当前位置:文档之家› 雅克比矩阵知识介绍

雅克比矩阵知识介绍

雅克比矩阵知识介绍
雅克比矩阵知识介绍

雅可比矩阵(Jacobi方法)

Jacobi 方法

Jacobi方法是求对称矩阵的全部特征值以及相应的特征向量的一种方法,它是基于以下两个结论

1) 任何实对称矩阵A可以通过正交相似变换成对角型,即存在正交矩阵Q,使得

Q T AQ = diag(λ

1 ,λ

2

,…,λ

n

) (3.1)

其中λ

i

(i=1,2,…,n)是A的特征值,Q中各列为相应的特征向量。

2) 在正交相似变换下,矩阵元素的平方和不变。即设A=(a

ij )

n×n

,Q交矩阵,

记B=Q T AQ=(b

ij )

n×n

, 则

Jacobi方法的基本思想是通过一次正交变换,将A中的一对非零的非对角化成零并且使得非对角元素的平方和减小。反复进行上述过程,使变换后的矩阵的非对角元素的平方和趋于零,从而使该矩阵近似为对角矩阵,得到全部特征值和特征向量。

1 矩阵的旋转变换

设A为n阶实对称矩阵,考虑矩阵

易见 V

ij

(φ)是正交矩阵, 记

注意到B=V

ij

A的第i,j行元素以及的第i,j列元素为

可得

≠0,取φ使得则有

如果a

ij

对A(1)重复上述的过程,可得A(2) ,这样继续下去, 得到一个矩阵序列{A(k) }。可以证明,虽然这种变换不一定能使矩阵中非对角元素零元素的个数单调增加,但可以保证非对角元素的平方和递减,我们以A与A(1)为例进行讨论。

设由式(3.4)

可得

这表明,在上述旋转变换下,非对角元素的平方和严格单调递减,因而由(3.2)可

知,对角元素的平方和单调增加。

2. Jacobi方法

通过一系列旋转变换将A变成A(k+1) ,求得A的全部特征值与特征向量的方法称为Jacobi方法。计算过程如下

1)令k=0, A(k) =A

2) 求整数i,j, 使得

3) 计算旋转矩阵

4) 计算A(k+1)

5) 计算

6) 若E(A(k+1))<ε, 则

为特征值,

Q T = (V(0) V(1)…V(k+1))T

的各列为相应的特

向量;否则,k+1=>k

返回2,重复上述过

程。

例5 用Jacobi方

法求矩阵

的特征值和特征向

量。

一般地,Jacobi法不能在有限步内将A化成对角阵,但有下面的定理。

定理3 设A为n阶使对称矩阵,对A用Jacobi法得到序列{A(k)}, 其中A(0) = A, 则

证明由Jacobi法计算过程

故有

(3.5)

另一方面,有计算A 的公式可以得到

于是有, 代入式(3.5)得

因为所以

https://www.doczj.com/doc/2917498274.html,/zhanshi/shuzhifenxi/shuzhifenxi/4.3/szfx043.h tm

雅可比矩阵

以m个n元函数u i=u i(x1,x2,…,x n)(i=1,2,…,m)的偏导数(j=1,2,…,n)为元素的矩阵

如果把原来的函数组看作由点x=(x1,x2,…,x n)到点u=(u1,u2,…,u m)的一个变换T,则在偏导数都连续的前提之下,u随x的变化由相应的微分方程组

来描述。这是一个关于微分的线性方程组,其系数矩阵便是雅可比矩阵(J),因而可写成矩阵形式

这隐含着(J)具有微分系数的某些性质,类似于一元函数的导数。而在m=n=1的情形,它又恰好是一个一元函数的导数;所以它也是一个一元函数的导数到m个n 元函数的一种推广。因此,(J)作为微分系数或导数的推广,有时也被当作变换T 的“导数”看待并记为T┡(x)=(J)。

变换T的进一步的数量描述需要雅可比行列式。

定义

任给一个n维向量X,其范数‖X‖是一个满足下列三个条件的实数:

(1)对于任意向量X,‖X‖≥0,且‖X‖=0óX=0;

(2)对于任意实数λ及任意向量X,‖λX‖=|λ|‖X‖;

(3)对于任意向量X和Y,‖X+Y‖≤‖X‖+‖Y‖;

对于这样的,叫雅克比矩阵定义。

雅克比矩阵证明

关于这个的一般性证明稍微复杂点,现在就给你证明为什么二维的

dx(u,v)dy(u,v)=Jdudv成立

证明:对于曲面x=x(u,v),y=y(u,v),取它的微元,即小曲边四边形ABCD,其中

A(u,v),B(u+△u,v),C(u+△u,v+△v),D(u,v+△v),那么这个曲边四边形ABCD可以近似看成是微小向量B(u+△u,v)-A(u,v)和D(u,v+△v)-A(u,v)张成的。利用中值定理可知:

(u+△u,v)-(u,v)=Mdu

(u,v+△v)-(u,v)=Ndv

这里的M,N是偏导数的形式,不好打出,你可以自己算出来,很简单的。

当变化量很小时,我们把(u+△u,v)-(u,v)近似看成dx(u,v),

(u,v+△v)-(u,v)看成dy(u,v),所以,

dx(u,v)dy(u,v)=M*Ndudv

而其中的M*N刚好就是二维Jacobi行列式的展开形式。

由此问题得证。

雅可比矩阵

在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式成为雅可比行列式。

还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个群簇,曲线可以嵌入其中。

它们全部都以数学家雅可比命名;英文雅可比量"Jacobian"可以发音为[ja ?ko bi ?n]或者[???ko bi ?n]。

雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。

雅可比矩阵定义:

雅可比矩阵定义为向量对向量的微分矩阵,定义式如下:见所附jpg 图片。

例:MATLAB中jacobian是用来计算Jacobi矩阵的函数。

syms r l f

x=r*cos(l)*cos(f);

y=r*cos(l)*sin(f);

z=r*sin(l);

J=jacobian([x;y;z],[r l f])

结果:

J = [ cos(l)*cos(f), -r*sin(l)*cos(f), -r*cos(l)*sin(f)] [ cos(l)*sin(f), -r*sin(l)*sin(f), r*cos(l)*c os(f)] [ sin(l),

r*cos(l), 0 ]

Hessian 矩阵就是一个多元实函数的二阶导数,设f=f(x1,x2..xn) 二阶导数(d^2f/d(xi)d(xj))构成矩阵,在优化分析中常用到。 Jacobi矩阵就是一个多元矢量函数的一阶导数,如f=(f1(x1,x2..xn),...,fm(x1,x2..xn)),相应矩阵元素为d(fi)/d(xj)。在稳定点附近的稳定性分析常用到它。本质上说,以上两者是相关的Jacobi可以看作是一个多元实函数的梯度(一阶导数)的导数。

在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。

还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群,曲线可以嵌入其中。

它们全部都以数学家卡尔·雅可比命名;英文雅可比量"Jacobian"可以发音为[ja

?ko bi ?n]或者[???ko bi ?n]。

雅可比矩阵

雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。

假设F:R n→R m是一个从欧式n维空间转换到欧式m维空间的函数。这个函数由m 个实函数组成: y1(x1,...,xn), ..., ym(x1,...,xn). 这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵,这就是所谓的雅可比矩阵:

此矩阵表示为:

,或者

这个矩阵的第i行是由梯度函数的转置y

(i=1,...,m)表示的

i

中的一点,F在p点可微分,那么在这一点的导数由J F(p)给出(这是如果p是R

n

求该点导数最简便的方法)。在此情况下,由

(p)描述的线性算子即接近点p的

F

F的最优线性逼近,x逼近与p

例子

由球坐标系到直角坐标系的转化由F函数给出:R× [0,π] × [0,2π] → R3

此坐标变换的雅可比矩阵是

R4的f函数:

其雅可比矩阵为:

此例子说明雅可比矩阵不一定为方矩阵。

在动力系统中

考虑形为x' = F(x)的动力系统,F : R n→ R n。如果F(x0) = 0,那么x0是一个驻点。系统接近驻点时的表现通常可以从J F(x0)的特征值来决定。

雅可比行列式

如果m = n,那么F是从n维空间到n维空间的函数,且它的雅可比矩阵是一个方块矩阵。于是我们可以取它的行列式,称为雅可比行列式。

在某个给定点的雅可比行列式提供了F在接近该点时的表现的重要信息。例如,如果连续可微函数F在p点的雅可比行列式不是零,那么它在该点附近具有反函数。这称为反函数定理。更进一步,如果p点的雅可比行列式是正数,则F在p 点的取向不变;如果是负数,则F的取向相反。而从雅可比行列式的绝对值,就可以知道函数F在p点的缩放因子;这就是为什么它出现在换元积分法中。

例子

设有函数F : R3→ R3,其分量为:

则它的雅可比行列式为:

从中我们可以看到,当x1和x2同号时,F的取向相反;该函数处处具有反函数,除了在x1 = 0和x2= 0时以外。

参看

海森矩阵

Jacobi阵和Hessian阵可谓是用途广泛。不仅是在优化问题中常用,在各种多元问题中一般都常遇到。比如在求解非线性方程组时,两者会经常被使用。关于它们的定义和用法,推荐参看李庆扬等写的《非线性方程组的数值解法》。

楼主可参看R.A.Horn的矩阵分析卷一

雅可比矩阵

雅可比矩阵定义:

雅可比矩阵定义为向量对向量的微分矩阵,定义式如下:

见所附jpg图片。

雅克比矩阵在有限单元法中指的是全局坐标对局部坐标的偏导数,我们在由节点位移求解节点应变的时候会碰到形函数对整体坐标的偏导问题,即求解B矩阵,由于形函数对整体坐标的偏导比较难求,我们可以先求形函数对局部坐标的偏导数,然后利用雅克比矩阵转化为形函数对整体坐标的偏导数。雅克比矩阵其实质和泛函求导数中泛函中的变量对自变量的导数是一样的。只不过一个是矩阵,一个数数值而已。在空间问题8节点的线性单元中,雅克比矩阵是3*3得矩阵。我们在计算过程中还经常用到雅克比行列式的值,它用来判断单元是否畸形,一般雅克比行列式为正,则说明单元形态较好,反之单元形态不好。雅克比方法是解决线性方程组的一种迭代方法,当现行方程组的阶数较高时,用直接法解方程组时可能误差较大,就要采用迭代方法。不过雅克比迭代不是一种很高效的迭代方法,高斯 -塞德尔迭代方法较其效率要高。

雅克比矩阵必然是n*n的矩阵,因为局部坐标和全局坐标之间的变量的数量永远是相同的

在一般的应用过程中,局部坐标和整体坐标线性无关且数目相等,所以雅克比矩阵是方阵,并且行列式不恒为零。但是,从纯数学的角度讲,如果允许广义坐标之间线性相关,那么雅克比矩阵可能不是方阵,即使是方阵,行列式也可能恒为零。

讨论Jacobi矩阵不能仅限于有限元。应用数学上是这样定义的:设有n个变元的m个函数yi=fi(x1,x2,......,xn) (i=1,2,......,m),

A=D(y1,...,ym)/D(x1,...xn)称为上式的Jacobi矩阵。m和n是可以不同的。其实局部坐标和全局坐标的变量的数量是可以不同的,例如三角形单元的面积坐标和四面体单元的体积坐标,因为面积坐标和体积坐标都不是完全独立的,其分量的和都是1。

在有限元中,通过变量替换,使得Jacobi矩阵成为方阵,是为了求其逆矩阵的需要。只是在有限元中是这样用的而已。

不过Jacobi矩阵J的行列式|J|何时为常数?我一直弄不清楚。书上说二维情形

下的矩形和平行四边形单元的|J|是常数,三维情形下的正六面体或平行六面体单元的|J|不是常数,请问从理论上怎么理解呢?最好不是数学推导的结果。

回楼上的兄弟:

雅克比矩阵的行列式|J|为常数,就是里头的每个元素都为常数,以二维等参单元的自然坐标和平面坐标为例,J(1,1)=∑Ni'ζ(ζ,η)Xi,只要插值函数Ni是ζ的一次函数,则不管任何点(ζ,η)上的J(1,1)都是常数。所以插值函数只要是单维线性的,雅克比矩阵的行列式就是常数。

ljz0702 2006-7-23 11:32

雅可比矩阵的作用是什么?

如题,请教雅可比矩阵和弹塑性矩阵的区别,以及在材料的本构关系中为什么有的时候用雅可比矩阵,有时用弹塑性矩阵?谢谢不吝赐教!!!

camus 2006-7-27 17:22

在等参单元中[J]反映的是整体坐标与局部坐标的转换关系。;ZeQ-odCn@

弹塑性矩阵反映的是材料的性质与弹模和泊松比有关;

在[b]计算刚度[/b]矩阵时用到了[B]T [D] [B] J 行列式的局部坐标下的积分b|H2w'K~

而弹塑性矩阵是在[b]计算应力[/b]时用到[D][e]

怎么理解海森矩阵和雅可比矩阵

首先类比一下一维。Jacobian相当于一阶导数,Hessian相当于二阶导数。一维函数的导数的motivation是很明显的。二阶导数的零点就是一阶导数的极值点。对于很多应用,我们不仅关心一阶导数的零点(也就是函数的极值点),也关心一阶导数的极值点,比如信号处理中,信号的一阶导数的极值点反映信号变化的最剧烈程度。极值点寻求在编程时不方便,不如找二阶导数的零点。

Jacobian对于标量函数f: Rn-> R1,实际是个向量,这个向量实际上就是函数的梯度gradient。gradient根据Cauchy-Swartz公式,指向的是在某处方向导数取极大值的方向。在二维图像处理中,可用gradient来检测灰度值的边缘。对于向量场F: Rn-> Rm, Jacobian的每一行实际都是一个梯度。且有 F

(X)=F(P)+J(P)(X-P)+O(||X-P||) 这个式子的每一行都是一个分量的局部线性化。

考虑一个二维的数字图像线性变换(Homography, image warping), 以有限差分代替微分,可作类似分析。

H: 像素(x,y)-->像素(u,v)

u=u(x,y) v=v(x,y)

则其Jacobian为

[ u'(x) u'(y)]

[ v'(x) v'(y)]

反映了局部图像的变形程度。

最理想的情况 u'(x)=1,v'(y)=1,u'(y)=0,v'(x)=0.说明图像维持原状。

由于 dudv=|det(Jacobian(x,y))|dxdy (此式的有效性可参考换元法)[注:]有的书上称det(Jacobian(x,y))为Jacobian.

说明面积微元改变的程度由|det(Jacobian(x,y))|决定

当|det(Jacobian(x,y))|=1时,说明面积不变,

当|det(Jacobian(x,y))|<1时,说明面积压缩,出现了像素丢失现象。

当|det(Jacobian(x,y))|>1时,说明面积扩张,需要进行像素插值。

另外,由Jacobian矩阵的特征值或奇异值,可作类似说明。可参考

Wielandt-Hoffman定理

Hessian矩阵定义在标量函数上,对于矢量函数,则成为一个rank 3的张量。

ls的解释很好 Jacobian和Hessian就好比单变量标量函数情况下的一阶导数和二阶导数能很好的概括函数的极值点和单调性

Hessian矩阵有一个特例是Fisher Information Matrix, 也叫Information Matrix,

是对对数似然函数的Hessian矩阵求期望得到的, 衡量了分布中信息量的大小, 在统计中非常有用.

雅克比矩阵(Jacobia matrix)以m个n元函数的偏导数

为元素的矩阵

如果把原来的函数组看作由点到点的一个变换T,则在偏导数都连续的前提之下,u随x的变化由相应的微分方程组来描述。这是一个关于微分的线性方程组,其系数矩阵便是雅克比矩阵(J),因而可写成矩阵形式

正交矩阵

正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。尽管我们在这里只考虑实数矩阵,这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,对于复数的矩阵这导致了归一要求。

定义定义 1

如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。)或A′A=E,则n 阶实矩阵 A称为正交矩阵,若A为正交阵,则满足以下条件:

1) A 是正交矩阵

2) AA′=E(E为单位矩阵)

3) A′是正交矩阵

4) A的各行是单位向量且两两正交

5) A的各列是单位向量且两两正交

6) (Ax,Ay)=(x,y) x,y∈R

正交矩阵通常用字母Q表示。

举例:A=[r11 r12 r13;r21 r22 r23;r31 r32 r33]

则有:r11^2+r12^2+r13^2=r21^2+r22^2+r23^2=r31^2+r32^2+r33^2=1

r11*r12+r21*r22+r31*r32=0等性质

正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵:

,如果正交矩阵的行列式为 +1,则我们称之为特殊正交矩阵:

概述

要看出与内积的联系,考虑在n维实数内积空间中的关于正交基写出的向量v。v的长度的平方是vv。如果矩阵形式为Q v的线性变换保持了向量长度,则

所以有限维线性等距同构,比如旋转、反射和它们的组合,都产生正交矩阵。反过来也成立: 正交矩阵蕴涵了正交变换。但是,线性代数包括了在既不是有限维的也不是同样维度的空间之间的正交变换,它们没有等价的正交矩阵。

有多种原由使正交矩阵对理论和实践是重要的。n×n正交矩阵形成了一个群,即指示为O(n) 的正交群,它和它的子群广泛的用在数学和物理科学中。例如,分子的点群是O(3) 的子群。因为浮点版本的正交矩阵有有利的性质,它们是字数值线性代数中很多算法比如 QR分解的关键,通过适当的规范化,离散余弦变换(用于MP3压缩)可用正交矩阵表示。

例子

下面是一些小正交矩阵的例子和可能的解释。

恒等变换。旋转 16.26°。针对x轴反射。旋转反演(rotoinversion): 轴(0,-3/5,4/5),角度90°。置换坐标轴。

基本构造

低维度

最简单的正交矩阵是 1×1 矩阵 [1] 和 [?1],它们可分别解释为恒等和实数线针对原点的反射。

如下形式的 2×2 矩阵

它的正交性要求满足三个方程

在考虑第一个方程时,不丢失一般性而设p = cos θ, q = sin θ;因此要么t = ?q, u = p要么t = q, u = ?p。我们可以解释第一种情况为旋转θ(θ = 0 是单位矩阵),第二个解释为针对在角θ/2 的直线的反射。

旋转反射在 45°的反射对换x和y;它是置换矩阵,在每列和每行带有一个单一的 1(其他都是 0):

单位矩阵也是置换矩阵。

反射是它自己的逆,这蕴涵了反射矩阵是对称的(等于它的转置矩阵)也是正交的。两个旋转矩阵的积是一个旋转矩阵,两个反射矩阵的积也是旋转矩阵。

更高维度

不管维度,总是可能把正交矩阵按纯旋转与否来分类,但是对于 3×3 矩阵和更高维度矩阵要比反射复杂多了。例如,

和表示通过原点的反演和关于z轴的旋转反演(逆时针旋转90°后针对x-y 平面反射,或逆时针旋转 270°后对原点反演)。

旋转也变得更加复杂;它们不再由一个角来刻画,并可能影响多于一个平面子空间。尽管经常以一个轴和角来描述 3×3 旋转矩阵,在这个维度旋转轴的存在是偶然的性质而不适用于其他维度。

但是,我们有了一般适用的基本建造板块如置换、反射、和旋转。

基本变换

最基本的置换是换位(transposition),通过交换单位矩阵的两行得到。任何n×n置换矩阵都可以构造为最多n?1 次换位的积。构造自非零向量v的Householder反射为

这里的分子是对称矩阵,而分母是v的平方量的一个数。这是在垂直于v 的超平面上的反射(取负平行于v任何向量分量)。如果v是单位向量,则Q= I?2vv就足够了。Householder 反射典型的用于同时置零一列的较低部分。任何n×n正交矩阵都可以构造为最多n次这种反射的积。

Givens旋转作用于由两个坐标轴所生成的二维(平面)子空间上,按选定角度旋转。它典型的用来置零一个单一的次对角线元素(subdiagonal entry)。任何n×n的旋转矩阵都可以构造为最多n(n?1)/2 次这种旋转的积。在 3x3 矩阵的情况下,三个这种旋转就足够了;并且通过固定这个序列,我们可以用经常叫做欧拉角的三个角来(尽管不唯一)描述所有 3×3 旋转矩阵。

雅可比旋转有同 Givens 旋转一样的形式,但是被用做相似变换,选择来置零 2×2 子矩阵的两个远离对角元素(off-diagonal entry)。

性质

矩阵性质

实数方块矩阵是正交的,当且仅当它的列形成了带有普通欧几里得点积的欧几里得空间R的正交规范基,它为真当且仅当它的行形成R的正交基。假设带有正交(非正交规范)列的矩阵叫正交矩阵可能是诱人的,但是这种矩阵没有特殊价值而没有特殊名字;他们只是MM = D,D是对角矩阵。

任何正交矩阵的行列式是 +1 或?1。这可从关于行列式的如下基本事实得出:

反过来不是真的;有 +1 行列式不保证正交性,即使带有正交列,可由下列反例证实。

对于置换矩阵,行列式是 +1 还是?1 匹配置换是偶还是奇的标志,行列式是行的交替函数。

比行列式限制更强的是正交矩阵总可以是在复数上可对角化来展示特征值的完全的集合,它们全都必须有(复数)绝对值1。

正交矩阵的逆是正交的,两个正交矩阵的积是正交的。事实上,所有n×n正交矩阵的集合满足群的所有公理。它是n(n?1)/2 维的紧致李群,叫做正交群并指示为O(n)。

行列式为 +1 的正交矩阵形成了路径连通的子群指标为 2 的O(n)正规子群,叫做旋转的特殊正交群SO(n)。商群O(n)/SO(n) 同构于O(1),带有依据行列式选择 [+1] 或 [?1] 的投影映射。带有行列式?1 的正交矩阵不包括单位矩阵,所以不形成子群而只是陪集;它也是(分离的)连通的。所以每个正交群被分为两个部分;因为投影映射分裂,O(n) 是SO(n) 与O(1)的半直积。用实用术语说,一个相当的陈述是任何正交矩阵可以通过采用一个旋转矩阵并可能取负它的一列来生成,如我们在 2×2 矩阵中看到的。如果n是奇数,则半直积实际上是直积,任何正交矩阵可以通过采用一个旋转矩阵并可能取负它的所有列来生成。

现在考虑 (n+1)×(n+1) 右底元素等于 1 的正交矩阵。最后一列(和最后一行)的余下元素必须是零,而任何两个这种矩阵的积有同样的形式。余下的矩阵是n×n正交矩阵;因此O(n) 是O(n+1) (和所有更高维群)的子群。

因为 Householder 正交矩阵形式的基本反射可把任何正交矩阵简约成这种约束形式,一系列的这种反射可以把任何正交矩阵变回单位矩阵;因此正交群是反射群。最后一列可以被固定为任何单位向量,并且每种选择给出不同的O(n) 在O(n+1) 中的复本;以这种方式O(n+1) 是在单位球S与纤维O(n) 上的丛。

类似的,SO(n) 是SO(n+1) 的子群;任何特定正交矩阵可以使用类似过程通过 Givens 平面旋转来生成。丛结构持续: SO(n) ?SO(n+1) →S。一个单一旋转可以在最后一列的第一行生成一个零,而n?1 次旋转序列将置零n×n旋转矩阵的除了最后一列的最后一行的所有元素。因为平面是固定的,每次旋转只有一个自由度,就是它的角度。通过归纳,SO(n) 因此有

自由度,O(n) 也是。

置换矩阵简单一些;它们不形成李群,只是一个有限群,n! 次对称群Sn。通过同类的讨论,Sn是Sn+1 的子群。偶置换生成行列式 +1 的置换矩阵的子群,n!/2 次交错群。

规范形式

更广泛的说,任何正交矩阵的效果分离到在正交二维空间上的独立动作。就是说,如果Q是狭义正交的,则你可以找到(旋转)改变基的一个正交矩阵P,把Q带回到分块对角形式:

(n偶数), (n奇数)。这里的矩阵R1,...,Rk是 2×2 旋转矩阵,而余下的元素是零。作为例外,一个旋转块可以是对角的,±I。因此如果需要的话取负一列,并注意 2×2 反射可对角化为 +1 和?1,任何正交矩阵可变为如下形式

, 矩阵R1,…,Rk给出位于复平面中单位圆上的特征值的共轭对;所以这个分解复合确定所有带有绝对值 1 的特征值。如果n是奇数,至少有一个实数特征值 +1 或?1;对于 3×3 旋转,关联着 +1 的特征向量是旋转轴。

数值线性代数

数值分析自然的利用了正交矩阵的很多数值线性代数的性质。例如,经常需要计算空间的正交基,或基的正交变更;二者都采用了正交矩阵的形式。有行列式±1 和所有模为 1 的特征值是对数值稳定性非常有利的。一个蕴涵是条件数为 1 (这是极小的),所以在乘以正交矩阵的时候错误不放大。很多算法为此使用正交矩阵如 Householder反射和 Givens旋转。有帮助的不只是正交矩阵是可逆的,还有它的逆矩阵本质上是免花费的,只需要对换索引(下标)。

置换是很多算法成功的根本,包括有局部定支点(partial pivoting)的运算繁重的高斯消去法(这里的置换用来定支点)。但是它们很少明显作为矩阵出现;它们的特殊形式允许更有限的表示,比如n个索引的列表。

同样的,使用 Householder 和 Givens 矩阵的算法典型的使用特殊方法的乘法和存储。例如,Givens 旋转只影响它所乘的矩阵的两行,替代完全的n次的矩阵乘法为更有效的n次运算。在使用这些反射和旋转向矩阵介入零的时候,腾出的空间足够存储充足的数据来重生成这个变换。

分解

一些重要的矩阵分解(Golub & Van Loan, 1996)涉及到了正交矩阵,包括:

QR分解M = QR, Q正交,R上三角。奇异值分解M = UΣV, U和V正交,Σ非负对角。谱分解S = QΛQ, S对称,Q正交,Λ对角。极分解M= QS, Q 正交,S对称非负确定。

逆矩阵

逆矩阵:设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。则我们称B是A的逆矩阵,而A则被称为可逆矩阵。

矩阵可逆的条件A是可逆矩阵的充分必要条件是∣A∣≠0,即可逆矩阵就是非奇异矩阵。(当∣A∣=0时,A称为奇异矩阵)[1]

逆矩阵的求法:

A^(-1)=(1/|A|)×A* ,其中A^(-1)表示矩阵A的逆矩阵,其中|A|为矩阵A 的行列式,A*为矩阵A的伴随矩阵。

逆矩阵的另外一种常用的求法:

(A|E)经过初等变换得到(E|A^(-1))。

注意:初等变化只用行运算,不能用列运算。E为单位矩阵。

逆矩阵具有以下性质:

1 矩阵A可逆的充要条件是A的行列式不等于0。

2可逆矩阵一定是方阵。

3 如果矩阵A是可逆的,A的逆矩阵是唯一的。

4 可逆矩阵也被称为非奇异矩阵、满秩矩阵。

5 两个可逆矩阵的乘积依然可逆。

6 可逆矩阵的转置矩阵也可逆。

7矩阵可逆当且仅当它是满秩矩阵。

matlab中的求法:

inv(a)或a^-1。

例如:

>> a =

8 4 9

2 3 5

7 6 1

>> a^-1

ans =

0.1636 -0.3030 0.0424

-0.2000 0.3333 0.1333

0.0545 0.1212 -0.0970

>> inv(a)

ans =

0.1636 -0.3030 0.0424

-0.2000 0.3333 0.1333

0.0545 0.1212 -0.0970

以下是对MATLAB中Inv用法的解释。

原文(来自matlab help doc)

In practice, it is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of inv

arises when solving the system of linear equations A x=B .

One way to solve this is with x = inv(A)*B.A better way, from both an execution time and numerical accuracy standpoint,is to use the matrix division operator x = A\b.

实际上,很少需要矩阵逆的精确值。在解方程 A x=B的时候可以使用x = inv(A)*B,

但通常我们求解这种形式的线性方程时,不必要求出A的逆矩阵,在MATLAB 中精度更高,速度更快的方法是用左除——x = A\b。

另外,用LU分解法的速度更快,只是要多写一条LU分解语句。

速度可以通过matlab中tic和toc来估算运行的时间。

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

线性代数知识点归纳同济第五版

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1. 行列式的计算: ① (定义法)12 1212 11 12121222() 121 2 ()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.

④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==**=-1 例 计算 2-100-1 300001100-25 解 2-100 -1 30000110 -2 5 =2-1115735-13-25?=?= ⑤ 关于副对角线: (1) 2 1121 21 1211 1()n n n n n n n n n n n a O a a a a a a a O a O ---* = =-1 ⑥ 范德蒙德行列式:()1 2 2 22 12 11 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏111 例 计算行列式

⑦ a b - 型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-

第九章矩阵特征值问题的数值方法

第9章矩阵特征值问题的数值 方法 9.1 特征值与特征向量 9.2 Hermite矩阵特征值问题 9.3 Jacobi方法 9.4 对分法 9.5 乘幂法 9.6 反幂法 9.7 QR方法

9.1 特征值与特征向量设A是n阶矩阵,x是非零列向量. 如果有数λ存在,满足, (1) 那么,称x是矩阵A关于特征值λ的特征向量.

如果把(1)式右端写为 ,那么(1)式又可写为: x λ ()0 I A x λ-=||0 I A λ-=即1110 ()||...n n n f I A a a a λλλλλ--=-=++++记 它是关于参数λ的n 次多项式,称为矩阵A 的特 征多项式, 其中a 0=(-1)n |A |. (2)

显然,当λ是A的一个特征值时,它必然 是的根. 反之,如果λ是的根,那么齐次方程组(2)有非零解向量x,使(1)式 成立. 从而,λ是A的一个特征值. A的特征值也称为A的特征根 . ()0 fλ= ()0 fλ=

矩阵特征值和特征向量有如下主要性质: 定理9.1.1 n阶矩阵A是降秩矩阵的充分必要 条件是A有零特征值. 定理9.1.2 设矩阵A与矩阵B相似,那么它们 有相同的特征值. 定理9.1.3 n阶矩阵A与A T有相同的特征值. 定理9.1.4 设λ ≠λj是n阶矩阵A的两个互异特 i 征值,x、y分别是其相应的右特征向 量和左特征向量,那么,x T y=0 .

9.2 Hermite矩阵特征值问题?设A为n阶矩阵,其共轭转置矩阵记为A H. 如果A=A H,那么,A称为Hermite矩阵.

矩阵知识点归纳

矩阵知识点归纳 (一)二阶矩阵与变换 1.线性变换与二阶矩阵 在平面直角坐标系xOy 中,由? ?? ?? x ′=ax +by , y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换 称为线性变换.由四个数a ,b ,c ,d 排成的正方形数表?? ?? ?? a b c d 称为二阶矩阵,其中a ,b ,c ,d 称为矩阵的元素,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列). 2.矩阵的乘法 行矩阵[a 11a 12]与列矩阵??????b 11b 21的乘法规则为[a 11a 12]??????b 11b 21=[a 11b 11+a 12b 21],二阶矩阵???? ? ? a b c d 与列矩阵??????x y 的乘法规则为??????a b c d ??????x y =???? ?? ax +by cx +dy .矩阵乘法满足结合律, 不满足交换律和消去律. 3.几种常见的线性变换 (1)恒等变换矩阵M =???? ?? 1 00 1; (2)旋转变换R θ对应的矩阵是M =?? ?? ?? cos θ -sin θsin θ cos θ; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=??????1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=???? ?? -1 0 0 1;若关于坐标原点对称,则变 换对应矩阵M 3=???? ?? -1 0 0 -1; (4)伸压变换对应的二阶矩阵M =???? ?? k 1 00 k 2,表示将每个点的横坐标变为原来的k 1倍,纵 坐标变为原来的k 2倍,k 1,k 2均为非零常数; (5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =?????? 1 00 0; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =???? ?? 1 k 0 1, 若沿y 轴平移|kx |个单位,则对应矩阵M =???? ?? 1 0k 1.(其中k 为非零常数). 4.线性变换的基本性质 设向量α=??????x y ,规定实数λ与向量α的乘积λα=??????λx λy ;设向量α=??????x 1y 1,β=???? ?? x 2y 2,规定 向量α与β的和α+β=???? ?? x 1+x 2y 1+y 2. (1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=λM α,②M (α+β)=M α+M β. (2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).

高中数学必修和选修知识点归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

矩阵秩重要知识点总结_考研必看

一. 矩阵等价 行等价:矩阵A 经若干次初等行变换变为矩阵B 列等价:矩阵A 经若干次初等列变换变为矩阵B 矩阵等价:矩阵A 经若干次初等行变换可以变为矩阵B ,矩阵B 经若干次初等行变换可以变成矩阵A ,则成矩阵A 和B 等价 矩阵等价的充要条件 1. 存在可逆矩阵P 和Q,PAQ=B 2. R(A)=R(B) 二. 向量的线性表示 Case1:向量b r 能由向量组A 线 性表示: 充要条件: 1.线性方程组A x r =b 有解 (A)=R(A,b) Case2:向量组B 能由向量组A 线性表示 充要条件: R(A)=R(A,B) 推论 ∵R(A)=R(A,B),R(B) ≤R(A,B) ∴R(B) ≤R(A) Case3:向量组A 能由向量组B 线性表示 充要条件: R(B)=R(B,A) 推论 ∵R(B)=R(A,B),R(A) ≤R(A,B) ∴R(A) ≤R(B) Case4:向量组A 和B 能相互表示,即向量组A 和向量组B 等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n 维单位坐标向量组能由矩阵A 的列向量组线性表示 充要条件是: R(A)=R(A,E)

n=R(E)<=R(A),又R(A)>=n ,所以R(A)=n=R(A,E) 三. 线性方程组的解 1. 非齐次线性方程组 (1) R(A)=R(A,B),方程有解. (2) R(A)=R(A,B)=n ,解唯一. (3) R(A)=R(A,B)

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

矩阵的特征多项式与特征根

矩阵的特征多项式与特征根 定义3 设A =(a ij )是数域F 上的一个n 阶矩阵,行列式 nn n n n n A a a a a a a a a a A I f ---------=-=λλλλλ 212222111211 )(叫做矩阵A 的特征多项式.f A (λ)在C 内的根叫做矩阵A 的特征根. 设λ0∈C 是矩阵A 的特征根,而k 0∈C n 是一个非零的列向量,使Ax 0=λ0x 0,就是说,x 0是齐次线性方程组(λ0I-A )X=0的一个非零解.我们称x 0是矩阵A 的属于特征根λ 0的特征向量. 例6 分别在实数域R 和复数域C 内求矩阵 ????? ??-----310425 2373 的特征根和相应的特征向量. 解)1)(1(3104252 373)(2+-=???? ? ??--+--=λλλλλλA f ))()(1(i i -+-=λλλ ① 在R 内,A 只有特征根1,A 的属于特征根1的特征向量为k (2,-1,-1),k ∈R ,k≠0. ② 在C 内,A 有特征根λ1=1,λ2=i, λ3=-i.A 的属于特征根1的特征向量为k (2,-1,-1),k ∈C ,k≠0;A 的属于特征根i 的特征向量为k 1(-1+2i,1-i,2), k 1∈C, k 1≠0 A 的属于特征根-i 的特征向量为k 2(-1-2i,1+I,2), k 2∈C, k 2≠0 注意:求A 的特征根时,要考虑给定的数域,若没有指定数域,就在C 内讨论;表示属于某个特征根的特征向量(关于基础解系)组合系数要取自指定的数域F (或C ),且不全为零.

矩阵理论知识点整理资料

三、矩阵的若方标准型及分解 λ-矩阵及其标准型定理1 λ-矩阵()λ A可逆的充分必要条件是行列式()λ A是非零常数 引理2 λ-矩阵()λ A=() () n m ij? λ a的左上角元素()λ 11 a不为0,并且()λ A中至少有一个元素不 能被它整除,那么一定可以找到一个与()λ A等价的()() () n m ij? =λ λb B使得()0 b 11 ≠ λ且 ()λ 11 b的次数小于()λ 11 a的次数。 引理3 任何非零的λ-矩阵()λ A=() () n m ij? λ a等价于对角阵 () () () ? ? ? ? ? ? ? ? ? ? ? ? ... ..... d 2 1 λ λ λ r d d ()()()λ λ λ r 2 1 d ,.... d, d是首项系数为1的多项式,且 ()()1 ...... 3,2,,1 , / d 1 - = + r i d i i λ λ 引理4 等价的λ-矩阵有相同的秩和相同的各阶行列式因子 推论5 λ-矩阵的施密斯标准型是唯一的由施密斯标准型可以得到行列式因子推论6 两个λ-矩阵等价,当且仅当它们有相同的行列式因子,或者相同的不变因子 推论7 λ-矩阵()λ A可逆,当且仅当它可以表示为初等矩阵的乘积 推论8 两个()()λ λ λB A m与 矩阵 的- ?n等价当且仅当存在一个m阶的可逆λ-矩阵()λ P和 一个n阶的λ-矩阵()λ Q使得()()()()λ λ λ λQ A P = B 推论9 两个λ-矩阵等价,当且仅当它们有相同的初等因子和相同的秩

定理10 设λ-矩阵()λA 等价于对角型λ-矩阵()() ()()?????? ?? ? ???????? ?=λλλλn h h . . . ..21h B ,若将()λB 的次数大于1的对角线元素分解为不同的一次因式的方幂的乘积,则所有这些一次因式的方幂(相同 的按照重复的次数计算)就是()λA 的全部初等因子。 行列式因子 不变因子 初等因子 初等因子被不变因子唯一确定但,只要λ-矩阵()λA 化为对角阵,再将次数大于等于1的对角线元素分解为不同的一次方幂的乘积,则 所有这些一次因式的方幂(相同的必须重复计算)就为()λA 的全部初等因子,即不必事先知道不变因子,可以直接求得初等因子。 矩阵的若当 标准型 定理1 两个n ?m 阶数字矩阵A 和B 相似,当且仅当它们的特征矩阵B -E A -E λλ与等价 N 阶数字矩阵的特征矩阵A -E λ的秩一定是n 因此它的不变因子有n 个,且乘积是A 的特征多项式 推论3 两个同阶矩阵相似,当且仅当它们有相同的行列式因子,或相同的不变因子,或相同的初等因子。 定理4 每个n 阶复矩阵A 都与一个若当标准型矩阵相似,这个若当标准型矩阵除去其中若当块的排列次序外是被矩阵A 唯一确定的。 求解若当标准型及可逆矩阵P:根据数字矩阵写出特征矩阵,化为对角阵后,得出初等因子, 根据初等因子,写出若当标准型J,设P(X1X2X3),然后根据 J X X X X X X A PJ AP J AP P 321321-1),,(),,(,即得到===得到 P (X1X2X3)方阵 矩阵的最小 多项式 定理1 矩阵A 的最小多项式整除A 的任何零化多项式,且最小多项式唯一。 N 阶数字矩阵可以相似对角化,当且仅当最小多项式无重根。 定理2 矩阵A 的最小多项式的根一定是A 的特征值,反之,矩阵A的特征值一定是最小多项式的根。 求最小多项式:根据数字矩阵写出特征多项式()A E f -=λλ, 根据特征多项式得到最小多

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

第五章 矩阵的特征值与特征向量

第五章 矩阵的特征值与特征向量 5.1矩阵的特征值与特征向量 5.1.1矩阵的特征值与特征向量的概念 设A 是n 阶矩阵,若存在数λ及非零的n 维列向量α,使得:λαα=A (0≠α)成立,则称λ是矩阵A 的特征值,称非零向量α是矩阵A 属于特征值λ的特征向量. 5.1.2矩阵的特征值与特征向量的求法 把定义公式λαα=A 改写为()0=-αλA E ,即α是齐次方程组()0=-x A E λ的非零解.根据齐次方程组有非零解的充分条件可得:0=-A E λ. 所以可以通过0=-A E λ求出所有特征值,然后对每一个特征值i λ,分别求出齐 次方程组()0=-x A E i λ的一个基础解系,进而再求得通解. 【例5.1】求??? ? ? ?????------=324262423A 的特征值和特征向量. 解:根据()()0273 2 4 26 24 23 2 =+-=---= -λλλλλλA E ,可得71=λ,22-=λ. 当7=λ时,??? ? ? ?????? ??? ???????=-0000002124242124247A E , 所以()07=-x A E 的一个基础解系为:()T 0,2,11-=α,()T 1,0,12-=α,则相应的特征向量为2211ααk k +,其中21,k k 是任意常数且()()0,0,21≠k k . 当2-=λ时,???? ? ?????--? ??? ? ??????---=--00012014152428242 52A E ,所以()02=--x A E 的一个基础解系为()T 2,1,23=α,则相应的特征向量为33αk ,其中3k 是任意常数且

矩阵的特征值和特征向量

第五章矩阵的特征值和特征向量 来源:线性代数精品课程组作者:线性代数精品课程组 1.教学目的和要求: (1) 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量. (2) 了解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对 角矩阵. (3) 了解实对称矩阵的特征值和特征向量的性质. 2.教学重点: (1) 会求矩阵的特征值与特征向量. (2) 会将矩阵化为相似对角矩阵. 3.教学难点:将矩阵化为相似对角矩阵. 4.教学内容: 本章将介绍矩阵的特征值、特征向量及相似矩阵等概念,在此基础上讨论矩阵的对角化问题. §1矩阵的特征值和特征向量 定义1设是一个阶方阵,是一个数,如果方程 (1) 存在非零解向量,则称为的一个特征值,相应的非零解向量称为属于特征值的特 征向量. (1)式也可写成, (2) 这是个未知数个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 , (3) 即 上式是以为未知数的一元次方程,称为方阵的特征方程.其左端是的 次多项式,记作,称为方阵的特征多项式.

== = 显然,的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此,阶矩阵有个特征值. 设阶矩阵的特征值为由多项式的根与系数之间的关系,不难证明 (ⅰ) (ⅱ) 若为的一个特征值,则一定是方程的根, 因此又称特征根,若为 方程的重根,则称为的重特征根.方程的每一个非 零解向量都是相应于的特征向量,于是我们可以得到求矩阵的全部特征值和特征向量的方法如下: 第一步:计算的特征多项式; 第二步:求出特征方程的全部根,即为的全部特征值; 第三步:对于的每一个特征值,求出齐次线性方程组: 的一个基础解系,则的属于特征值的全部特征向量是 (其中是不全为零的任意实数). 例1 求的特征值和特征向量. 解的特征多项式为 =

矩阵知识点归纳讲课教案

第 i 页 共 4 页 矩阵知识点归纳 (一)二阶矩阵与变换 1.线性变换与二阶矩阵 b 称为二阶矩阵,其中 a , b , c , d d 称为矩阵的元素,矩阵通常用大写字母 A , B , C ,…或(a ij )表示(其中i , j 分别为元素a ij 所在的行和列 ). 2.矩阵的乘法 b ii 行矩阵[a ii a i2]与列矩阵 b 2i a b x 与列矩阵 的乘法规则为 c d y 和消去律. 3.几种常见的线性变换 1 (1)恒等变换矩阵 M = 0 —1 0 变换对应矩阵 M 3= 0 —1 ; x 1 + x 2 向量a 与3的和a+ 3= . y 1 + y 2 (1) 设M 是一个二阶矩阵,a 3是平面上的任意两个向量,入是一个任意实数,则①M (入a =?Ma ,② M ( a+ 3)= Ma + M3 . (2) 二阶矩阵对应的变换 (线性变换 )把平面上的直线变成直线 (或一点 ). 在平面直角坐标系 xOy 中,由 x '= ax + by , y '= cx + dy ,(其中 a , b , c , d 是常数 )构成的变换称 a 为线性变换.由四个数 a , b , c , d 排成的正方形数表 c 的乘法规则为 [a 11a 12] b 11 =[a ii b ii + a i2b 2i ],二阶矩阵 b 21 ax +by .矩阵乘法满足结合律,不满足交换律 cx +dy (2)旋转变换R 0对应的矩阵是 cos 0 —sin 0 sin 0 (3)反射变换要看关于哪条直线对称.例如若关于 i 0 ;若关于 y 轴对称,则变换对应矩阵为 0 —i cos 0 M 2= x 轴对称,则变换对应矩阵为 —1 M i = 若关于坐标原点对称,则 k 1 M = 0 (4)伸压变换对应的二阶矩阵 坐标变为原来的k 2倍,k i , k 2均为非零常数; 0, k 2 表示将每个点的横坐标变为原来的 k 1 倍,纵 (5)投影变换要看投影在什么直线上,例如关于 x 轴的投影变换的矩阵为 ⑹切变变换要看沿什么方向平移,若沿 x 轴平移|ky|个单位,则对应矩阵 1 M = 0 0 ; 0 k 1 若沿y 轴平移|kx|个单位,则对应矩阵 M = 1 k 0 1 ?(其中k 为非零常数 ). 4.线性变换的基本性质 x 设向量a=,规定实数入与向量a 的乘积Aa= y 入X ;设向量 入y x 1 a= y 1 ,3= x 2 2 ,规定 y 2

矩阵特征根的有关问题

矩阵特征根的有关问题 吴晗 数学系 数学与应用数学 06180226 [摘 要] 首先给出了矩阵特征根的定义,接着介绍了矩阵特征根的有关求法,其次讨论了矩 阵特征根的性质,最后利用其求法与性质解决一些代数问题。 [关键字] 矩阵 特征根 特征向量 求法 性质 应用 矩阵,线性代数研究的基本对象。按照矩阵的观点,线性代数就是研究矩阵在各种意义下的分类问题及其标准型理论。在矩阵的有关内容之中其特征根就是一个非常重要的内容,与之相对应的就是在指定特征根下的特征向量。在多数《高等代数》教材中,特征值与特征向量的引入是为了研究线性空间中线性变换A 的属性,描述为线性空间中线性变换A 的特征值与特征向量;而在大部分《线性代数》教材中,特征值与特征向量的讨论被作为矩阵理论研究的一个重要组成,定义为n 阶矩阵A 的特征值与特征向量。 所以二者有相辅相成之意。涉及到矩阵特征根的有关问题将在如下文之中列举: 1 矩阵的特征根的定义 设() ij A a =是数域F 上的一个n 阶矩阵,行列式 ()11 12121 22212.......... ............n n A n n nn x a a a a x a a f x xI A a a x a ------=-=--- 叫做矩阵A 的特征多项式,而在复数域内的根就叫做矩阵A 的特征根。即在方程中求解出x (x 在复数域内),其中I 是n 阶单位矩阵。而在矩阵的特征根研究中,我们不只是就仅仅要知道特征根是什么,它不是一个孤立存在的知识点,往往与它紧密联系在一起的就是特征向量。就像前面所说特征值与特征向量的引入是为

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

矩阵特征值的意义

矩阵特征值的意义 数学里面的特征值和特征矩阵到底有什么用,它的物理意义在于什么?? 矩阵的特征值要想说清楚还要从线性变换入手,把一个矩阵当作一个线性变换在某一组基下的矩阵,最简单的线性变换就是数乘变换,求特征值的目的就是看看一个线性变换对一些非零向量的作用是否能够相当于一个数乘变换,特征值就是这个数乘变换的变换比,这样的一些非零向量就是特征向量,其实我们更关心的是特征向量,希望能把原先的线性空间分解成一些和特征向量相关的子空间的直和,这样我们的研究就可以分别限定在这些子空间上来进行,这和物理中在研究运动的时候将运动分解成水平方向和垂直方向的做法是一个道理! 特征值时针对方阵而言的。 两个向量只有维数相同时才能考虑相等的问题,才能有和、有差。 引入特征值与特征向量的概念 ? 引例 在一个n 输入n 输出的线性系统y=Ax 中,其中 ? 我们可发现系统A 对于某些输入x ,其输出y ? 恰巧是输入x 的 倍,即 ;对某些输入,其输出与输入就不存在这种按比例放大的关系。 ??????? ??=??????? ??=??????? ??=n n nn n n n n y y y y x x x x a a a a a a a a a A M M L L L L L L L 2121212222111211,,λx y λ=

? 例如,对系统 ,若输入 ? 则 ? ? 若输入 ,则 ? 所以,给定一个线性系统A ,到底对哪些输入,能使其输出按比例放大,放大倍数 等于多少?这显然是控制论中感兴趣的问题。 基于此给出特征值与特征向量的概念: ? 定义 设A 是一个n 阶方阵,若存在着一个数 和一个非零n 维向量x ,使得 则称 是方阵A 的特征值,非零向量x 称为A 对应于特征值 的特征向量,或简称为A 的特征向量 ???? ??=4312A ? ?? ? ??=31x x Ax y 5315155314312=???? ??=???? ??=???? ?????? ??==???? ??=52x x Ax y λ≠???? ??=???? ?????? ??==269524312λx Ax λ=λλ

矩阵秩重要知识点总结_考研必看

一.矩阵等价 行等价:矩阵A经若干次初等行变换变为矩阵B 列等价:矩阵A经若干次初等列变换变为矩阵B 矩阵等价:矩阵A经若干次初等行变换可以变为矩阵B,矩阵B经若干次初等行变换可以变成矩阵A,则成矩阵A和B等价 矩阵等价的充要条件 1.存在可逆矩阵P和Q,PAQ=B 2.R(A)=R(B) 二.向量的线性表示 Case1:向量b能由向量组A线性表示: 充要条件: 1.线性方程组A x=b有解 (A)=R(A,b) Case2:向量组B能由向量组A线性表示 充要条件: R(A)=R(A,B) 推论∵R(A)=R(A,B),R(B)≤R(A,B) ∴R(B)≤R(A) Case3:向量组A能由向量组B线性表示 充要条件: R(B)=R(B,A) 推论∵R(B)=R(A,B),R(A)≤R(A,B) ∴R(A)≤R(B) Case4:向量组A和B能相互表示,即向量组A和向量组B等价 充要条件: R(A)=R(B)=R(A,B)=R(B,A) Case5:n维单位坐标向量组能由矩阵A的列向量组线性表示 充要条件是: R(A)=R(A,E) n=R(E)<=R(A),又R(A)>=n,所以R(A)=n=R(A,E) 三.线性方程组的解 1.非齐次线性方程组 (1)R(A)=R(A,B),方程有解. (2)R(A)=R(A,B)=n,解唯一. (3)R(A)=R(A,B)

矩阵的特征根的求法及应用

矩阵的特征根的求法及应用 摘要 本文主要讨论关于矩阵特征值的求法及矩阵特征值一些常见的证明方法。对于一般矩阵,我们通常是采用求解矩阵特征多项式根的方法。 关键字 矩阵 特征值 特征多项式 1.特征值与特征向量的定义及其性质; 1 矩阵特征值与特征向量的概念及性质 1.1 矩阵特征值与特征向量的定义 设A 是n 阶方阵,如果存在数λ和n 维非零向量x ,使得x Ax λ=成立,则称λ为A 的特征值,x 为A 的对应于特征值λ的特征向量. 1.2 矩阵特征值与特征向量的性质 矩阵特征值与特征向量的性质包括: (1)若i i r A 的是λ重特征值,则i i s A 有对应特征值λ个线性无关的特征向量,其中i i r s ≤. (2)若线性无关的向量21,x x 都是矩阵A 的对应于特征值0λ的特征向量,则当21,k k 不全为零时,2211x k x k +仍是A 的对应于特征值0λ的特征向量. (3)若A n 是矩阵λλλ,,,21 的互不相同的特征值, 其对应的特征向量分别是n x x x ,,,21 ,则这组特征向量线性无关. (4)若矩阵()n n ij a A ?=的特征值分别为n λλλ,,,21 ,则 nn n a a a +++=+++ 221121λλλ,A n =λλλ 21. (5)实对称矩阵A 的特征值都是实数,且对应不同特征值的特征向量正交. (6)若i λ是实对称矩阵A 的i r 重特征值,则对应特征值i λ恰有i r 个线性无关的特征向量.

(7)设λ为矩阵A 的特征值,()x P 为多项式函数,则()λP 为矩阵多项式()A P 的特征值. 2.特征值与特征向量的常规求法; 1.一般教科书[求特征值的传统方法是令特征多项式| λE- A| = 0, 求出A 的特征值, 对于A 的任一特征值λ, 特征方程(λE- A)X= 0的所有非零解X 即为矩阵A 的属于特征值的特征向量. 两者的计算是分割的, 一个是计算行列式, 另一个是解齐次线性方程组, 且计算量都较大.下面介绍利用矩阵的初等变换求特征值与特征向量的两种方法. 1:特征方程(λE- A)X= 0进行行列式计算,求特征值与特征向量。 列1:求实数域上矩阵122212221A -????=--????--?? 的特征值与特征向量。 传统解法;解 ()()()21 221422 12232221001 1411523E A λλλλλλλλλλλλ+--+---=-+=-+-+-+-??=-=-+ ?-+?? 令()()() ()() 11i j j i i i j i i j c c r r kc r k k c kc r kr π???? ?? ?+-0E A λ-=,得121λλ==(二重),35λ=-是A 的全部特征值。 当121λλ==时,对应的特征方程; 12312312322202220 2220x x x x x x x x x --=??-++=??-++=?

相关主题
文本预览
相关文档 最新文档