中是通过实验得到的,试验得到的是一系列孤立的点,然而这与渗流场基本方程建立于连续性模型相悖,这就给求解渗流场基本方程带来了很大的困难,于是国内外很多学者对此进行了大量的研究。为了解决非饱和土的

体积含水量θ与渗透系数k 测量的耗时以及模型的连续性问题,Gardner , Brooks&Corey ,V an Genuchten ,McKee&Bumb 和Fredlund&Xing 等人[1]先后通过试验建立了一系列的土水特征方程即体积含水量θ与吸力Ψ的拟合连续性表达式;但是渗透系数k 的连续性仍未解决,后来E.C.Leong 和H.Rahardjo 等人通过大量的试验发现非饱和土的体积含水量θ和渗透系数k 都与吸力Ψ存在密切的联系,并且依赖于土水特征曲线,于是建立了体积含水量θ与渗透系数k 拟合关系。于此解决了求解非饱和土渗流场基本方程的首要问题。本文以以上内容为核心思想,利用Comsol Multiphysics 软件,对具体工程中非饱和土渗流问题进行了数值模拟,通过反馈验证了Fredlund 和Xing[4]等人土水特征曲线方程的正确性。以上解决非饱和土渗流问题的思想可供学者参考。 2模型的建立

2.1非饱和土渗流场基本方程

一般来说,解决非饱和土渗流设计的问题以及与其相关的工程实践问题,特别是数值分析,都归结于就具体的非饱和土渗流工程概况而建立渗流场基本方程,然后解这一渗流场基本方程,从而得出相关的渗流流线(水位)分布、水流渗流力矢量分布、流速矢量分布和相关的趋势,最后以此来指导实践施工。

二维非饱和土渗流场基本方程为:

x y H H k k Q x x y y t θ?????????++= ? ?????????? (1)

式中:H —总水头;k x —x 方向的渗透系数(变量);k y —y 方向的渗透系数(变量);Q —应用边界流;θ—体积含水量;t —时间。

由于孔隙气压力通常为常量u a ,对体积含水量θ的改变没有影响,改变的体积含水量由下式决定:

w w m u θ?=? (2)

式中:m w —u w -Θ关系曲线的斜率。

H 的表达式为:

w

w u H y γ=+ (3)

式中:u w —孔隙水压力;γw 水的重度;y —海拔。

(3)式可得:()w w u H y γ=- (4)

由(1)(2)(4)得:

x y w w H H H k k Q m x x y y t γ?????????++= ? ?????????? (5)

在求解上述非饱和土渗流场基本方程(1)需要考虑边界条件和初始条件,边界条件可以分为三类[3]:第一类边界条件为水头边界条件,即h |Γ1=H 1(x ,y ,t );第二类边界条件为流量边界,即2

2n q h

H x y t n K Γ-?==?(,,),其中q n 为单位

面积边界上穿过的已知流量;第三类边界条件为混合边界条件,即3h

h n αβΓ?+=?,其中α,β为参数。初始条件表示为:h (x ,y ,t )|t =0=h 0(x ,

y ,t )。

2.2土水特征曲线方程

在求解非饱和土渗流场基本方程(1)时,要知道体积含水量θ和渗透系数k ,而这两个参数在实际工程中是通过实验得到的,试验得到的是一系列孤立的点,然而这与渗流场基本方程建立于连续性模型相悖。为了解决非饱和土的体积含水量θ与渗透系数k 测量的耗时以及模型的连续性问题,Gardner , Brooks&Corey ,V an Genuchten ,McKee&Bumb 和Fredlund&Xing 等人[1]先后通过试验建立了一系列的土水特征方程即体积含水量θ与吸力Ψ的拟合连续性表达式。但是没有形成统一的体系,后来E.C.Leong 和 H.Rahardjo 通过大量实验对比在[1]中建议我们采用Fredlund 和 Xing (1994)的土水特征方程,其为:

ln 11100000ln 1ln

r s w c b r e a ψψθθψψ????+?? ?????=-????????????+?? ?+???? ?????????????????

()ln

s w c b C e a θθψψ=????????+???? ??????????? (6)

式中:θw 为体积含水量;Ψ为吸力,与孔隙气压力和孔隙水压力有关;θs 饱和体积含水量;Ψr ,a ,b ,c 为未知量。

通过试验测得非饱和土的体积含水量θ与吸力Ψ关系的数据点组,可以拟合成如(6)式的连续性表达式,从而解决θ的连续性。需要注意的是E.C.Leong 和 H.Rahardjo 在[1]中提到Fredlund 和 Xing (1994)拟合效果最差,11个点的数据集,而不是6个点的数据集。

2.3渗透参数试验方程

上面解决了体积含水量θ非连续性的矛盾,渗透系数k 的非连续仍未解决,后来很多学者人通过大量的试验发现非饱和土的体积含水量θ和渗透系数k 都与吸力Ψ存在密切的联系,并且依赖于土水特征曲线,于是建立了体积含水量θ与渗透系数k 拟合关系。E.C.Leong 和 H.Rahardjo 在[2]中提到的拟合关系如下:

p r k =Θ (7)

式中:k r —相对渗透系数,k r =k w /k s ,k w 为渗透系数,k s 为饱和渗透系数;Θ—标准体积含水量,Θ=(θw -θr )/(θs -θr ),θr 为残余体积含水量;p 为常量(一般在2.5~24.5之间)。

由土水特征曲线得到饱和渗透系数k s 和残余体积含水量θr ,以及由(6)式从而解决了非饱和土渗透系数k 的连续性。

3工程实例模拟

3.1工程概况

某水库如图1所示,具体物理参数在图中已给出,其中有8m 的透水层;试验测得的体积含水量θ以及渗透系数k 与吸力Ψ关系的数据如表1,水的重度γw =9.8kN/m 3,初始水位高度为,H 0=10m 。

图1 某水库的物理参数

Fig. 1 Physical parameters of a reservoir

表1 土水特征参数

吸力Ψ(kPa )

0 20 40 60 80 100 体积含水量θ

0.3825 0.3500 0.2003 0.0996 0.0715 0.0627 渗透系数k (m/s ) 0.0079 0.0032 0.0005 20×10-6

1.3×10-6

1.0×10

-6

3.2模拟参数的处理

(1)体积含水量

根据表1中测得的数据绘制出吸力Ψ与体积含水量θ(Ψ-θ关系图)如图2所示。

10m

A C

图2 实测Ψ和θ关系图

Fig. 2 Measured Ψ andθdiagrams

Fredlund和xing(1994)提到(6)式中的系数C(Ψ)系数接近于1,简化计算,取C(Ψ)=1,饱和体积含水量θs=0.383,根据图2,拟合的含水量连续性方程(6)式,可得(6)式中的参数为a=30.72;b=3.851;c=1.257(一般可以用matlab或origin软件来拟合,本文通过origin拟合)。

(2)渗透参数

根据表1和图2,(7)式中饱和渗透系数k s=0.008m/s;残余体积含水量

θr=0.062;通过拟合可得到p=4.52再由(6)式就可以得到了渗透系数k的连续性方程。本工程虽然已测出了渗透系数k和吸力Ψ的关系,仅供验证的目的。

(3)m w处理

将已求出未知参数的含水量连续性方程(6)式中的吸力Ψ换成-u w,并对u w求一阶导数即得到m w。

3.3 comsol 的模拟

在comsol中利用非饱和土渗流场基本方程(5)式,输入已求出的连续性表达式,以及边界条件(图1中,BC为第一类边界条件;CD为第二类边界条件,DE为第三类边界条件;在comsol中需要转化相应的Dirichlet boundary condition和Neumann boundary condition或这两类边界条件的组合),本例的模

拟过程和模拟结果如图3~图11

Fig. 3 Reservoir mesh

Fig. 4 Initial stress distribution of the reservoir

Fig. 5 Reservoir stress distribution after one year

Fig. 6 The initial location of saturation line

Fig. 7 Location of saturation line after one year

Fig. 8 Initial velocity vector

Fig. 9 V elocity vector after one year

Fig. 10 Initial flow chart

图11 一年后流线图

Fig. 11 Flow chart after one year

4结论

本文提供了一种解决非饱和土渗流问题的方法,即结合非饱和土渗流场基本方程以及由水土特征曲线得到的相关渗流参数(渗透系数,体积含水量),以此解决渗透模型要求渗流场方程的连续性与现场实测数据的非连续性之间的矛盾,并利用数值软件对具体工程中非饱和土渗流问题进行模拟,从而得出相关的渗流流线(水位)分布、水流渗流力矢量分布、流速矢量分布和相关的趋势,最后以此来指导施工。

参考文献

[1] E.C.Leong and H.Rahardjo(1997). “Review of soil-water characteristic curve equations .”J. Geotech. Engrg , ASCE,123(12), 1106-1117.

[2] E.C.Leong and H.Rahardjo(1997). “Permeability function for unsaturated soils .”J. Geotech. Engrg , ASCE,123(12), 1118-1126.

[3]殷宗泽等.土工原理[M].北京:中国水利水电出版社,2007

[4]Fredlund, D. G., Xing, A., and Huang, S. (1994). “Predicting the permeability functions for unsaturated soils using the soil-water characteristic curve. ”Can. Geotech. J., 31(4), 533-546.

[5] Murray Fredlund.Gilson Gitirana Jr (2011). “Probabilistic methods applied to

unsaturated numerical modeling.” Geotech Geol Eng, 29:217-223.

土力学及其工程应用A

济南大学 在职攻读工程硕士专业学位研究生课程考试试题 报考专业领域:建筑与土木工程考试科目名称:土力学及其工程应用A 姓名:刘觉学号: (所有答题内容必须写在答题纸上,写在试卷、草稿纸上无效) 一(15分)什么叫颗粒级配曲线,如何定性和定量分析土的级配? 答:图的颗粒级配——土中各个粒组的相对含量。确定各粒组相对含量的方法:1颗粒分析实验2筛分法3沉降分析法 实验成果——颗粒级配曲线,进行曲线分析:曲线越陡,表示粒径大小相差不多,土粒较均匀;曲线平缓,表示粒径大小相差悬殊,土粒不均匀,即级配良好。 二(15分)试比较朗肯土压力理论和库仑土压力理论的优缺点和各自的适用范围? 答;郎肯土压力理论应用半空间的应力状态和极限平衡理论的概念比较明确,公式简单,便于记忆,对于粘性土和无粘性土都可以用该公式直接计算,但由于该理论忽略了墙背与填土之间的摩擦影响,是计算的主动土压力增大,而计算的被动土压力偏小。库伦土压力理论根据墙后滑动土的静力平衡条件导的公式,考虑了墙背与土之间的摩擦力,并可用于墙背倾斜,填土倾斜情况,但由于该理论假设填土时无粘性土,因而不能用库伦理论的原始公式直接计算粘性土的土压力。 三(15分)(1)分层总和法有哪些前提条件?与实际情况会有哪些不同?试给予简要评述。(2)计算建筑物最终沉降量的分层总和法与GB2002规范法有什么不同点? 答①地基沉降的分层总合法的基本用意是为了解决地基的成层性和非均质性所带来的计算上的困难。 ②以均质弹性半空间的应力来计算非均质地基的变形的做法、在理论上显然不协调,其所引起的计算误差也还没有得到理论和实验的充分验证 ③最为适用于土体的单向压缩变形计算,因为K0条件下的土体只有体积变形,所以计算所得的是地基最终固结沉降,通常粗略地把单向压缩分层总和法的计算结果看成是地基最终沉降,而不考虑地基瞬时沉降。 ④传统的和规范推荐的两种单向压缩分层总和法,就计算方法而言并无太大差别,规范法的重要特点引入了沉降计算经验系数.以校正计算值与实测值的偏差。 ⑤砂土地基在荷载作用下由土的体积变形和剪切变形引起的沉降在短时间内几乎同时完成。 ⑥地基沉降计算深度用于确定地基沉降有影响的土层范围.保证满足沉降计算的精度要求。地基沉降计算深度的确定标准有二种:应力比法和与变形比法

高边坡山体饱和非饱和渗流场的初步分析_张家发

◇ 科 研 高边坡山体饱和非饱和渗流场的初步分析 张家发 李思慎 叶自桐 摘 要 对一高边坡山体花岗岩全风化带土样和基岩裂隙测得了水份特征曲线,并进而得到了水力传导 率的解析模型。采用有限元方法模拟分析了类似多年平均降雨条件下高边坡山体中的稳定渗流状态,以及强降雨入渗条件下的非稳定入渗过程和渗流场变化趋势,并对设计的排水措施的效果进行了初步分析。模拟结果说明,在一定条件下现已布置的排水措施作用可能有限。针对这一情况,为下一步的观测和研究工作提出了相应的建议。 主题词 渗流观测 排水设施 有限元法 风化岩 试验研究 边坡体中的水压力和水流分布是影响边坡稳定和变形的因素之一。因此边坡排水设计及其方案论证是边坡设计与科研的重要内容。以往高边坡渗流场研究通常采用的是稳定流模型。对降雨入渗补给的作用,仅考虑多年平均降水量对应的入渗条件,且入渗边界假设在地下水面上。实际上在一些山地暴雨区,雨量丰沛且在时间分布上很集中,以阵发性暴雨为主。强降雨过程中高边坡山体接受入渗补给以及边坡体中的地下水瞬态运动和水压分布将会更加恶化边坡的排水条件和边坡体的稳定状态。另一方面,在多山地区,尤其是在工程开挖边坡造成的地形深切割条件下,旱季地下水位通常是很低的,形成了深厚的非饱和区。在继之而来的雨季强降雨过程中,非饱和区的水份运动将对降水入渗补给过程以及地下水压力分布发生影响。考虑这些影响后,在以往研究成果基础上设计的排水措施的效果如何?这是本文的研究重点。 本文在已往研究成果基础上,开展降雨入渗条件下高边坡岩体饱和非饱和渗流的研究。由于这是参数高度非线性问题,且非饱和参数的测定不是常规地质勘探工作的内容,通常资料很少,此次工作只能是初步的。文中首先进行了非饱和参数研究;然后在参数资料不足的情况下通过假设,用有限元数值模拟分析了类似多年平均降雨强度下边坡中的稳定渗流状态以及强降雨过程中的非稳定入渗补给过程及边坡中地下水运动和水压分布的变化趋势。 1 参数的研究 本文所研究的高边坡岩体为花岗岩体,其渗透性与岩体风化程度和裂隙发育状况关系密切,总体上可分为与全强风化带、弱风化带和微新岩体相对应的三个渗透性分区。每一渗透性分区的非饱和参数包括K (θ)和h (θ)这两组非线性函数,通常它们是分别通过实验测定的。本文首次介绍了对该高边坡岩体的饱和非饱和渗流参数试验研究,包括分别对新鲜岩体的裂隙和全强风化带的松散介质进行的室内实验。 新鲜岩样中有一个完整的贯穿裂隙面。通过饱和渗流试验 并根据立方定理推算出裂隙的水力开度为179μm 。假设通过岩样的基质孔隙的水流可以忽略不计,采用不互溶驱替法,用 非湿润流体(变压器油)驱替裂隙中的湿润流体(水),通过流量和水压力的观测得到裂隙的毛管压力~饱和度关系(如图1所示)。然后采用va n Ge nuch ten 模型[1]和Broo ks -Co rey 模型[2]对实验数据进行拟合,进而得到了裂隙水力传导率的解析模型(如图2所示) 。 图1  裂隙负压水头与饱和度关系实验曲线 图2 裂隙的K r 曲线 将全强风化带土样按 1.88的容重装填,采用压力板出流 · 44·V o l .29 N o .1 人民长江 Y AN G T Z E RIV ER J a nuar y 1998DOI:10.16232/https://www.doczj.com/doc/2211138621.html, k i .1001-4179.1998.01.016

土力学在工程项目中的应用

土力学在工程项目中的应用 发表时间:2017-06-23T13:50:34.847Z 来源:《基层建设》2017年5期作者:连宏玉贾志强 [导读] 土力学并不是与人类现实生活割离的理论性学科,在进行挡土墙、地基、土工类型的建筑物时都会应用到这门学科。 哈尔滨石油学院黑龙江哈尔滨 150028 摘要:我国的科学技术以及经济发展为土力学的研究提供了物质性的条件,使我国的土力学有了比较好的发展,土力学是一门对土的力学方面的性质进行研究的重要学科,研究的领域虽然局限在土这方面,但是研究成果非常具体,包括自然土体以及人工土体、力学性质以及地下水。土力学并不是与人类现实生活割离的理论性学科,在进行挡土墙、地基、土工类型的建筑物时都会应用到这门学科。 关键词:土力学;工程项目;应用 现代土力学研究的开创者是奥地利的一名工程师太沙基,他在前人对土力学研究的基础上,对土力学进行了改进以及扩充,使用科学的方式对土力学的相关知识进行研究,使土力学这门学科具有更强的实用性。我国现代的土木工程建设也离不开土力学的支持,本文借助土力学的相关理论知识对这门学科在工程项目的应用进行分析,希望可以给我国土力学方面的学者提供参考。 1 土力学概述 土力学在人类历史上出现的时间比较早,在形成完整的土力学的理论体系之前,人们已经开始在生产与建设活动中开始应用这个学科了,主要在工程建设的过程中,人们对遇到的新问题与新情况进行分析与总结,不断地扩充着土力学的知识体系,直到奥地利工程师太沙基在1925年将土力学的知识进行科学地归纳,出版成书,这也标志着土力学正式成为了一门学科。土力学这门学科与其他相关学科不同,其理论性比较弱,应用性比较强,与工程项目相互依存,只有在工程项目建设中,土力学才能发挥出价值,失去土力学的理论支持,一部分工程项目也无法开展。土力学的研究内容主要为土体内部的应变与应力、时间的关系,其具体的研究内容比较丰富,包括对土体发生变形的性质进行研究、计算地基的沉降情况、分析土体的抗剪强度、土坡是否能够保证稳定等。 2 如何在工程项目中应用土力学 2.1 计算地基的沉降情况以及土体的变形情况 建筑下方的地基的作用是为了提供给整体建筑稳定的承载力,当地基难以支撑整个建筑物时,就会出现由于地基变形而发生的沉降情况,地基发生沉降有很多不同的情况,包括地基平均的沉降、不均匀性沉降以及相邻的地基产生的沉降差等,一旦地基不能保持稳定性,产生沉降之后,建筑会受到极大的影响。建筑物无法平均分布其应力,会使建筑出现裂缝,导致建筑的质量严重下降,甚至还会出现安全问题。在发生这种地基造成的沉降时,就可以将土力学应用到工程建设中,在其他项目开展之前,估算出沉降数据,提前做好预防沉降的措施。使用沉降公式进行计算时,要了解埋深以及基础的平面尺寸,设计好地质的剖面图,确定总荷载在基地上产生作用的位置。根据坡面图将土层分割成多个干薄层来计算,这种计算方式可保证沉降数据的准确性。 2.2 计算天然型的地基的承载力 地基包括天然地基以及人工地基,人工在一般的工程建设中比较常见,天然地基能够保持原有的土层结构,天然地基的承载力受到岩土材料的影响,岩土材料的性质一般比较复杂,使地基难以保证稳定性,在检算地基时,要做好三种内容的检算,包括稳定性、变形以及强度。技术人员可以通过对塑性区域的发展深度进行控制,再通过原位测试来确定地基的准确承载力,另外还要确定好安全系数的数值,使用的公式必须是符合土力学规范的经验性公式。我国需要建设地基的工程项目都已经给出了经验公式,保证在每一种施工环境中,都能对其承载力进行确定。 2.3 如何在挡土墙中应用土压力 挡土墙是防止土体坍塌下滑的构筑物,在市政工程、铁路公路工程、水利工程、山区建设等领域都有着十分广泛的应用。挡土墙在工程项目中,对于稳定局部的土结构,保证整个工程的稳定性是十分重要的。但是要构筑性能优良的挡土墙,就必须结合土力学理论,对挡土墙进行土压力分析。 土压力是指挡土墙背部土体因为自重或者外力对挡土墙施加的侧向压力。挡土墙的性质决定了土压力是其主要的外载荷,这就要求设计挡土墙时要对土压力的性质、大小、方向、作用点有清晰的认识。土压力的计算十分复杂,它不但要考虑墙后土体、地基和墙身三者的关系,还与施工方式、墙身位移、墙体材料、墙后土体性质乃至地下水状况等诸多因素有关。土力学关于土压力有郎肯土压力理论和库仑土压力理论,这两种理论基本可以解决目前的土压力分布问题。 2.4 其他应用 可以说,土力学在工程项目中的应用是无处不在的。除了上述的一些应用之外,还包括土坡稳定、地基处理、土的动力及地震特性应用等等。土坡通常指具有倾斜面的土体。若出现外界因素导致土坡失去平衡,土体将会沿某一滑面发生滑动,即滑坡。为了避免这种现象的出现,土力学提出了相应的不同滑面土坡稳定的分析方法。根据这些理论,能够提出加强土坡稳定的措施,包括减载、加重、排水等等。当地基不能满足工程要求时,需要应用土力学原理对地基进行处理。工程中的地基处理主要包含四个方面的技术问题,即胶结、固化、电、化学加固类; 换填类; 夯实、挤密类; 加筋类等等。地基处理主要是为了改善土体性质,满足建筑物对地基力学的基本要求。土体在动载荷作用下的性质是不容忽视的问题。对于不同的工程项目有不同的动载荷来源,包括车辆动载荷、浪击动载荷、风力动载荷、冲击载荷以及爆炸、地震等突发性的动载荷。这些动载荷会导致工程失稳甚至破坏,需要土力学理论进行分析并采取相应措施。 3 土力学的发展前景 近些年,高速公路、高速铁路的建设越来越频繁,同时,地震、山体滑坡等自然灾害也不可避免的频繁发生。动载荷引起的一系列土力学问题已经成为一大难题。目前的土力学理论还有一定的局限性,还需要更多的研究不同情况的动载荷下地基土的动应力、动强度、动应变之间的关系。 随着科技的进步,工程施工方法已经与过去有了很大的差别,工程对精确度的要求也越来越高,在这种情况下,土力学的研究也应该使用一些创新的方法,应用更先进的试验仪器,保证土力学理论的不断进步以适应工程需要。 为了在一些软弱地基上施工,需要置入高强度的其他材料,形成复合地基。这些新材料、新工艺的应用目前已经有了一定范围的推广。但是目前的设计理论还不能满足应用需要,还要进一步研究。

非饱和渗流

非饱和渗流中渗透系数计算的推导 (1) 拟合 由实验测出测点的含水率和基质吸力的实验数据,所测得的含水率可算出其有效饱和度,即有效饱和度可由含水率表示出来,然后再用VG 模型拟合出土体的水分特征曲线SWCC 。 式中: 为有效饱和度,,为基质吸力。拟合出VG 模型中的三个参数,即可得到有效饱和度与基质吸力的关系SWCC 曲线。 用所得到的有效饱和度,再由VG 模型可得到相对渗透系数与有效饱和度的关系 而非饱和渗透系数与相对渗透系数的关系是: k w = k r w k s 由土常规物理实验可测得土体的饱和渗透系数,即可得到非饱和渗透系数与含水率的函数。 (2)达西定律直接计算 由法国水力学家 H.-P.-G.达西在1852~1855年通过大量实验得出,1856年总结得出渗透能量损失与渗流速度之间的相互关系即为达西定律。反映水在岩土孔隙中渗流规律的实验定律。这个定律说明水通过多孔介质的速度同水力梯度的大小及介质的渗透性能成正比。 达西定律是多孔介质中流体所应满足的运动方程。质量守恒是物质运动和变化普遍遵循的原理,将质量守恒原理具体应用在多孔介质中的流体流动即为连续方程。达西定律和连续方程相结合便导出了土体中水分运动的基本方程。 根据达西(Darcy)定律和质量守恒定律,对于二维问题非饱和土壤水运动的基本微分方程如下: ()()x y K K t x x y y θ??θθ?????????=+????????????? 式中θ为体积含水量;φ为总水势(总水头),由基质势和重力势组成,φ= y+h ,y 为重力势(位置势),h 为基质势;x K ,y K 为x ,y 方向的渗透系数,若土体为各向同性,则x K =y K =K (θ) 由于非饱和渗透系数是基质吸力或者含水率的函数,故此方程为一个二阶非线性的偏微分方程,除少量问题外,一般情况下对此方程的解析求解是困难的,很多的问题需要用数值法求解。 由于非饱和土的渗透系数K 可以是基质吸力(负压水头)的函数,因此方程(5.1)的左端可以改写为:

土力学知识点总结

土力学知识点总结 1、土力学是利用力学一般原理,研究土的物理化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学。 2、任何建筑都建造在一定的地层上。通常把支撑基础的土体或岩体成为地基(天然地基、人工地基)。 3、基础是将结构承受的各种作用传递到地基上的结构组成部分,一般应埋入地下一定深度,进入较好的地基。 4、地基和基础设计必须满足的三个基本条件:①作用与地基上的荷载效应不得超过地基容许承载力或地基承载力特征值;②基础沉降不得超过地基变形容许值;③挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。 5、地基和基础是建筑物的根本,统称为基础工程。 6、土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒、经过不同的搬运方式,在各种自然坏境中生成的沉积物。 7、土的三相组成:固相(固体颗粒)、液相(水)、气相(气体)。 8、土的矿物成分:原生矿物、次生矿物。 9、黏土矿物是一种复合的铝—硅酸盐晶体。可分为:蒙脱石、伊利石和高岭石。

10、土力的大小称为粒度。工程上常把大小、性质相近的土粒合并为一组,称为粒组。划分粒组的分界尺寸称为界限粒径。土粒粒组分为巨粒、粗粒和细粒。 11、土中所含各粒组的相对含量,以土粒总重的百分数表示,称为土的颗粒级配。级配曲线的纵坐标表示小于某土粒的累计质量百分比,横坐标则是用对数值表示土的粒径。 12、颗粒分析实验:筛分法和沉降分析法。 13、土中水按存在形态分为液态水、固态水和气态水。固态水又称矿物内部结晶水或内部结合水。液态水分为结合水和自由水。自由水分为重力水和毛细水。 14、重力水是存在于地下水位以下、土颗粒电分子引力范围以外的水,因为在本身重力作用下运动,故称为重力水。 15、毛细水是受到水与空气交界面处表面张力的作用、存在于地下水位以下的透水层中自由水。土的毛细现象是指土中水在表面张力作用下,沿着细的孔隙向上及向其他方向移动的现象。 16、影响冻胀的因素:土的因素、水的因素、温度的因素。 17、土的结构是指土颗粒或集合体的大小和形状、表面特征、排列形式及他们之间的连接特征,而构造是指土层的层理、裂隙和大孔隙等宏观特征,亦称宏观结构。 18、结构的类型:单粒结构、蜂窝结构、絮凝结构。

comsol在非饱和土渗流的应用

基于comsol的非饱和土渗流研究 /comsol在岩土工程渗流的应用 摘要:岩土工程的核心难点即解决地下水问题,一般岩土工程事故都是由于对地下水的影响重视不够而造成的,然而解决这一难点关键在于解决地下水渗流问题。目前对于非饱和土渗流研究的理论仍相对落后,本文结合非饱和土渗流场基本方程以及由水土特征曲线得到的相关渗流参数(渗透系数,体积含水量),阐明了如何解决渗透模型要求渗流场方程的连续性与现场实测数据的非连续性之间的矛盾,并利用comsol Multiphysics 软件对某工程中非饱和土渗流问题进行了模拟,并验证了Fredlund和xing(1994)土水特征曲线方程的正确性。这种解决非饱和土渗流问题的思想可供学者参考。 关键词:非饱和土;渗流场;渗流参数;连续性矛盾;Comsol Multiphysics Study on seepage of unsaturated soil seepage based on comsol Abstract:The core difficulty of geotechnical engineering is to solve groundwater problems, the general geotechnical engineering accidents are due to the impact of groundwater caused by insufficient attention, however, the key to solve this difficult problem is to deal with the groundwater flow. At present, for the study of unsaturated soil seepage theory is still relatively backward, this paper combines basic equation of unsaturated soil seepage with soil-water characteristics curve and obtains the relevant flow parameters (hydraulic conductivity, volumetric water content) from them, and illustrates how to solve the conflict between the seepage field penetration model requiring Equation of continuity and the measured data of non-continuity, and using the software comsol Multiphysics to simulate unsaturated soil seepage problems in one project and verified the right of Fredlund and xing (1994) soil-water characteristic curve equation. The idea of solving unsaturated soil seepage problems may be referred by similar projects. Key words: unsaturated soil; seepage field; seepage parameters; continuous conflict; Comsol Multiphysics 1引言 岩土工程设计与施工的难点在于解决地下水问题,一般岩土工程事故都是由于对地下水的影响重视不够而造成的,像2003年7月14日上海轨道交通4号线工程事故;2007年8月17日山东新汶煤矿透水事故;2008年11月15日杭州地铁工地塌陷事故以及2011年1月1日杭州余杭区-工地土方坍塌事故等等都是由于忽视地下水的影响而造成的。然而解决这一难题的关键在于解决地下水渗流问题。虽然众多国内外学者对土的渗流问题做了大量的研究,但是目前对于非饱和土渗流研究的理论以及实践应用仍相对落后。一般来说,解决非饱和土渗流设计的问题以及与其相关的工程实践问题,可以归结于就具体的非饱和土渗流工程概况而建立渗流场基本方程,然后解这一渗流场基本方程,从而得出相关的渗流流线(水位)分布、水流渗流力矢量分布、流速矢量分布和相关的趋势,最后以此来指导实践施工。然而在求解非饱和土渗流场基本方程时,首要要解决两个重要未知参数,即体积含水量θ和渗透系数k,这两个参数在实际工程中是通过实验得到的,试验得到的是一系列孤立的点,然而这与渗流场基本方程建立于连续性模型相悖,这就给求解渗流场基本方程带来了很大的困难,于是国内外很多学者对此进行了大量的研究。为了解决非饱和土的

土的渗透性和渗流问题

第四章 土的渗透性和渗流问题 第一节 概述 土是由固体相的颗粒、孔隙中的液体和气体三相组成的,而土中的孔隙具有连续的性质,当土作为水土建筑物的地基或直接把它用作水土建筑物的材料时,水就会在水头差作用下从水位较高的一侧透过土体的孔隙流向水位较低的一侧。 渗透:在水头差作用下,水透过土体孔隙的现象 渗透性:土允许水透过的性能称为土的渗透性。 水在土体中渗透,一方面会造成水量损失,影响工程效益;另一方面将引起土体内部应力状态的变化,从而改变水土建筑物或地基的稳定条件,甚者还会酿成破坏事故。 此外,土的渗透性的强弱,对土体的固结、强度以及工程施工都有非常重要的影响。 本章将主要讨论水在土体中的渗透性及渗透规律,以及渗透力渗透变形等问题。 第二节 土的渗透性 一、土的渗透规律——达西定律 (一)渗流中的总水头与水力坡降 液体流动的连续性原理:(方程式) dw v dw v w w ??=2 211 2211v w v w = 1 221w w v v = 表明:通过稳定总流任意过水断面的流量是相等的;或者说是稳定总流的过水断面的 平均流速与过水断面的面积成反比。 前提:流体是连续介质 流体是不可压缩的; 流体是稳定流,且流体不能通过流面流进或流出该元流。 理想重力的能量方程式(伯努利方程式1738年瑞士数学家应用动能定理推导出来的。) c g v r p Z =++22 饱和土体空隙中的渗透水流,也遵从伯努利方程,并用水头的概念来研究水体流动中 的位能和动能。 水头:实际上就是单位重量水体所具有的能量。 按照伯努利方程,液流中一点的总水头h ,可以用位置水头Z ,压力水头U/r w 和流速水

土力学期末考试题及答案

精选教育类文档,如果需要,欢迎下载,希望能帮助到你们! 土力学期末考试题及答案 一、单项选择题 1.用粒径级配曲线法表示土样的颗粒组成情况时,若曲线越陡,则表示土的( B ) A.颗粒级配越好B.颗粒级配越差 C.颗粒大小越不均匀D.不均匀系数越大 2.判别粘性土软硬状态的指标是( B ) A.塑性指数B.液性指数 C.压缩系数D.压缩指数 3.产生流砂的充分而必要的条件是动水力( D ) A.方向向下B.等于或大于土的有效重度 C.方向向上D.方向向上且等于或大于土的有效重度4.在均质土层中,土的竖向自重应力沿深度的分布规律是( D ) A.均匀的B.曲线的 C.折线的D.直线的 5.在荷载作用下,土体抗剪强度变化的原因是( C ) A.附加应力的变化B.总应力的变化 C.有效应力的变化D.自重应力的变化 6.采用条形荷载导出的地基界限荷载P1/4用于矩形底面基础设

计时,其结果( A ) A.偏于安全B.偏于危险 C.安全度不变D.安全与否无法确定 7.无粘性土坡在稳定状态下(不含临界稳定)坡角β与土的内摩擦角φ之间的关系是( A ) A.β<φB.β=φ C.β>φD.β≤φ 8.下列不属于工程地质勘察报告常用图表的是( C ) A.钻孔柱状图B.工程地质剖面图 C.地下水等水位线图D.土工试验成果总表 9.对于轴心受压或荷载偏心距e较小的基础,可以根据土的抗剪强度指标标准值φk、Ck按公式确定地基承载力的特征值。偏心距的大小规定为(注:Z为偏心方向的基础边长)( ) A.e≤ι/30 B.e≤ι/10 C.e≤b/4 D.e≤b/2 10.对于含水量较高的粘性土,堆载预压法处理地基的主要作用之一是( C ) A.减小液化的可能性B.减小冻胀 C.提高地基承载力D.消除湿陷性 第二部分非选择题 11.建筑物在地面以下并将上部荷载传递至地基的结构称为

成层非饱和土渗流的耦合解析解

2011年8月 Rock and Soil Mechanics Aug. 2011 收稿日期:2010-06-07 基金项目:国家自然科学基金(No. 40902087);香港Research Grants Council (No. 622207);教育部科学技术研究重点项目(No. 110186);教育部博士点新教师基金(No. 20095122120007);四川省杰出青年学术技术带头人培育计划(No. 2010JQ0034)。 第一作者简介:吴礼舟,男,1975年生,博士,副教授,主要从事工程地质和岩土工程科研教学工作。E-mail: wulizhoucn@https://www.doczj.com/doc/2211138621.html, 文章编号:1000-7598 (2011) 08-2391-06 成层非饱和土渗流的耦合解析解 吴礼舟1,张利民2,黄润秋1 (1.成都理工大学 地质灾害防治国家重点实验室,成都 610059;2.香港科技大学 土木系,香港 九龙) 摘 要:成层土在工程中很常见,研究降雨过程中成层非饱和土的渗流-变形耦合对非饱和土土力学的发展具有重要的意义。由流体质量守恒,Darcy 定律和Lloret 等的非饱和土本构模型可得成层非饱和土渗流-变形耦合的控制方程。采用Gardner 的非饱和土的渗透系数公式以及Boltzman 模型,基于Laplace 变换得到耦合方程的解析解。解析及其参数分析表明,渗流和变形耦合是具有时间效应的。与吸力变化相关的土的模量F ,对成层土的孔隙水压力分布有明显影响。两层土的F 差异越大,孔隙水压力消散得越慢,耦合效应越不显著。增大表层土的F 值有利于降低耦合效应。成层土饱和体积含水率变化对吸力变化产生有限的影响。 关 键 词:非饱和土;渗流和变形;耦合;成层土;降雨入渗 中图分类号:TU 46+2 文献标识码:A Analytic solution to coupled seepage in layered unsaturated soils WU Li-zhou 1 , ZHANG Li-min 2, HUANG Run-qiu 1 (1. State Key Laboratory of Geological Hazard Prevention and Geological Environment Protection, Chengdu University of Technology, Chengdu 610059, China; 2. Department of Civil and Environmental Engineering, HongKong University of Science and Technology, Kowloon, Hong Kong, China) Abstract: Layered soil such as landfill and cracked soils are often found in engineering. Its coupled infiltration and deformation during rainfall is significant for development of unsaturated soil mechanics. Based on fluid mass conservation, Darcy’s law, and the constitutive model proposed by Lloret et al., coupled governing equations for seepage and deformation in unsaturated soils are obtained. The unsaturated coefficient of permeability is expressed using Gardner’s model and the water retention characteristics are expressed using Boltzman’s model. The analytic solution to the coupled equation is developed by Laplace transformation. The analytic solution and parameter analysis results show that the effect of coupling between unsaturated seepage and deformation is related with time. The modulus related to suction changes F has a marked effect on the pore water pressure. The larger the F ratio values for two-layer soils are, the more slowly the suction dissipates. The results indicate that a large F for the top-layer soil can effectively reduce the coupling effect. V olumetric moisture content changes in two-layer soils play a limited role in the suction distribution. Key words: unsaturated soil; seepage and deformation; coupling; layered soil; rainfall infiltration 1 引 言 非饱和土在地球表面广泛分布,非饱和土由土骨架、孔隙水、孔隙气和水气膜组成[1]。降雨入渗过程中非饱和土体中的渗流场和位移场均是变化的,且相互影响。孔隙水压力变化导致应力变化及非饱和土体变形;应力变化及孔隙改变反过来又影响渗流状态[2]。因此,降雨过程中非饱和土的渗流-变形耦合问题是一个重要的课题,成层土常见于工程中,如垃圾、废料填埋土。干湿循环易诱发表层 土产生裂隙,因而表层裂隙的土层作为连续介质,其渗透系数增大,与下层未出现裂隙土层一起构成等效的成层土。研究成层非饱和土的渗流-变形耦合对推动非饱和土土力学的发展有着重要的意义。 关于渗流-变形耦合的数值解有不少研究[3 -6] 。 Kim [3]提出非饱和土地表加载引起水位波动和变形的耦合数值模型。Thomas [4]提出了可变形的非饱和土热、水和气转化的理论表达式。田东方等[5]提出坡面径流-非饱和渗流分析与应力场的耦合计算方法,并编制了相应的有限元程序。张玉军[6]从建立

土力学名词解释

名词解释: 绪论 1、土力学:是利用力学的一般原理,研究土的物理、化学和力学性质及土体在荷载、水、 温度等外界因素作用下工程性状的应用科学。 2、土:是矿物或岩石碎屑构成的松软集合体。由固体、液体和气体所组成的混合物。 土的性质:结构性质——生成和组成 结构和构造 物理性质——三相比例指标 无粘性土的密实度 粘性土的水理性质 土的渗透性 力学性质——击实性 压缩性 抗剪性 地基、基础:地基是直接承受建筑物荷载影响的那一部分地层。基础是将建筑物承受的各种荷裁传递到地基上的下部结构。 岩土工程:是根据工程地质学、土力学及岩石力学理论、观点与方法,为了整治、利用和改造岩、土体,使其为实现某项工程目的服务而进行的系统工作。 第一章 1、土的形成过程:地球表面的岩石经过风化、剥蚀、搬运、沉积作用形成的松散沉积物,称为“土”。 2、风化作用:风化作用主要包括物理风化和化学风化,物理风化是指由于温度变化、水的冻胀、波浪冲击、地震等引起的物理力使岩体崩解、碎裂的过程,这种作用使岩体逐渐变成细小的颗粒。化学风化是指岩体与空气、水和各种水溶液相互作用过程,这种作用不仅使岩石颗粒变细,更重要的是使岩石成分发生变化,形成大量细微颗粒和可溶盐类。 3、搬运、沉积: 4、土的组成:是由固相、液相、气相组成的三相分散体系。 5、土中三相:固相、液相、气相 6、粒径、粒组:土粒的大小称为粒度,通常以粒径表示。介于一定粒度范围内的土粒,称为力组。 7、级配指标:不均匀系数、曲率系数 8、矿物成分:原生矿物、次生矿物、有机质、粘土矿物、无定形氧化物胶体、可溶盐 9、粘土矿物:由原生矿物经化学风化后所形成的新矿物。 10、结合水:当土粒与水相互作用时,土粒会吸附一部分水分子,在土粒表面形成一定厚度的水膜,成为结合水。 11、自由水:自由水是存在于土粒表面电场影响范围以外的水。 12、土的结构:单粒结构、蜂窝结构、絮状结构 13、土的结构性: 14、粘性土灵敏度:是指粘性土的原状土的无侧限抗压强度与重塑土的无侧限抗压强度比值。 15、土的触变性:土受到剪切时,稠度变小,停止剪切时,稠度又增加或受到剪切时,稠度变大,停止剪切时,稠度又变小的性质,即一触即变的性质。

ABAQUS在饱和-非饱和渗流分析中的应用

ABAQUS 在饱和-非饱和渗流分析中的应用 徐海奔 河海大学水工结构工程专业,南京 (210024) E-mail :hohaixhb@https://www.doczj.com/doc/2211138621.html, 摘 要:本文首先对大型通用有限元软件ABAQUS 在土石坝渗流分析中的应用进行分析,着重从多孔介质的饱和渗流,非饱和渗流及二者的混合问题(渗流自由面的计算)等方面论述。结合一个土石坝库水位下降时二维渗流计算实例,考虑流体重力作用下,采用非线性定律求解总孔隙压力及库水位下降过程渗流自由面变化过程。 关键词:非饱和;渗流;ABAQUS ;土石坝;自由面 1.引言 ABAQUS 大型通用有限元软件,在我国土木工程结构分析方面应用日益广泛。本文对它在土石坝渗流计算分析中的应用进行评述。 近年来,在国内外随着孔隙介质非饱和渗流和土体饱和渗流理论的发展,人们逐渐意识到堤坝稳定性与非饱和区渗流作用密切相关。在研究堤坝非饱和渗流问题时,主要采用数值模拟的方法。长期蓄水的土坝,当库水位以太快的速度下降时,坝体内孔隙水压力常常不能很快消散,因而坝体的浸润线高于上游库水水位。在这种情况下,渗流的动水压力或渗透力的作用对上游坝坡造成浮起及下滑的趋势,甚至酿成滑坡事故。因此在实际工程中必须防止因库水位下降速度太快而导致这类事故发生。为进行上游坝坡的稳定分析,需要确定库水位下降过程中各时段坝体浸润线的位置,也就是通常所说的进行土坝不稳定渗流计算。 坝体浸润线下降的速度,一般决定于库水位下降的速度V 、土坝坝体渗透系数k 以及土体的给水度u 等因素[1],与坝体的结构形式特别是坝体及地基上游面的排水条件也有很大关系。 2.ABAQUS 在均质土坝饱和-非饱和渗流计算原理 在饱和土壤中,引起水分转移的力是重力和水的压力。在非饱和土中,支配着土壤水在液态下整体转移的是重力和水的表面张力。Richards 等曾在1931年就证明非饱和土中的渗流与饱和土一样符合达西定律和连续方程[2]。若将达西定律代入连续方程(忽略渗透过程中总应力的改变和土颗粒骨架的变形)并以总水头h 作为未知量,当渗透的主方向与坐标轴一致时,非饱和土渗流的二维微分方程就可表示为: t y h k x x h k x w y x ??=????????????+??????????θ (1) 式中,x k ,y k 分别为x ,y 方向的渗透系数;w θ为体积含水量;h 为总水头;t 为时间。 令y 为位置水头,则:y u h w w +=γ,若w m 为土水特征曲线斜率,则: ()y h m u m w w w w w ??=?=?γθ。式(1)就可以写为: ()t y h m y h k x x h k x w w y x ???=??? ?????????+??????????γ (2) 因为y 为常数,式(2)可简化为:

土力学与基础工程(赵明华)精华版全解

名词解释 1?土力学一利用力学的一般原理,研究土的物理、化学和力学性质及土体在荷载、水、温度等外界因素 作用下工程性状的应用科学。它是力学的一个分支。 2?地基:为支承基础的土体或岩体。在结构物基础底面下,承受由基础传来的荷载,受建筑物影响的那 部分地层。地基分为天然地基、人工地基。 3?基础:将结构承受的各种作用传递到地基上的结构组成部分。基础依据埋置深度不同划分为浅基础、 深基础 2 土的性质及工程分类 1. 土的三相:水(液态、固态)气体(包括水气)固体颗粒(骨架) 2. 原生矿物。即岩浆在冷凝过程中形成的矿物。 3. 次生矿物。系原生矿物经化学风化作用后而形成新的矿物 4. 粘土矿物特点:粘土矿物是一种复合的铝 一硅酸盐晶体,颗粒成片状,是由硅片和铝片构成的晶胞所 组叠而成。 5. 粒组:介于一定粒度范围内的土粒。 界限粒径:划分粒组的分界尺寸称为 颗粒级配:土中各粒组的相对含量就称为土的颗粒级配。( d > 0.075mm 时,用筛分法;d <0.075,沉降 分析) 颗粒级配曲线:曲线平缓,表示粒径大小相差悬殊,土粒不均匀,即级配良好。 不均匀系数:C u =d 60/d 10 ,反映土粒大小的均匀程度,C u 越大表示粒度分布范围越大,土粒越不均 匀,其级配越 好。 曲率系数:C c =d 302/(d 60*d 10),反映累计曲线的整体形状, C c 越大,表示曲线向左凸,粗粒越多。 (d60为小于某粒径的土重累计百分量为 60%,d30 、d11分别为限制粒径、中值粒径、有效 粒径) ① 对于级配连续的土: Cu>5,级配良好;Cu<5级配不良。 ② 对于级配不连续的土,级配曲线上呈台阶状,采用单一指标 Cu 难以全面有效地判断 土级配好坏,需同时满足 Cu>5和Cc=1~3两个条件时,才为级配良好,反之则级配不良。 6. 结合水一指受电分子吸引力作用吸附于土粒表面的土中水。 这种电分子吸引力高达几千到几万个大 气压,使水分子和土粒表面牢固地粘结在一起。结合水分为强结合水和弱结合水两种。 强结合水:紧靠于土颗粒的表面,受电场作用很大,无安全不能移动,表现出固态特性 弱结合水:强结合水外,电场作用范围内的水, 是一种粘质水膜,受力时可以从水膜厚处向薄处移 动,也可因电场引力从一个土粒周围转移到另一个土粒周围,担在重力作用下不会发生移动。 毛细水:受到水与空气交界面处表面张力的作用 ,存在于地下水位以上透水层中的自由水。 毛细现象:指土中水在表面张力作用下,沿细的孔隙向上及其它方向移动的现象。 重力水:地下水面以下,土颗粒电分子引力范围以外的水 ,仅受重力作用.传递静水压力产生浮托力. 7. 土的结构:指土粒单元的大小、形状、相互排列及其联结关系等因素形成的综合特征。土的结构和 构造对土的性质有很大影响。 (单粒结构、蜂窝结构、絮凝结构) 土的构造:物质成分和颗粒大小等都相近的同一土层及其各土层之间的相互关系的特征称之。 理构 造、裂隙构造、分散构造) 8. 相对密实度:D r =「e 二] e m ax —e min \ d max — dmin [ d 界限含水量:粘性土由一种状态转到另外一种状态的分界含水量。 液限(? 'L ):粘性土由可塑状态转到流动状态的界限含水量。 塑限(「p ):粘性土由半固态转到可塑状态的界限含水量。 e max e (层

裂隙岩体非饱和渗流研究综述_胡云进

收稿日期:19990614 基金项目:国家自然科学基金资助项目(59879004);高等学校博士点学科专项基金资助项目(98029408);水利部水利技术开发基金资助项目(97472603).作者简介:胡云进(1974—),男,浙江东阳人,博士研究生,水力学及河流动力学专业,主要从事裂隙岩体非饱和渗流研究. 裂隙岩体非饱和渗流研究综述 胡云进,速宝玉,詹美礼 (河海大学水利水电工程学院,江苏南京210098) 摘要:综述了国内外裂隙岩体(主要是细、微裂隙岩体)非饱和渗流的研究情况.首先,评述了现有的 测定和确定单裂隙非饱和水力参数的几种方法的优缺点,为单裂隙非饱和水力参数的确定提供了 理论依据.其次,分析了目前用于求解裂隙岩体非饱和渗流的四种数学模型的优缺点,为选取合理 的数学模型用于求解具体的裂隙岩体非饱和渗流问题提供了参考依据.最后,在上述基础上提出了 一些需要进一步研究的问题. 关键词:裂隙岩体;非饱和渗流;非饱和水力参数;数学模型 中图分类号:TV139.1 文献标识码:A 文章编号:10001980(2000)01004007 由于构造、风化、卸荷等作用,天然岩体中存在着大量的裂隙.裂隙岩体中地下水位以上部分是未被水充满的非饱和带,降雨入渗和地面水体的下渗都是通过该带到达稳定地下水面的非饱和渗流过程.可以说,在自然界中裂隙岩体非饱和渗流是普遍、客观存在的.以往,由于裂隙岩体非饱和渗流的复杂性,在许多工程问题中都作了简化处理[1].近十多年来,随着西方工业发达国家核电等核工业的不断发展,大量核废料亟待深埋处理(一般埋在裂隙岩体深厚的非饱和带中),故评价核废料深埋对地下水环境的污染以及处理核废料的选址等都要求对裂隙岩体非饱和渗流作深入细致的研究[2,3,4].另外,研究降雨入渗对地面污染物的淋滤[5],石油二次开采[6]和地热能开发[7]等也涉及裂隙岩体非饱和渗流或两(多)相流问题.在国内,近年来随着孔隙介质非饱和渗流和裂隙岩体饱和渗流理论的发展,已越来越清楚地认识到雨季的岩坡滑坡、地下洞室巷道的塌方以及泄洪雾化雨导致岩质边坡的失稳等均与裂隙岩体非饱和渗流密切相关[1](即降雨入渗等会导致地下水位以上非饱和区孔隙水压力的升高,产生暂态的附加水荷载,同时降低岩体的力学强度指标). 由于上述工程应用领域的需要,国外已有不少学者相继从80年代中期开始对裂隙岩体非饱和渗流进行试验和理论研究.近年来,国内也有学者开始了这方面的研究工作.目前的工作主要有:(a )对单裂隙非饱和渗流进行试验和理论研究,主要集中在单裂隙非饱和水力参数(即毛细压力饱和度和相对渗透率(非饱和渗透率与饱和渗透率的比值)饱和度(或毛细压力)的函数关系)的测定和确定方面;(b )提出各种求解裂隙岩体非饱和渗流的数学模型并进行相应的数值分析. 1 单一裂隙非饱和渗流研究 在裂隙岩体非饱和渗流研究中,最关键的是单裂隙毛细压力饱和度和相对渗透率饱和度(或毛细压力)关系的建立.目前,建立上述关系主要有以下三种方法:(a )物模试验法,即直接通过单裂隙拟稳态驱替试验和非饱和渗流试验(准确地说是二相流试验),借用孔隙介质拟合模型拟合出经验关系式;(b )数值试验法,即通过建立单裂隙概化模型,利用数值模拟法和孔隙介质拟合模型拟合出经验关系式;(c )数学推导法,即在某些假设简化的前提下,根据裂隙开度分布推导出上述关系式. 1.1 物模试验法 天然裂隙壁面是凹凸不平的,两粗糙裂隙面间的空隙空间的开度是逐点变化的[8,9].天然裂隙可概化为第28卷第1期 2000年1月河海大学学报JOUR NAL OF HOHAI UNIVERSITY Vol .28No .1Jan .2000

相关主题
文本预览
相关文档 最新文档