当前位置:文档之家› 综合设计总结报告

综合设计总结报告

综合设计总结报告
综合设计总结报告

组合导航系统综合设计总结报告

姓名:赵斐030710518

姜峰030710514

冯博030710513

班级:0307105

日期:2010-11-17

一、引言

1.1陀螺和加表的发展概况

●陀螺仪

陀螺仪,英文名称:gyroscope 。利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪,它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。

陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。

现在的陀螺仪分为,压电陀螺仪,微机械陀螺仪,光纤陀螺仪,激光陀螺仪,都是电子式的,可以和加速度计,磁阻芯片,GPS,做成惯性导航控制系统。

●陀螺仪的基本类型:

根据框架的数目和支承的形式以及附件的性质决定陀螺仪的类型有:

三自由度陀螺仪(具有内、外两个框架,使转子自转轴具有两个转动自由度。在没有任何力矩装置时,它就是一个自由陀螺仪)。

二自由度陀螺仪(只有一个框架,使转子自转轴具有一个转动自由度)。

根据二自由度陀螺仪中所使用的反作用力矩的性质,可以把这种陀螺仪分成三种类型:

速率陀螺仪(它使用的反作力矩是弹性力矩);

积分陀螺仪(它使用的反作用力矩是阻尼力矩);

无约束陀螺(它仅有惯性反作用力矩);

现在,除了机、电框架式陀螺仪以外,还出现了某些新型陀螺仪,如静电式自由转子陀螺仪,挠性陀螺仪,激光陀螺仪等。

●加速度计

加速度计,在飞行控制系统中,加速度计是重要的动态特性校正元件。在惯性导航系统中,高精度的加速度计是最基本的敏感元件之一。不同使用场合的加速度计在性能上差异很大,高精度的惯性导航系统要求加速度计的分辨率高达

10g,但量程不大;测量飞行器过载的加速度计则可能要求有10g的量程,而精度要求不高。

分类和工作原理加速度计的类型较多:按检测质量的位移方式分类有线性加速度计(检测质量作线位移)和摆式加速度计(检测质量绕支承轴转动);按支承方式分类有宝石支承、挠性支承、气浮、液浮、磁悬浮和静电悬浮等;按测量系统的组成形式分类有开环式和闭环式;按工作原理分类有振弦式、振梁式和摆式积分陀螺加速度计等;按输入轴数目分类,有单轴、双轴和三轴加速度计;按传感元件分类,有压电式、压阻式和电位器式等。通常综合几种不同分类法的特点来命名一种加速度计。

加速度计的基本类型:

闭环液浮摆式加速度计

它的工作原理是:当仪表壳体沿输入轴作加速运动时,检测质量因惯性而绕输出轴转动,传感元件将这一转角变换为电信号,经放大后馈送到力矩器构成闭环。力矩器产生的反馈力矩与检测质量所受到的惯性力矩相平衡。输送到力矩器中的电信号(电流的大小或单位时间内脉冲数)就被用来度量加速度的大小和方向。摆组件放在一个浮子内,浮液产生的浮力能卸除浮子摆组件对宝石轴承的负载,减小支承摩擦力矩,提高仪表的精度。浮液不能起定轴作

用,因此在高精度摆式加速度计中,同时还采用磁悬浮方法把已经卸荷的浮子摆组件悬浮在中心位置上,使它与支承脱离接触,进一步消除摩擦力矩。浮液的粘性对摆组件有阻尼作用,能减小动态误差,提高抗振动和抗冲击的能力。波纹管用来补偿浮液因温度而引起的体积变化。为了使浮液的比重、粘度基本保持不变,以保证仪表的性能稳定,一般要求有严格的温控装置。

挠性摆式加速度计

采用挠性支承的摆式加速度计。摆组件用两根挠性杆与仪表壳体连接。挠性杆绕输出轴的弯曲刚度很低,而其他方向的刚度很高。它的基本工作原理与液浮摆式加速度计类似。这种系统有一高增益的伺服放大器,使摆组件始终工作在零位附近。这样挠性杆的弯曲很小,引入的弹性力矩也微小,因此仪表能达到很高的精度。这类加速度计有充油式和干式两种。充油式的内部充以高粘性液体作为阻尼液体,可改善仪表动态特性和提高抗振动、抗冲击能力。干式加速度计采用电磁阻尼或空气膜阻尼,便于小型化、降低成本和缩短启动时间,但精度比充油式低。

振弦式加速度计

由两根相同的弦丝作为支承的线性加速度计。两根弦丝在永久磁铁的气隙磁场中作等幅正弦振动。弦丝的振动频率与弦丝张力的平方根成比例。不存在加速度作用时,两根弦丝的张力相等,振动频率也相等,频率差等于零。当沿输入轴

有加速度作用时,作用在检测质量上的惯性力使一根弦丝的张力增大,振动频率升高;而另一根弦丝的张力则减小,振动频率降低。仪表中设有和频控制装置,保持两根弦丝的振动频率之和不变。这样两根弦丝的振动频率之差就与输入加速度成正比。这一差频经检测电路转换为脉冲信号,脉冲频率与加速度成正比,而脉冲总数与速度成正比,因此这种仪表也是一种积分加速度计。弦丝张力受材料特性和温度影响较大,因此需要有精密温控装置和弦丝张力调节机构。

摆式积分陀螺加速度计

利用自转轴上具有一定摆性的双自由度陀螺仪来测量加速度的仪表。陀螺转子的质心偏离内环轴,形成摆性。如果转子不转动,陀螺组件部分基本上是一个摆式加速度计。当沿输入轴(即陀螺外环轴)有加速度作用时,摆绕输出轴(即内环轴)转动,使轴上的角度传感器输出信号,经放大后馈送到外环轴力矩电机,迫使陀螺组件绕外环轴移动,在内环轴上产生一个陀螺力矩。它与惯性力矩平衡,使角度传感器保持在零位附近。陀螺组件绕外环轴转动的角速度正比于输入加速度,转动角度的大小就是输入加速度的积分,即速度值。通常在外环轴上安装一个脉冲输出装置,用以得到加速度计测量的加速度和速度信息:脉冲频率表示加速度;脉冲总数表示速度。这种加速度计靠陀螺力矩来平衡惯性力矩,它能在很大的量程内保持较高的测量精度,但结构复杂、体积较大、价格较贵。

加速度计和陀螺仪的区别:

1)加速度计用于测量加速度。借助一个三轴加速度计可以测得一个固定平台相

对地球表面的运动方向,但是一旦平台运动起来,情况就会变得复杂的多。

如果平台做自由落体,加速度计测得的加速度值为零。如果平台朝某个方向做加速度运动,各个轴向加速度值会含有重力产生的加速度值,使得无法获得真正的加速度值。例如,安装在60度横滚角飞机上的三轴加速度计会测得2G的垂直加速度值,而事实上飞机相对地区表面是60度的倾角。因此,单独使用加速度计无法使飞机保持一个固定的航向。

2)陀螺仪测量机体围绕某个轴向的旋转角速率值。使用陀螺仪测量飞机机体轴

向的旋转角速率时,如果飞机在旋转,测得的值为非零值,飞机不旋转时,测量的值为零。因此,在60度横滚角的飞机上的陀螺仪测得的横滚角速率值为零,同样在飞机做水平直线飞行时,角速率值为零。可以通过角速率值的时间积分来估计当前的横滚角度,前提是没有误差的累积。陀螺仪测量的值会随时间漂移,经过几分钟甚至几秒钟定会累积出额外的误差来,而最终会导致对飞机当前相对水平面横滚角度完全错误的认知。因此,单独使用

陀螺仪也无法保持飞机的特定航向。

3)加速度计在较长时间的测量值(确定飞机航向)是正确的,而在较短时间内

由于信号噪声的存在,而有误差。陀螺仪在较短时间内则比较准确而较长时间则会有与漂移而存有误差。因此,需要两者(相互调整)来确保航向的正确。即使使用了两者,也只可以用于测得飞机的俯仰和横滚角度。对于偏航角度,由于偏航角和重力方向正交,无法用加速度计测量得到,因此还需要采用其他设备来校准测量偏航角度的陀螺仪的漂移值。校准的设备可以使用磁罗盘计(电子磁罗盘,对磁场变化和惯性力敏感)或者GPS。

1.2G PS的发展概况

全球定位系统

全球定位系统(Global Positioning System - GPS)是美国从本世纪70年代开始研制,历时20年,耗资200亿美元,于1994年全面建成,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。经近10年我国测绘等部门的使用表明,GPS以全天候、高精度、自动化、高效益等显著特点,赢得广大测绘工作者的信赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学科,从而给测绘领域带来一场深刻的技术革命。

随着全球定位系统的不断改进,硬、软件的不断完善,应用领域正在不断地开拓,目前已遍及国民经济各种部门,并开始逐步深入人们的日常生活。

GPS的应用已十分广泛,而且越来越广泛,差不多涉及到国民经济的各个领域,尤其是近几年来其向消费市场的发展的强劲势头表时,以GPS位代表的卫星导航应用产品,由于他能很容易地提供位置、速度和时间信息,所以会很快成为现代信息社会的重要信息来源,成为信息时代的国家基础设施之一,由于他功能强大、使用方便、价格合适,所以能很好的与其他系统结合,形成大量的新应用、新产品,迅速的进入我们日常工作、学习、生活和娱乐中,它的发展具有如下特点:

GPS应用产品产业是当前国际上八大无线产业之一;

GPS也是目前世界上发展的最快的三大信息产业之一;

GPS与GSM和CDMA的结合已成为全球通信导航界的热点;

20世纪90年代是GPS大显身手、垄断全还应和形成新型国际产业的10年。21世纪头10年在以GPS为代表的卫星导航产业中仍将由美国占据主导地位。但欧洲、日本、中国和俄罗斯会在这一巨大市场中扮演重要角色。未年10年全还应卫星导航产业发展的总趋势预测如下:

卫星导航手段在多数国家和地区可能成为代替传统导航、定位和定时的唯一手段。在海陆空田四大领域中,凡是需要动态或静态定位、定姿、定时和导航信息的地方都会采用卫星导航信息。

各国卫星导航系统在民用领域的相互兼容将成为国际大趋势。陆上车辆导航将成功驱动卫星导航产业迅猛发展的强劲动力。民用的效益远比军用的大,应用面宽广得多,真正做到制造产业化和消费大众化,达到物尽其用;卫星导航技术与通信、遥感和大众消费产品的相互融合将会创造出许多新产品和新服务,开拓出一个商机无限的市场。在未来五年里,将有高达百分之八十多的车辆装上GPS 装置。

●伽利略定位系统

伽利略定位系统(Galileo Positioning System),是欧盟一个正在建造中的卫星定位系统,有“欧洲版GPS”之称,也是继美国现有的“全球定位系统”(GPS)及俄罗斯的GLONASS系统外,第三个可供民用的定位系统。伽利略系统的基本服务有导航、定位、授时;特殊服务有搜索与救援;扩展应用服务系统有在飞机导航和着陆系统中的应用、铁路安全运行调度、海上运输系统、陆地车队运输调度、精准农业。2010年1月7日,欧盟委员会称,欧盟的伽利略定位系统将从2014年起投入运营。

伽利略系统构建目的:

1、为用户提供更准确的数据

2、加强对高纬度地区的覆盖,包括挪威、瑞典

等地区。

3、减低对现有GPS系统的依赖,尤其是在战争

发生时。

伽利略定位系统的优势:

伽利略系统是世界上第一个基于民用的全球卫星导航定位系统,投入运行后,全球的用户将使用多制式的接收机,获得更多的导航定位卫星的信号,将无形中极大地提高导航定位的精度,这是“伽利略”计划给用户带来的直接好处。另外,由于全球将出现多套全球导航定位系统,从市场的发展来看,将会出现GPS 系统与“伽利略”系统竞争的局面,竞争会使用户得到更稳定的信号、更优质的服务。世界上多套全球导航定位系统并存,相互之间的制约和互补将是各国大力发展全球导航定位产业的根本保证。

伽利略计划是欧洲自主、独立的全球多模式卫星定位导航系统,提供高精度,高可靠性的定位服务,实现完全非军方控制、管理,可以进行覆盖全球的导航和定位功能。“伽利略”系统还能够和美国的GPS、俄罗斯的GLONASS系统实现多系统内的相互合作,任何用户将来都可以用一个多系统接收机采集各个系统的数据或者各系统数据的组合来实现定位导航的要求。

伽利略系统可以发送实时的高精度定位信息,这是现有的卫星导航系统所没有的,同时“伽利略”系统能够保证在许多特殊情况下提供服务,如果失败也能在几秒钟内通知客户。与美国的GPS相比,“伽利略”系统更先进,也更可靠。

●北斗卫星导航系统

北斗卫星导航系统,是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。

北斗卫星导航系统致力于向全球用户提供高质量的定位、导航和授时服务,包括开放服务和授权服务两种方式。开放服务是向全球免费提供定位、测速和授时服务,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。授权服务是为有高精度、高可靠卫星导航需求的用户,提供定位、测速、授时和通信服务以及系统完好性信息。为使北斗卫星导航系统更好地为全球服务,加强北斗卫星导航系统与其它卫星导航系统之间的兼容与互操作,促进卫星定位、导航、授时服

务的全面应用,中国愿意与其它国家合作,共同发展卫星导航事业。

北斗卫星导航系统由空间段、地面段和用户段三部分组成,空间段包括5颗静止轨道卫星和30颗非静止轨道卫星,地面段包括主控站、注入站和监测站等若干个地面站,用户段包括北斗用户终端以及与其他卫星导航系统兼容的终端。

北斗的主要用途有四个方面:

1、导航与通信的集成增强了导航能力和搜索救援

能力,可实现用户信息共享和信息交换;

2、多系统兼容服务,可以实现公开服务相互兼容,

必要时提供多系统监测信息和差分改正信息;

3、提供双向授时授权服务;

4、以双向伪距时间同步方法摆脱卫星时间同步与

精密轨道之间的依赖关系。

北斗卫星导航定位系统基本上是以满足商用

服务为主,虽然目前军事用途仍有限,不过其仍

具有雄厚的军事应用潜力,这也是大陆未来发展

重点。理由很简单,虽然大陆卫星导航定位应用

近年来发展迅速,但是绝大多数的军民应用范畴

都是建立在美国GPS之上。一旦发生战争,美国

关闭GPS或加大民用码误差,对大陆而言,后果

不堪设想,所以大陆必须末雨绸缪,发展自主的

卫星导航定位系统。

其实“北斗”卫星导航定位系统的军事功能与GPS类似,如:飞机、导弹、水面舰艇和潜艇的定位导航;弹道导弹机动发射车、自行火炮与多管火箭发射车等武器载具发射位置的快速定位,以缩短反应时间;人员搜救、水上排雷定位等。不过,因运作方式不同,“北斗”卫星导航定位系统有一些GPS没有的军事功能,其中最重要的就是部队的指挥管制。

1.3 捷联惯导的现状

惯性导航是一种高精度的自主导航系统,它依靠系统内按正交坐标系配置的陀螺仪和加速度计感知运载体的运动信息,通过计算确定载体的位置、航向、姿态,以此作为控制参数实现系统功能。惯性导航的主要器件是惯性仪表——陀螺仪和加速度计。

捷联惯导:惯性测量元件(陀螺仪和加速度计)直接装在飞行器、舰艇、导弹等需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。捷联式惯性导航系统在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏,是一种自主式导航系统。

陀螺仪其使用目的有两个,一个是用陀螺仪来建立一个参考坐标系,另一个目的是用它来测量运动物体的角速度。捷联式惯性导航系统根据所用陀螺仪的不同分为两类:一类采用速率陀螺仪,如单自由度挠性陀螺仪、激光陀螺仪(见陀

螺仪)等,它们测得的是飞行器的角速度,这种系统称为速率型捷联式惯性导航系统;另一类采用双自由度陀螺仪,如静电陀螺仪,它测得的是飞行器的角位移,这种系统称为位置型捷联式惯性导航系统。

加速度计是惯性导航系统的核心元件之—。依靠它对比力的测量,完成惯导系统确定载体的伙置、速度以及产生跟踪信号的任务。载体加速度的测量必须十分准确地进行,而且是在由陀螺稳定的参考坐标系中进行。在不需要进行高度控制的惯导系统中,只要两个加应度计就可以完成上述任务,否则是应该有三个加速度计。加速度计的基本工作原理为牛顿第二定律。

捷联式惯性导航系统与平台式惯性导航系统比较有两个主要的区别:①省去了惯性平台,陀螺仪和加速度计直接安装在飞行器上,使系统体积小、重量轻、成本低、维护方便。但陀螺仪和加速度计直接承受飞行器的振动、冲击和角运动,因而会产生附加的动态误差。这对陀螺仪和加速度计就有更高的要求。②需要用计算机对加速度计测得的飞行器加速度信号进行坐标变换,再进行导航计算得出需要的导航参数(航向、地速、航行距离和地理位置等)。这种系统需要进行坐标变换,而且必须进行实时计算,因而要求计算机具有很高的运算速度和较大的容量。

现代电子计算机技术的迅速发展为捷联式惯性导航系统创造了条件。自50年代末人们开始研究这种新型导航系统以来,它已成功地用于导引航天器再入大气层的飞行。捷联式惯性导航系统在美国“阿波罗”号飞船上作为备用系统曾发挥了作用。

捷联惯导的优缺点:

惯导系统自主性很强,它可以连续的提供包括姿态基准在内的全部导航参数,并且具有非常好的短期精度和稳定性。捷联惯导更是省去了导航平台,整个系统的体积、重量和成本大大降低;惯性仪表便于安装维护和更换;惯性仪表可以给出载体轴向的线加速度和角速度,可以提供更多的导航制导信息;惯性仪表便于余度配置,提高了系统的性能和可靠性。但是也带来了一些新问题:惯性仪表直接固连在载体上,直接承受载体的振动和冲击,工作环境恶劣;要求捷联陀螺有大的施矩速度和高性能的再平衡回路;接连陀螺没有平台,因而装机标定比较困难,从而要求捷联陀螺有更高的参数稳定性。

提高惯性器件的精度是提高惯导系统精度的重要途径,但无论怎样改进加工工艺,怎样提高测试补偿精度,纯惯导系统的误差都要随时间而增长,这意味着,无论采取什么手段,只要惯导器件误差不为零,那么惯导系统的导航误差就要随时间而积累,这是由惯性导航的原理决定的。所以陀螺仪的漂移补偿成为捷联惯导解算的一个重要环节。同时长期以来许多人致力于研究其他导航系统,如无线电导航、卫星导航、天文导航等等,这些导航系统可以解决误差积累问题,但易受干扰、自主性差。

于是,人们设想把具有不同特点的导航系统组合在一起,取长补短,用以提高导航系统的精度。实践证明,这是一种很有效的方法。现在可以利用各种现代辅助导航手段结合估算处理技术和高速计算机的进展,使组合导航系统在近年获得了广泛的应用,组合导航技术是目前导航技术发展的重要方向。

组合导航是将两种或两种以上的导航系统组合起来的导航方式。大多数组合导航系统以惯导系统为主,其原因主要是由于惯性导航能够提供比较多的导航参数。还能够提供全姿态信息参数,这是其他导航系统所不能比拟的。此外,它不

受外界干扰,隐蔽性好,这也是其独特的优点。惯导系统定位误差随时间积累的不足可以由其他导航系统补充。

二、组合导航原理

2.1 组合导航工作原理

INS/GPS组合(惯性导航系统+全球定位系统),GPS是当前应用最为广泛的卫星导航定位系统,使用方便、成本低廉,其最新的实际定位精度已经达到5米以内。但是GPS系统军事应用还存在易受干扰、动态环境中可靠性差以及数据输出频率低等不足。INS系统则是利用安装在载体上的惯性测量装置(如加速度计和陀螺仪等)敏感载体的运动,输出载体的姿态和位置信息。INS系统完全自主,保密性强,并且机动灵活,具备多功能参数输出,但是存在误差随时间迅速积累的问题,导航精度随时间而发散,不能单独长时间工作,必须不断加以校准。

●组合导航工作原理及分类:

把几种不同的单一系统组合在一起,就能利用多种信息源,互相补充,构成一种有多余度和导航准确度更高的多功能系统。新的数据处理方法,特别是卡尔曼滤波(见波形估计)方法的应用是产生组合导航的关键。卡尔曼滤波通过运动方程和测量方程,不仅考虑当前所测得的参量值,而且还充分利用过去测得的参量值,以后者为基础推测当前应有的参量值,而以前者为校正量进行修正,从而获得当前参量值的最佳估算。当有多种分系统参与组合时,就可利用状态矢量概念。通常,取误差本身作为状态矢量,不是对速度、方位本身等作出最佳估计,而是对速度误差、方位误差等作出最佳估计。把这一估算从实际测得的速度、方位中减去,就得到此时此刻的速度、方位等参量。组合导航实际上是以计算机为中心,将各个导航传感器送来的信息加以综合和最优化数学处理,然后进行综合显示。导航传感器包括各种导航设备和计算机外部设备等,而显示设备等都是输出设备。

用GPS、无线电导航、天文导航、卫星导航等系统中的一个或几个与惯导组合在一起,形成的综合导航系统。

组合导航系统大致可分为简易型和大型两类。简易型组合导航系统采用大规模集成电路、模块结构和微型计算机控制,其优点是结构紧凑、可靠、轻便、价廉。大型组合导航系统常以惯性导航为主,再由卫星导航、天文导航和各种无线电导航设备作为校准手段,也有以卫星导航为主,与奥米加、罗兰和其他高准确度近程定位系统组合的系统。大型组合导航系统大量使用微型计算机,实行多机并行工作;采用模块结构和标准接口,可以任意组合和扩展;采用最小二乘法或卡尔曼滤波技术提高系统的准确度。

民用组合导航系统常见的有伏尔导航系统、地美依导航系统、罗兰C导航系统、伏尔塔克导航系统、奥米加导航系统的组合。

●INS/GPS组合导航模型:

根据不同的应用要求,GPS定位系统与惯导系统可以有不同水平的综合,即综合的深度不同。按照综合深度,可以把综合系统大体分为如下5类:

用GPS重调惯导。这是一种最简单的综合方式,可以有两种工作方式。

a)用GPS给出的位置、速度信息直接重调惯导系统的输出;b)把惯导和

GPs输出的位置速度信息进行加权平均。

用位置、速度信息综合。用GPS和惯导输出的位置和速度信息的差值作为量测值,经综合卡尔曼滤波,估计惯导系统的误差,然后对惯导系统进行校正。

用伪距、伪距率综合。这种模式是用GPS给出的星历数据和惯导给出的位置和速度计算相应于惯导位置和速度的伪距和伪距率,并把它与GPS 测量的伪距和伪距率相比较作为量测值,通过综合卡尔曼滤波器估计惯导系统和GPS 的误差量,然后对两个系统进行开环或反馈校正。

用惯性速度信息辅助GPS接收机环路。这样可以有效地提高环路的等效带宽,提高接收机的抗干扰性,减小动态误差,提高GPS定位系统的跟踪和捕获功能。

用惯性位置和速度信息辅助GPS导航功能。GPS接收机的导航功能有很多也采用卡尔曼滤波技术。对一般用户的GPS接收机,其导航滤波器的状态为三个位置、三个速度、三个加速度、用户时钟误差和时钟频率误差共11个,如果把GPS接收机导航滤波器的位置、速度状态看作惯导系统简化的位置、速度误差状态,则用GPS滤波器的估计值校正惯导输出的位置和速度信息,即得到GPS的导航解。

工作原理流程图

1.GPS/INS组合改善了系统精

高精度的GPS信息可以用

来修正INS,控制其误差随时间

的积累。利用GPS信息可以估计

出INS的误差参数以及GPS接收

机的钟差等量。另一方面,利用

INS短时间内定位精度较高和数

据采样率高的特点,可以为GPS

提供辅助信息。利用这些辅助信

息,GPS接收机可以保持较低的

跟踪带宽,从而可以改善系统重

新俘获卫星信号的能力。

2. GPS/INS组合加强了系统的抗

干扰能力

当GPS信号受到高强度干

扰,或当卫星系统接收机出现故

障时,INS系统可以独立地进行

导航定位。当GPS信号条件显著

改善到允许跟踪时,INS系统向

GPS接收机提供有关的初始位

置、速度等信息,以供在迅速重新获取GPS 码和载波时使用。INS 系统信号也可用来辅助GPS 接收机的天线对准GPS 卫星,从而减小了干扰对系统的影响。 3. 解决周跳问题

对于GPS 载波相位测量,INS 可以很好地解决GPS 周跳和信号失锁后整周模糊度参数的重新解算,也降低了至少4颗卫星可见的要求。 4. 解决GPS 动态应用采样频率低的问题

在某些动态应用领域,高频INS 数据可以在GPS 定位结果之间高精度内插所求事件发生的位置(如航空相机曝光瞬间的位置测定)。 5. 用途更广

GPS/INS 组合系统是GPS 与INS 互补的、互相提高的集成,而不是二者的简单结合。组合系统性能更强,应用领域更广。正是由于这两套系统具有极好的互补性,不仅可以低成本提供全球精确导航,也可以满足军事应用对保密性的要求。

● 捷联惯性导航系统

捷联惯性导航系统,导航定位误差随着时间的增加,导航误差积累的速度主要由初始对准精度,使用传感器的误差以及运载体的运动轨迹动态特性。其误差会随着时间不断积累,使得导航失效。

GPS 定位是一种高精度的全球定位系统,将其作为惯导导航系统的一种辅助导航仪设备,是一种互补的选择。捷联/GPS 组合导航系统克服了各自的缺点,取长补短,使组合系统导航精度高于独立的系统工作精度。

速度组合导航,充分利用的是GPS 的速度信息,在卡尔曼滤波中忽略了

位置的信息,在误差的修正过程中,要想解算出导航的位置就得积分,所以随着时间的加长,导致由速度解算的误差修正量不准确或不稳定,误差加大,导航精度最差。

位置组合导航,充分利用的是GPS 的位置信息,在卡尔曼滤波中忽略了

速度的信息,误差修正中没有积分的环节,解算结果误差比速度组合要小,精度较高。

位置速度组合,则是充分利用GPS 的位置速度信息对捷联惯导修正,在

最优的卡尔曼滤波过程中,使得导航误差趋于零。

所以我们在理论上可知,各种导航的精度关系为:位置速度组合>位置组合>速度组合>纯惯导导航。

2.2 ING/GPS 组合模式分析

我们采用了三种组合模式:位置组合,速度组合,位置-速度组合。 对于捷联导航系统的误差;

捷联惯导姿态误差方程:n n n

in in w w φ

δφε?

=+?-

捷联惯导速度误差方程:c

n

V V V δ?

?

?

=-

(2)(2)n

n

n

n

n

n

n

ie

en

ie

en

f V V

g φδωδωωωδδ=?+?-+?-+?+

捷联惯导位置误差方程:

sec sec y

x

x

z

v

L R v v

L LtgL L

R R

h v

δδδδλδδδ?

?

?

=

=+=

组合导航误差:加上前面捷联惯导的误差和GPS 本身的位置速度误差,可与建立18维的状态方程:

181

1818181

189

()

()

()()

()

I

I

I

I X t F t X t G t W t ?

????

?

=+

333393

939333333333

33

33000000000n b

I C G I I ????????????? ? ?

?

= ? ? ???

1818

0n s

I

M

F F F F ???

?= ? ???

X=[φe φn φu δVe δVn δVu δL δλ δh εbx εby εbz εrx εry εrz Δx Δy Δz]’

W=[Wgx Wgv Wgz Wbx Wby Wbz Wax Way Waz]’

惯导系统和GPS 的位置信息分别可表示为

:

式中,表示飞机的真实位置,为GPS 接收机沿北东地方向

的位置误差。

惯导系统的速度信息及GPS 的速度信息分别可表示为

:

式中,

表示飞机的真实速度,

为GPS 接收机沿北东

地方向的速度误差。

定义观测矢量为:

其中:

GPS的测量白噪声矢量为: 各组合导航的量测方程:

位置的量测矢量:

()()()() p p p

Z t H t X t V t

=+

其中:Hp=[zeros(3,6),diag([Rm,Rn*cos(lati),1]),zeros(3,9)]

Vp=[ Ne Nn Nh]’

速度的量测矢量:

()()()() v v v

Z t H t X t V t

=+

其中:Hp=[zeros(3,3),diag([1,1,1]),zeros(3,12)]

位置组合导航解算的量测方程:

Z(t)=[Zp(t);Zv(t)]=[Hp(t);zeros(3,18)]X(t)+[Vp(t);zeros(3,1)] 位置组合导航解算的量测方程:

Z(t)=[Zp(t);Zv(t)]=[zeros(3,18);Hv(t)]X(t)+[zeros(3,1);Vv(t)]

位置速度组合导航解算的量测方程:

Z(t)=[Zp(t);Zv(t)]=[Hp(t);Hv(t)]X(t)+[Vp(t);Vv(t)]

三、组合导航综合设计

3.1IMU误差建模及补偿

●误差来源分析

元件误差(陀螺仪和加速度计的测量误差);

安装误差(惯性器件测量轴和定义轴的差别);

初始条件误差(初始姿态角、速度、位置误差);

运动干扰误差(干扰冲击和震荡等);

其它误差(如地球形状描述误差、数字误差);

这些误差表现为含静态g灵敏度偏差及漂移量,尺寸因素误差,错排误差,随机误差。组合导航的误差来源包括:平台角速度、速度、位置误差,惯性仪表误差,GPS误差。但是这些误差都作为组合系统卡尔曼滤波器的状态输入,通过卡尔曼滤波和最优算法使得误差趋于零。但是对于不同的组合,如位置组合,速度组合,他们只是利用了系统的一部分信息,卡尔曼滤波不是全阶滤波器导致误差比速度位置组合的误差大。

●误差模型建立

速度误差方程

速度误差方程可由比力方程求微分得到:

位置误差方程

可由经纬度方程直接求导得到:

数学平台误差方程

数学平台误差方程可由四元素方法得到:

3.2 GPS信息提取

●GPS25LVS接口说明:

串口2(出):相位数据输出

串口2(入):接受RTCM SC-104版本2.1的GPS差分信息。

秒脉冲:上升沿与GPS秒同步,电压升降时间300ns,阻抗250欧姆。开路输出电压为,低电压0V,高电压Vin。高电平持续时间从20ms-980ms

可调。接50欧姆负载后输出700mVp-p信号。对于在50%电压测

得的秒脉冲时间,接50欧姆负载后将比空载提前50ns。

串口1(出):异步串行数据输出。RS-232电平,提供NMEA0813版本2.0

的数据。波特率从300-19200可选,默认值为4800.

串口1(入):异步串行数据输入。RS-232电平,最大输入电压范围-25

该输入口也可以直接与有RS-232极性的标准的3到5V的CMOS

逻辑电平连接,要求低电压小于0.8V,高电压大与2.4V。最大

负载阻抗是4.7K欧姆。该口主要用于接收对OEM板的初始化信

息和配置信息。

●历书说明:

主要用到的历书信息如下:

$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>*hh< LF>

<1> UTC 时间,hhmmss(时分秒)格式

<2> 纬度ddmm.mmmm(度分)格式(前面的0 也将被传输)

<3> 纬度半球N(北半球)或S(南半球)

<4> 经度dddmm.mmmm(度分)格式(前面的0 也将被传输)

<5> 经度半球E(东经)或W(西经)

<6> GPS状态:0=未定位,1=非差分定位,2=差分定位,6=正在估算

<7> 正在使用解算位置的卫星数量(00~12)(前面的0 也将被传输)

<8> HDOP水平精度因子(0.5~99.9)

<9> 海拔高度(-9999.9~99999.9)

<10> 地球椭球面相对大地水准面的高度

<11> 差分时间(从最近一次接收到差分信号开始的秒数,如果不是差分定

位将为空)

<12> 差分站ID号0000~1023(前面的0 也将被传输,如果不是差分定

位将为空)

$PGRMV,<1>,<2>,<3>*hh

< 1> 东向速度,514.4~514.4 米/秒

<2> 北向速度,514.4~514.4 米/秒

<3> 上向速度,999.9~9999.9 米/秒

●GPS数据提取编程

function [x,y,z]=GET_GPS()

x=[];

y=[];

z=[];

i=0;

fid=fopen('sensor.dat','r'); %打开文件

while (~feof(fid))

lineget=fgetl(fid); %读取每行文件

if (strcmp(lineget(1:6),'$GPGGA')) %查找含GPGGA的行

i=i+1;

y1=lineget(15:23); %读取纬度

y2=str2double(y1); %转换成浮点数

y(i)=floor(y2/100)+mod(y2,100)/60; %转换成度

if (strcmp(lineget(25),'S'))

y(i)=-y(i); % 如果是南纬取负值end

x1=lineget(27:36); %读取经度

x2=str2double(x1); %转换成浮点数

x(i)=floor(x2/100)+mod(x2,100)/60; %转换成度

if (strcmp(lineget(38),'W'));

x(i)=-x(i); %如果是西经的话取负值end

z1=lineget(49:52); %读取海拔高度

z(i)=str2double(z1); %转换成浮点数

end

end

3.3组合导航结果分析

●导航解算流程

首先根据采样的GPS和陀螺加速表的数据加载数据,然后进行基本的数据初始化经过初始化对准、计算初始位置初始速度,然后调用模块进行姿态计算、位置速度计算,再经过卡尔曼滤波和参数修正和闭环反馈修正输出最终的导航参数。

●解算步骤:

1、平台输出载体的加速度、角速度,通过积分器将载体的加速度、角速度进行

积分,得到载体的相对惯性空间的位置和速度信息X※并输出;

2、卫星接收机输出载体的位置和速度信息X,然后转换到惯性坐标系上,并与

平台积分器输出地位置速度信息相减,得到惯性导航系统导航误差观测量Z

3、采用组合滤波方式,将2的惯性导航信息误差量Z作为卡尔曼滤波器的观测

量,输出惯性导航系统定位与测速的误差最优估计量△X。

4、用1中平台积分得到的载体位置速度信息减去惯性导航系统定位与测速的最

优估计量,得到组合轨迹Xo= X※-△X;

5、分别将组合导航的载体轨迹Xo= X※-△X和单纯的惯导得到的载体轨迹相比

较,得到组合导航误差Xi

6、比较组合导航误差Xi与纯惯导误差。在理论上,组合导航的误差比纯惯导的

误差小。

●由现有的捷联/GPS位置速度导航仿真程序,可以在上面做些改动就能实现捷联/位置组

合、速度组合等模块功能。

位置组合

主要就是在kalm_gps.m函数中,改变模块,使其的量测方程只于位置量测矩阵有关,即度量测矩阵为零。其量测矩阵为:

HG=[zeros(3,6),diag([Rm,Rn*cos(lati),1]),zeros(3,9);zeros(3,18)];

速度组合

主要就是在kalm_gps.m函数中,改变模块,使其的量测方程只于速度量测矩阵有关,即位置量测矩阵为零。其程序类似位置组合程序,只需修改:

HG=[zeros(3,18);zeros(3,3),diag([1,1,1]),zeros(3,12)];

位置速度组合

主要就是在kalm_gps.m函数中,改变模块,使其的量测方程既有速度量测矩阵又有位置量测矩阵。其程序类似位置组合程序,只需修改:

HG=[zeros(3,6),diag([Rm,Rn*cos(lati),1]),zeros(3,9)];

HG=[HG;zeros(3,3),diag([1,1,1]),zeros(3,12)];

●INS/GPS组合导航仿真程序流程图

●曲线图汇总

0200400600800100012001400160018002000

时间/s

0200400600800100012001400160018002000

时间/s

200400600800

100012001400160018002000

时间/s

航向角度误差(度)

时间/s

经度误差(米)

电子系统综合设计报告

电子系统综合设计报告 姓名: 学号: 专业: 日期:2011-4-13 南京理工大学紫金学院电光系

摘要 本次课程设计目的是设计一个简易温度控制仪,可以在四联数码管上显示测得的温度。主要分四部份电路:OP07放大电路,AD转换电路,单片机部分电路,数码管显示电路。设计文氏电桥电路,得到温度与电压的关系,通过控制电阻值改变温度。利用单片机将现在温度与预设温度进行比较,将比较结果在LED数码管上显示,同时实现现在温度与预设温度之间的切换。 关键词放大电路转换电路控制电路显示

目录 1 引言 (4) 1.1 系统设计 (4) 1.1.1 设计思路 (4) 1.1.2 总体方案设计 (4) 2 单元模块设计 (5) 2.1 各单元模块功能介绍及电路设计 (5) 2.1.1 温度传感器电路的设计 (5) 2.1.2 信号调理电路的设计 (5) 2.1.3 A/D采集电路的设计 (5) 2.1.4 单片机电路 (6) 2.1.5 键盘及显示电路的设计 (6) 2.1.6 输出控制电路的设计 (6) 2.2元器件的选择 (6) 2.3特殊器件的介绍 (7) 2.3.1 OP07A (7) 2.3.2 ADC0809 (7) 2.3.3 ULN2003 (9) 2.3.4 四联数码管(共阴) (9) 2.4各单元模块的联接 (10) 3.1开发工具及设计平台 (11) 3.1.1 Proteus特点 (11) 3.1.2 Keil特点 (11) 3.1.3 部分按键 (12) 4 系统测试 (17) 5 小结和体会 (20) 6 参考文献 (21)

1 引言 电子系统设计要求注重可行性、性能、可靠性、成本、功耗、使用方便和易维护性等。总体方案的设计与选择:由技术指标将系统功能分解为:若干子系统,形成若干单元功能模块。单元电路的设计与选择:尽量采用熟悉的电路,注重开发利用新电路、新器件。要求电路简单,工作可靠,经济实用。 1.1 系统设计 1.1.1 设计思路 本次实验基于P89L51RD2FN 的温控仪设计采用Pt100温度传感器。 1.1.2 总体方案设计 热敏电阻测温调理电路 设计要求 1.采用Pt100温度传感器,测温范围 -20℃ --100℃; 2.系统可设定温度值; 3.设定温度值与测量温度值可实时显示; 4.控温精度:±0.5℃。 设定输入 单片机 LED 显示 控制输出 双向可 控硅 继电器 控制 对象 风扇 信号调 理电路 A/D 采集 电路 加热丝 传

电力电子装置及系统设计课程设计

《电力电子装置及系统》 课程设计 题目:基于UC3842的单端反激 开关电源的设计 学院电力学院 专业电子科学与技术 姓名 学号 指导教师 完成时间2016.11.25

目录 摘要 (1) 第一章:开关电源的概述 1.1:开关电源的发展历史 (2) 1.2:开关稳压电源的优点 (2) 1.2.1:内部功率损耗小,转换效率高 (2) 1.2.2:体积小,重量轻 (3) 1.2.3:稳压范围宽 (3) 1.2.4:滤波效率大为提高,滤波电容的容量和体积大为减小 (3) 1.2.5:电路形式灵活多样,选择余地大 (3) 1.3:开关稳压电源的缺点 (3) 1.3.1:开关稳压电源存在着较为严重的开关噪声和干扰 (4) 1.3.2:电路结构复杂,不便于维修 (4) 1.3.3:成本高,可靠性低 (4) 第二章:UC3842的原理及技术参数 2.1:UC3842的工作原理 (5) 2.2:UC3842的引脚及技术参数 (6) 第三章:单端反激开关电源 3.1:单端反激开关电源的原理 (7) 3.2:反激式开关电源设计 (9) 3.2.1:输出直流电压隔离取样反馈外回路 (9) 3.2.2:初级线圈充磁峰值电流取样反馈内回路 (11) 总结 (13) 参考文献 (13)

基于UC3842的单端反激开关电源的设计 摘要 开关电源是一种利用现代电子技术,控制开关晶体管和关断的时间比率,维持稳定输出电压的一种电源,也是一种效率很高的电源变换电路,开关电源一般由脉冲宽度调制(PWM)和MOSFET构成。具有高频率,高功率密度,高可靠性等优点。 本文主要介绍一种以UC3842作为控制核心,根据UC3842的应用特点,设计了一种基于UC3842为控制芯片,实现输出电压可调的开关稳压电源电路。 关键词:开关电源脉冲宽度调制 UC3842

电子系统设计报告

课程设计实践报告 一、课程设计的性质、目的与作用 本次电子系统设计实践课程参照全国大学生电子设计模式,要求学生综合利用所学的有关知识,在教师的指导下,分析和熟悉已给题目,然后设计系统方案、画原理图及PCB、软件编程,并做出课程设计报告。因此,在设计中,要求学生应该全面考虑各个设计环节以及它们之间的相互联系,在设计思路上不框定和约束同学们的思维,同学们可以发挥自己的创造性,有所发挥,并力求设计方案凝练可行、思路独特、效果良好。 本课程设计的目的是为了让学生能够全面了解电子电路应用系统的整个设计过程,逐步掌握系统开发的以下相关技术: (1)熟悉系统设计概念; (2)利用所学数电、模拟电路知识,设计电路图; (3)利用PROTEL软件画原理图及PCB; (4)熟悉系统项目设计报告填写知识; (5)培养团队合作意识。 通过本课程设计,有助于学生更好地了解整个课程的知识体系,锻炼学生实际设计能力、分析和思考能力,使其理论与实践相结合,从而为后续课程的学习、毕业设计环节以及将来的实际工作打好坚实的基础。 二、课程设计的具体内容 电子系统设计实践课程就是锻炼学生系统设计、分析和思考能力,全面运用课程所学知识,发挥自己的创造性,全面提高系统及电路设计、原理图及PCB 绘画等硬件水平和实际应用能力,从而体现出电子系统设计的真谛。下面是各个设计阶段的具体内容。 1.系统方案认识 根据所设定的题目,能够给出系统设计方案与思路

题目:信号发生器产生电路,请设计一个能产生正弦波、方波及三角波电路,并制作原理图,然后阐述其原理。 基本原理: 系统框图如图1所示。 图1 低频信号发生器系统框图 低频信号发生器系统主要由CPU、D/A转换电路、基准电压电路、电流/电 压转换电路、按键和波形指示电路、电源等电路组成。 其工作原理为当分别按下四个按键中的任一个按键就会分别出现方波、锯齿 波、三角波、正弦波,并且有四个发光二极管分别作为不同的波形指示灯。2、各部分电路原理 (1)DAC0832芯片原理 ①管脚功能介绍(如图5所示) 图5 DAC0832管脚图 1) DI7~DI0:8位的数据输入端,DI7为最高位。

智能化电子系统设计报告

目录 1 前言(绪论) (2) 2 总体方案设计 (3) 2.1方案比较4 2.1.1方案一:长期寿命测试 (4) 2.1.2方案二:加速(短期)寿命测试 (4) 2.2方案论证4 3 单元模块设计 (5) 3.1各单元模块功能介绍及电路设计5 3.1.1热阻( Rθ ) 的测量 (5) 3.1.2结温测量 (6) 3.1.3光通量的测量 (7) 3.1.4串口电路的设计 (8) 3.1.5温度控制和报警电路设计 (9) 3.1.6 过零触发电路设计 (9) 3.2电路参数的计算及元器件10 3.2.1 LED灯常用电路参数 (10) 3.2.2电学特性 (10) 3.3特殊器件的介绍13 3.3.1 ADM3251E (13) 3.3.2 ADUC848 (14) 3.3.3 555芯片 (15) 3.4各单元模块的联接17 4 软件设计 (18) 4.1 PROTEL99 SE简介18 4.2软件设计结构及功能18 5 系统调试 (19) 6 系统功能及指标参数 (20) 6.1说明系统能实现的功能20 6.2系统指标参数测试及测试方法说明20 6.2.1失效时间和失效数的确定 (20) 6.2.2 数据处理方法 (22) 6.3系统功能及指标参数分析22 7 结论 (23) 8 总结与体会 (24) 9 参考文献 (25) 附录1:相关设计图 (26) 附录2:元器件清单表 (27) 附录3:相关设计软件 (28)

1 前言(绪论) 1986 年,在蓝宝石基底上沉积高品质GaN 晶体获得成功,并且在1993 年开发出了高亮度蓝光发光二极管( LEDs) 。至今,人们仍在对高亮度蓝光 LED 进行不断地完善。在 1996 年,开发出了采用蓝光 LED 与黄色荧光粉相结合发出白光的 LED 产品并将其商业化[1]。21 世纪照明 METI 国家(Akari) 项目是一项基于高效率白光 LED 照明技术的工程,它利用的是近紫外线 LED 与荧光粉系统相结合的方法,该项目于1998 年启动,其第一阶段的项目已于 2004 年完成。 作为电子元器件,发光二极管(Light Emitting Diode-LED)已出现40多年,但长久以来,受到发光效率和亮度的限制,仅为指示灯所采用,直到上世纪末突破了技术瓶颈,生产出高亮度高效率的LED和兰光LED,使其应用围扩展到信号灯、城市夜景工程、全彩屏等,提供了作为照明光源的可能性。随着LED应用围的加大,提高LED可靠性具有更加重要的意义。LED具有高可靠性和长寿命的优点,在实际生产研发过程中,需要通过寿命试验对LED芯片的可靠性水平进行评价,并通过质量反馈来提高LED芯片的可靠性水平,以保证LED芯片质量,为此我司在实现全色系LED产业化的同时,开发了LED芯片寿命试验的条件、方法、手段和装置等,以提高寿命试验的科学性和结果的准确性。 近些年来,LED 照明因具有许多优点,例如长寿命、低能耗、体积小等而非常有吸引力。最早 LED 只是被用来替换小型白炽灯充当指示器。在其光效有所提高后,LED 被应用于显示器中。随着其光效和总光通量的进一步改善,LED 开始被应用于日常照明领域。对于普通照明设备而言, LED 有限的光通量是一个难以解决的问题。要想获得高光通量就需要有高密度基底和大的工作电流。这将导致LED 产生热量、温度升高, 损坏LED 模块。 随着LED生产技术水平的提高,产品的寿命和可靠性大为改观,LED的理论寿命为10万小时,如果仍采用常规的正常额定应力下的寿命试验,很难对产品的寿命和可靠性做出较为客观的评价,而我们试验的主要目的是,通过寿命试验掌握LED芯片光输出衰减状况,进而推断其寿命。 本设计介绍了LED芯片寿命试验过程,提出了寿命试验条件,完善的试验方案,消除可能影响寿命试验结果准确性的因素,保证了寿命试验结果的客观性和准确性。采用科学的试验线路和连接方式,使寿命试验台不但操作简便、安全,而且试验容量大。

电子系统综合设计实验报告

电子系统综合设计实验报告 所选课题:±15V直流双路可调电源 学院:信息科学与工程学院 专业班级: 学号: 学生姓名: 指导教师: 2016年06月

摘要本次设计本来是要做±15V直流双路可调电源的,但由于买不到规格为±18V的变压器,只有±15V大小的变压器,所以最后输出结果会较原本预期要小。本设计主要采用三端稳压电路设计直流稳压电源来达到双路可调的要求。最后实物模型的输出电压在±13左右波动。 1、任务需求 ⑴有+15V和-15V两路输出,误差不超过上下1.5V。(但在本次设计中,没有所需变压器,所以只能到±12.5V) ⑵在保证正常稳压的前提下,尽量减小功效。 ⑶做出实物并且可调满足需求 2、提出方案 直流可变稳压电源一般由整流变压器,整流电路,滤波器和稳压环节组成如下图a所示。 ⑴单相桥式整流 作用之后的输出波形图如下:

⑵电容滤波 作用之后的输出波形图如下: ⑶可调式三端集成稳压器是指输出电压可以连续调节的稳压器,有输出正电压的LM317三端稳压器;有输出负电压的LM337三端稳压器。在可调式三端集成稳压器中,稳压器的三个端是指输入端、输出端和调节端。 LM317的引脚图如下图所示:(LM337的2和3引脚作用与317相反)

3、详细电路图: 因为大容量电解电容C1,C2有一定的绕制电感分布电感,易引起自激振荡,形成高频干扰,所以稳压器的输入、输出端常并入瓷介质小容量电容C5,C6,C7,C8用来抵消电感效应,抑制高频干扰。 参数计算: 滤波电容计算: 变压器的次级线圈电压为15V ,当输出电流为0.5A 时,我们可以求得电路的负载为I =U /R=34Ω时,我们可以根据滤波电容的计算公式: C=т/R,来求滤波电容的取值范围,其中在电路频率为50HZ 的情况下,T 为20ms 则电容的取值范围大于600uF ,保险起见我们可以取标准值为2200uF 额定电压为50V 的点解电容。另外,由于实际电阻或电路

电子综合课程设计报告

课程设计任务书姓名学号 班级学院 课程电子技术综合 题目简易信号发生器和简易频率计 设计任 务 1.设计一个的正弦波、方波和三角波发生器: (1) 频率可调范围:2Hz—20KHz,分为4档: 2—20Hz;20—200Hz;200Hz—2KHz;2—20KHz; (2) 幅度可调范围:0—5V; (3) 可调偏置。 2.设计一个简易数字频率计: (1) 可测量信号频率范围:1~100 KHz,显示单位为Hz; (2) 输入电压幅度VPP:100mV—10V; (3) 输入信号波形:任意周期信号; (4)显示方式: 6位十进制数显示。 时间进 度第17、18周 2010.12.27-2011.1.7 星期一、二布置设计方案、预设计及验收星期三、四、五计算机仿真及仿真结果验收星期一上午发放元器件、领取工具 星期一下午焊接 星期二、三、四安装、调试、教师验收 星期周五打印图纸、写设计报告 主要参考资料1.康华光。电子技术基础数字部分(第五版)。北京:高等教育出版社,2006; 2.康华光。电子技术基础模拟部分(第五版)。北京:高等教育出版社,2006; 3.电子技术(下)实验指导书,中原工学院电子技术课程组自编,2011;

目录 一、摘要 (2) 二、设计原理 (3) 2.1 简易信号发生器的基本原理 (3) 2.2 数字频率计的基本原理 (5) 三、方案设计 (9) 四、电路仿真 (10) 4.1 简易信号发生器电路仿真 (10) 4.2 数字频率计 (15) 五、电路焊接与调试 (17) 六、心得体会 (20) 附录一:参考文献 (22) 附录二:元器件表 (23) 附录三:原理图 (28)

电子系统设计报告

电子系统设计与实践—— 具有报时报温功能的电子钟 设计者:电气83班 08041074刘湛 08041072 李旭 内容摘要 本次设计以AT89C52芯片为核心,辅以必要的外围电路,设计了一个简易的具有报时报温功能的电子钟,它由5V直流电源供电。在硬件方面,除了CPU外,使用8个七段LED数码管来进行显示,LED采用的是动态扫描显示,利用74LS573进行数码管段驱动,利用ULN2803A进行位驱动。通过LED能够比较准确显示时、分、秒以及日期和当前室温。利用5个简单的按键分别实现对时间的调整,年月日显示的切换,温度显示切换。时钟日历来源于DS1302芯片。温度测量功能来源于DS18BU20芯片。 软件方面采用C语言编程,以完成功能实现。整个电子钟系统能完成时间的显示,调时,以及温度显示等功能。 关键词:电子系统设计AT89C52 LED数码管日历芯片DS1302 温度测量芯片DS18BU20

目录 一.实现功能、任务以及具体要求二.重要硬件简介及应用 三.功能的论证与实现 四.系统框图 五.总体设计系统电路原理图和PCB 版图 六.程序流程图 七.实验遇到的问题及改进 八.实验总结及感想 九.参考书目 十.源程序

一.实现功能、任务以及具体要求1.目的及任务: (1)通过查阅相关资料,深入了解温度测量相关知识; (2)学习动态显示方式的实现方法及原理; (3)复习“MCS-51单片机原理及C语言程序设计”,掌握其接口扩展; (4)确定具有报时报温功能的电子钟的原理图,构建硬件平台; (5)采用汇编或C语言编写应用程序并调试通过;(6)制作出样机并测试达到功能和技术指标要求;(7)写出设计报告和答辩PPT。 .2.具体工作内容: (1)技术要求: 1. 时钟日历来源于DS1302芯片。 2. 温度测量使用DS18BU20。 3. 定闹功能、蜂鸣器音提示。 4. 具有实时年月日显示和校时功能。 5. 六位数码管动态显示,可采用按键切换显示。(2)工作任务: 1.组建具有报时报温功能的电子钟的总体结构框图;

杭州电子科技大学电子系统综合设计报告

课程报告 姓名: 学号: 学院: 专业: 序号:

一、系统框图 1.1系统框图 图1 二、STM32端软件流程图及关键代码 2.1 下位机软件流程图 图2

2.2 关键代码 2.2.1单片机系统往PC机发送信息并在PC机上显示 (1)扫描法识别并发送按键信息 if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_8) == 0) //K2按下 { while(1) { if (GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_8) == 1) //K2松开 { USART1_Puts("k2\n"); //发送的字符为K2 break; } } } (2)发送按键信息函数 void USART1_Puts(u8 *str) { while(*str) { USART_SendData(USART1, *str++); while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); //等待发送完成 } } 注:此处以K2键为例,K3的设置类似于K2。当按键被按下时,PA8为 低电平,此处的if语句检测到K2被按下;然后执行while中的if语 句,此时若K2键被松开则PA8为高电平,从而检测出了K2键被按下并 松开,即可将K2的被按下的信息发送给PC机,在PC机界面上显示出 K2。 2.2.2PC机控制输出信息点亮LED灯 USART1_Gets(); //接收字符 switch(data) //设置GPIOA的0-15的端口位 { case '0': GPIO_WriteBit(GPIOA, GPIO_Pin_0,(BitAction)0);break; case '1': GPIO_WriteBit(GPIOA, GPIO_Pin_1,(BitAction)0);break; case 'K': GPIO_Write(GPIOA, 0XFF); break; case 'L': GPIO_Write(GPIOA, 0X00);break; default : break; }

综合电子系统课程设计报告模板

衡阳师范学院 物理与电子信息科学系 《综合电子系统》 课程设计报告 一号黑体,居中 简易电子称的设计 小二号粗黑体,居中 班级2011级电信1班 组长 成员三号宋体,加粗 指导教师 提交日期2014年6月10 日 《综合电子系统课程设计》成绩评定表 课程设计题目:简易电子秤

第一部分设计任务 1.1 设计题目及要求 (1) 1.2 备选方案设计与比较 (2) 1.2.1 方案一 (3) 第二部分系统硬件平台的设计 2.1 总体设计方案说明 (7) 2.2单片机最小系统 (9) 2.2.1S T C89C52单片机 (10) 2.2.2时钟电路 (11) 2.2.3复位电路 (12) 2.3功能模块二(参照2.2) (13) 2.3.1模块电路及参数计算 (14)

2.3.2工作原理和功能说明 (15) 2.3.3器件说明(含结构图、管脚图、功能表等) (16) 2.4功能模块三(实际名 (17) 2.4.1模块电路及参数计算 (18) 2.4.2工作原理和功能说明 (19) 2.4.3器件说明(含结构图、管脚图、功能表等) (20) 第三部分系统软件的设计与实现 3.1主程序流程图 (21) 3.2子程序一(实际名) (22) 3.3子程序二(实际名) (23) 3.4子程序三(实际名) (24) 3.4电路仿真(实际名) (24) 3.4.1仿真软件简介 (25) 3.4.2仿真电路图 (26) 3.4.3仿真结果(附图) (27) 第四部分安装调试与性能测量 4.1电路安装 (28) (推荐附整机数码照片) 4.2系统软、硬件调试 (29) 6.2.1调试步骤及测量数据 (30) 6.2.2故障分析及处理 (31) 4.3整机性能指标测量(附数据、波形等) (32) 课程设计总结 (33) 参考文献 报告正文的排版: 1. 纸张大小及版心:统一用A4纸(21×29.7)打印,边距设为:上 2.54cm,下2.54cm,左2.2cm,右2.2cm。行距为固定值20磅。 2. 第一级标题用三号粗黑体,(段落设置)段前1行,段后1行, 3. 第二级标题用小三黑体,靠左上下空一行 4. 第三级标题用四号黑体,靠左本身不空行 5. 正文小四号字体,行距为固定值20磅 6. 图题及图中文字用5号宋体 7. 参考文献标题用三号粗黑体,居中上下空一行,参考文献正文为五号宋体

电子系统设计报告

电子系统设计报告 设计题目:基于单片机的简易电压表设计 指导老师:///////// 专业班级:///////// 报告人姓名://///////// (签名) 学号:////////// 信息工程学院通信工程教研室

摘要 数字电压表简称DVM,它是采用了数字化测量技术,把连续模拟量(直流输入电压)转换成不连续,离散的数字形式加以现实的仪表。传统的指针是电压表功能单一,精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高,抗干扰能力强,可扩展性强,集成方便,不可与PC进行实时通信。目前由各种单片机A/D转换器构成的数字电压表,已被广泛的应用为电子及其电工的测量,工业自动化仪表,自动测试系统等智能化测量领域,显示出强大的生命力。数字电压表是诸多数字化仪表的核心与基础,电压表的数字化是将连续的模拟量如直流电压转换成不连续的离散的数字形式,并加以显示,这有别于传统的指针加刻度盘进行读数的方法,避免了读数的视差和视觉的疲劳,目前数字电压表的核心部件是A/D转换器,转换器的精度很大程度上影响着数字电压表的准确度。本设计主要分为两部分:软件仿真原理图及软件程序。而软件仿真又大体可分为单片机小系统电路、A/D转换电路、LCD显示电路,各部分电路的设计及原理将会在软件仿真设计部分详细介绍;程序的设计使用C语言编程,利用keil软件对其编译,详细的设计算法将会在程序设计部分详细介绍。 关键字:数字电压表转换A/D转换器

目录 第一章绪论 (3) 第二章设计准备知识 (3) 2.1设计目的 (3) 2.2设计要求或内容 (3) 2.3设计软件及材料 (3) 2.3.1单片机软件开发工具keil介绍 (3) 2.3.2仿真软件protues介绍 (4) 2.3.3ADC0804 介绍 (4) 2.3.4液晶显示器 (4) 第三章整体设计过程 (4) 3.1设计思路 (4) 3.2模块分析 (5) 3.2.1AT89C51单片机 (5) 3.2.2A/D转换 (6) 3.2.3显示电路 (6) 3.3程序设计 (7) 3.3.1程序设计总方案 (7) 3.3.2系统子程序设计 (7) 3.4软件调试 (8) 第四章显示结果及误差分析 (8) 4.1 显示结果 (8) 4.2误差分析 (10) 第五章出现的问题及解决 (10) 5.1问题 (10) 5.2改进 (11) 第六章设计总结 (11) 第七章附件:(程序) (12) 7.1主程序 (12) 7.2SMC1602 (13) 7.3AD转换程序 (16)

2015年电子设计大赛综合测评题课程设计解析汇报

郑州轻工业学院 电子技术课程设计 题目: 2015年电赛测评试题 姓名:王苗龙 专业班级:电信13-01 学号: 541301030134 院(系):电子信息工程学院 指导教师:曹卫锋谢泽会 完成时间: 2015年10月 29日

郑州轻工业学院 课程设计任务书 题目 2015年电子设计大赛综合测评试题 专业电信工程13-1 学号 541301030134 姓名王苗龙 主要内容、基本要求、主要参考资料等: 主要内容 1.阅读相关科技文献。 2.学习电子制图软件的使用。 3.学会整理和总结设计文档报告。 4.学习如何查找器件手册及相关参数。 技术要求 1、使用555时基电路产生频率20kHz-50kHz连续可调,输出电压幅度为1V的方波Ⅰ; 2、使用数字电路74LS74,产生频率5kHz-10kHz连续可调,输出电压幅度为1V的方波Ⅱ; 3、使用数字电路74LS74,产生频率5kHz-10kHz连续可调,输出电压幅度峰峰值为3V的三角波; 4、产生输出频率为20kHz-30kHz连续可调,输出电压幅度峰峰值为3V的正弦波Ⅰ; 5、产生输出频率为250kHz,输出电压幅度峰峰值为8V的正弦波Ⅱ;方波、三角波和正弦波的波形应无明显失真(使用示波器测量时)。频率误差不大于5%;通带内输出电压幅度峰峰值误差不大于5%。 主要参考资料 1.何小艇,电子系统设计,浙江大学出版社,2010年8月 2.姚福安,电子电路设计与实践,山东科学技术出版社,2001年10月 3.王澄非,电路与数字逻辑设计实践,东南大学出版社,1999年10月 4.李银华,电子线路设计指导,北京航空航天大学出版社,2005年6月 5.康华光,电子技术基础,高教出版社,2006年1月 完成期限: 2015年10月30日 指导教师签章: 专业负责人签章: 2015 年 10月26日

电子系统设计总结报告汇编

电子系统设计总结报告 题目:医院呼叫系统 班级: 组别:第四组 指导教师:张廷荣 设计时间

医院呼叫系统 一、引言 1. 选题意义 1.1 性价比 在此次课程设计中,选用的原件蜂鸣器、74LS147译码器、555定时器等,都是较常见和比较常用的,比较经济实惠,节约成本。因此,该方案设计的医院呼叫系统经济适用,成本合适,性价比较高。 1.2 EWB模拟仿真 EWB模拟仿真图如图1所示(见附录1)。 综上所述,呼叫器应用广泛,所需器件价格低,成本低,性价比高。经过EWB模拟仿真结果可得出,它具有可实行性。所以我们选则这个题目进行设计与制作。2. 设计目标 对于此课题,主要分为三个模块,一是采用74LS147为核心进行优先编码,设计优先编码模块,多人同时呼救时,危重病人优先被医治;二是采用555定时器与74LS192组成呼叫系统控制模块,三是呼叫提示系统,由二极管和蜂鸣器组成,病房病人呼叫即开关闭合时,二极管发光提示,蜂鸣器报警,持续5秒钟 3.小组成员及分工 二、作品说明 1.功能 此设计是用于医院病人的紧急呼叫,它的功能如下: 1.当病人按下呼救信号按钮,呼救灯亮,同时显示病人编号,蜂鸣器发出5秒呼救声,等待医护人员来护理。 2.按照病人的病情划分出优先级别,有多个病人同时呼救时,系统优先显示最高级别的呼救编号。 3.当医护人员处理完最高级别呼救后,按下清零键,系统按优先等级先后显示其它病人编号。 2. 操作说明

此设计使用的的是四节1.5V干电池,放入电池槽中即可。病人在需要帮助时,只需按下与自己床位相对应的开关,医生便可获知病人相应的床位信息 三、基本原理 1. 原理图 (1) 方案呼叫系统电路原理框图如图2所示。 图2医院呼叫系统电路的原理框图 对于此课题,主要分为三个模块,一是采用74LS147为核心进行优先编码,设计优先编码模块,多人同时呼救时,数码管按优先级显示病人病房编号,危重病人优先被医治;二是采用555定时器与74LS192组成呼叫系统控制模块,控制呼叫提示系统;三是呼叫提示系统,由二极管和蜂鸣器组成,病房病人呼叫即开关闭合时,二极管发光提示,蜂鸣器报警,持续5秒钟。 (2) 电路原理图如图3所示(见附录2) 2.工作原理 (1) 直流电源 将四节电压为1.5V的干电池串联起来,为整个电路提供电压。 (2)呼叫控制模块 利用由555定时器和外接元件R 1、R 2 、C构成多谐振荡器,长时间的振震荡 信号驱动蜂鸣器呼叫。配以相应参数的阻容器件以及计数器74LS192,可将振荡时间准确的控制在要求的8秒钟 每次呼叫时长:T=(R1+2R2)×C1×Ln2×8 =(15+2×68)×0.00001×Ln2×8= 8s 呼叫控制电路原理图如图3所示:

电路分析设计综合设计报告

NANCHANG UNIVERSITY 电路分析实验报告 (2020年6月16日) 题目:电子琴设计制作 摘要 社会不断向前发展进步,音乐也逐渐成为我们生活中至关重要的一部分。我们清楚,有一种很常见的键盘乐器——电子琴,它是电子技术和音乐相结合所形成的共同体。在各个领域中,电子琴都扮演着很重要的角色,并且它已经融入现代人们的日常生活中,渐渐成为不可替代的一部分。

利用本学期电工电子学所学的知识,我们完全可以做出简易的电子琴。利用电路知识加持软硬件实现电子琴的诸多功能,进而将电子琴微型化。本文则是利用一个神奇的电路构建了一个简易电子琴,其中的核心器件是NE555芯片,以键盘、蜂鸣器等作为外围部件。它是由很多个不同音阶的电子琴构成的,可以达到多重奏的效果。本次实验中利用到了LM324芯片,NE555芯片,运算放大器,电路串并联等电路知识,在实践中又加深了对电路知识的理解。 关键词:电子琴;555芯片;电路 Abstract As society continues to advance, music has gradually become a vital part of our lives.We know that there is a very common keyboard instrument, the electronic organ, which is a combination of electronic technology and music.In various fields, electronic organ plays a very important role, and it has been integrated into modern People's Daily life, gradually become an irreplaceable part. With the knowledge of electrical and electronics this semester, we can make a simple electronic organ.Many functions of electronic organ are realized by using the hardware and software of circuit knowledge, and then the electronic organ is miniaturized.This paper USES a magic circuit to build a simple electronic organ, the core device is NE555 chip, with keyboard, buzzer as peripheral components.It is composed of many different scales of electronic organ, can achieve the effect of multiple ensemble.In this experiment, LM324 chip,NE555 chip, operational amplifier, circuit series and parallel circuit knowledge was used, which deepened the understanding of circuit knowledge in practice. Key words: electronic organ;555 chips;circuit 目录 项目背景及目标 (1) 一、基本原理:................................................................................................................... - 2 -

电子系统综合设计报告

电子系统综合设计报告 姓名:陈丹 学号:100401202 专业:电子信息工程 日期:2013-4-2 南京理工大学紫金学院电光系

1 引言 温控仪是调控一体化智能温度控制仪表,它采用了全数字化集成设计,具有温度曲线可编程或定点恒温控制、多重PID调节、输出功率限幅曲线编程、手动/自动切换、软启动、报警开关量输出、实时数据查询、与计算机通讯等功能,将数显温度仪表和ZK晶闸管电压调整器合二为一,集温度测量、调节、驱动于一体,仪表直接输出晶闸管触发信号,可驱动各类晶闸管负载。YWK-CT温度控制器采用智能PID控制,当通过热电偶(热电阻)采集的被测温度偏离所希望的给定值时,YWK-CT温度控制器可根据测量信号与给定值的偏差进行比例(P)、积分(I)、微分(D)运算,从而控制继电器通断比率,促使测量值恢复到给定值,达到自动控制的效果;控制器还具有上、下限温度告警和继电器输出功能,性价比高,可广泛用于电力、化工、注塑、包装、食品等企业。此次设计温控仪主要想用温度传感器采集当前温度,在数码管上显示。通过这次课程设计锻炼我们的单片机应用能力以及对电子设备的实际操作能力,也可以说是为最后的毕业设计做铺垫。希望通过这次设计,能让自己对电子设计有更清晰的概念,而不是纸上谈兵。能够让所学与实际相结合。

2 系统设计 2.1总体方案设计 2.1.1总体设计流程 2.1.2温控仪原理图 开始 理解课题技术指标 子系统设计 单元电路设计 元器件选择 仿真、安装调试 正式样机设计 结束 调整 是否合格 N Y 设定输入 单片机 LED 显示 控制输出 双向可 继电器 控制 风扇 信号调 A/D 采集 加热丝 传感器

交通控制系统电子课程设计

2总体方案设计 方案一:通过单片机编写程序,控制十字路口的交通信号灯。(具体流程图见下图) 方案二:主要器件用计数器74HC192,编码器CD4532,数码管, 555定时器,锁 存器74HC373,以及逻辑门器件构建电路图。(具体流程图如下) 方案三:主要器件用计数器74HC192,编码器CD4532,数码管,运算放大器,74HC373,集成单稳态触发器74LS121,555定时器,逻辑门器件构建电路图。(具体流程图如下)

方案比较: 方案一电路图比较简单,实现功能只需要将单片机程序编写完成即可实现交通系统的控制,但是本次设计要求必须用数字电路和模拟电路的知识,所以该方案虽然简单,但是不可取。 方案二主要运用了数字电路的知识,虽然电路结构比单片机编程的电路复杂,但是该电路运用了电子技术的相关知识,构成了中规模的电路,功能的实现满足规定要求。但是有一点不足,没有充分的把数字电路和模拟电路的相关知识联系起来。 方案三电路大体上与方案二没多大区别,只是通过模拟电路所学的知识,用运算放大器产生矩形脉冲波,产生连续脉冲,代替原本的555组成的多协振荡器,此外单稳态触发器选择了555组成的单稳态触发器和集成单稳态触发器74LS121,更多的将已经学了的知识联系起来,使得电路图更加简化,内容更加丰富,与前两种方案相比较,方案三更适合本次设计,因此选择方案三作为设计方案。

3单元模块设计 各单元模块功能介绍及电路设计 1.方波产生电路 振荡周期C R T f 2 电路在迟滞比较器的基础上增加了Rf,C 组成的积分电路,通过R,C 振荡产生脉冲波。 2.计数器与数码管连接 方波发生器产生连续脉冲以后,将产生的信号输入计数器74HC194, 并且驱动数码管显示。

电子电路综合设计实验报告

电子电路综合设计实验报告 实验5自动增益控制电路的设计与实现 学号: 班序号:

一. 实验名称: 自动增益控制电路的设计与实现 二.实验摘要: 在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况; 另外,在其他应用中,也经常有多个信号频谱结构和动态围大体相似,而最大波幅却相差甚多的现象。很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。 自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小围变化的特殊功能电路,简称为AGC 电路。本实验采用短路双极晶体管直接进行小信号控制的方法,简单有效地实现AGC功能。 关键词:自动增益控制,直流耦合互补级,可变衰减,反馈电路。 三.设计任务要求 1. 基本要求: 1)设计实现一个AGC电路,设计指标以及给定条件为: 输入信号0.5?50mVrm§ 输出信号:0.5?1.5Vrms; 信号带宽:100?5KHz; 2)设计该电路的电源电路(不要际搭建),用PROTE软件绘制完整的电路原理图(SCH及印制电路板图(PCB 2. 提高要求: 1)设计一种采用其他方式的AGC电路; 2)采用麦克风作为输入,8 Q喇叭作为输出的完整音频系统。 3. 探究要求: 1)如何设计具有更宽输入电压围的AGC电路; 2)测试AGC电路中的总谐波失真(THD及如何有效的降低THD 四.设计思路和总体结构框图 AGC电路的实现有反馈控制、前馈控制和混合控制等三种,典型的反馈控制AGC由可变增益放大器(VGA以及检波整流控制组成(如图1),该实验电路中使用了一个短路双极晶体管直接进行小信号控制的方法,从而相对简单而有效实现预通道AGC的功能。如图2,可变分压器由一个固定电阻R和一个可变电阻构成,控制信号的交流振幅。可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改变Q1电阻,可从一个由电压源V REG和大阻值电阻F2组成的直流源直接向短路晶体管注入电流。为防止Rb影响电路的交流电压传输特性。R2的阻值必须远大于R1。

电子商务系统分析与设计课程设计报告

电子商务系统规划》课程设计报告 题目: 班级: 学号: 姓名: 指导教师: 成绩:

目录 一:项目背景 1.1 系统开发背景?????????????????????1 1.2 企业现行状况调查???????????????????1 1.3 企业未来核心业务描述及盈利模式分析??????????3 1.4 竞争对手分析?????????????????????3 1.5 目标系统定位与目标客户分析??????????????4 二:系统分析 2.1 系统需求分析?????????????????????4 2.2 系统用例模型?????????????????????5 三:系统设计 3.1 功能模块设计????????????????????12 3.2 系统开发环境????????????????????12 3.3 数据库及数据表的设计????????????????12 3.4 各模块代码设计???????????????????15 附:小组分工19

正美购物家电在线销售系统规划一:项目背景 1.1 系统开发背景 近年来,随着Internet 的迅速崛起,互联网已日益成为收集提供信息的最佳渠道并逐步进入传统的流通领域,互联网的跨地域性和可交互性使其在与传统媒体行业和传统贸易行业的竞争中具不可抗拒的优势,因而发展十分迅速。在电子商务在中国逐步兴起的大环境下,建立利用互联网开拓销售渠道,帮助企业及时调整商品结构,协助经销商打开货源的信息门户成为解决信息流通不畅的有效方案。毫无疑问,电子商务有利于企业转换经营机制,建立现代企业制度,提高企业的销售水平和竞争力。因此,正美购物的电子商城的建立和发展应运而生。以下是对正美购物的具体分析: 1.2 企业现行状况调查 (1 )企业核心业务描述 正美购物以小家电产品为核心产品,旗下有电饭锅、微波炉、电暖器、电风扇、吸尘器、电水壶、摄像机等各式各样的电器产品。涵盖了厨房、浴室、居室清洁、取暖类、小视听类等多种系列。内容丰富,范围广阔。 (2)企业现行的组织结构及主要协作伙伴 组织结构: 正美购物是新一代的B2C 电子商务销售商。总部设于北京,并在上海,广州、深圳等全国各地开设分店,渗透经营。

电子商务系统分析与设计课程设计实验报告

江苏科技大学电子商务系统分析与设计课程设计网上书城系统的开发 学生姓名张颖 学号0840412117 班级08404121 指导老师 成绩 经济管理学院信息管理系 2012年1月8日

目录 一.系统规划 (2) 1.1明确用户需求 (3) 1.2初步调查 (3) 1.3确定电子商务模式和模型 (4) 1.4可行性分析和可行性分析报告 (4) 二.系统分析 (5) 2.1系统调查 (5) 2.2需求规格说明书 (5) 2.2.1 引言 (5) 2.2.2项目概述 (6) 2.2.3需求规定 (6) 2.2.4环境要求 (10) 2.3组织结构分析 (10) 2.4业务流程分析 (11) 2.5数据流程分析 (13) 三.系统设计 (14) 3.1系统总体结构 (14) 3.2网络基本结构 (15) 3.3系统平台选择 (16) 3.4应用系统方案 (16) 3.4.1各功能模块简要描述 (16) 3.4.4数据库设计 (18) 3.4.5用户界面设计 (23) 3.5实施方案 (24) 3.5.1客户端要求 (24) 3.5.2服务器端要求 (24) 3.5.3系统测试 (24) 四.支付系统设计 (28) 4.1支付协议选择 (28) 4.2支付系统数据流程分析 (29) 4.3支付系统安全需求分析 (29) 4.4支付系统总体设计 (30) 4.5支付系统功能 (32) 4.6交易流程设计 (33) 4.7支付系统安全设计 (34) 五.心得体会 (34) 一.系统规划

1.1明确用户需求 随着当今社会新系统大度的提高,网络的高速发展,计算机已被广泛应用于各个领域,因而网络成为人们生活中不可或缺的一部分。互联网用户应经接受了电子商务,网购成为一种时尚潮流。 书籍交易网站就是Internet和电子商务发展的产物,近几年在我国发展迅猛,如同一些书店纷纷在各地开设分店以拉近书店与顾客间距离一样。随着科学技术得分速发展,Internet这个昔日只被少数科学家接触和使用的科研工具已经成了普通百姓都可以触及的大众型媒体传播手段。随着现金全民素质和科学技术水平的不断提高,知识更新的越来越快。人们随时都会有被淘汰的危机,为了不让社会淘汰,做到与时俱进就必须多读书不断的学习,21世纪是网络的时代、信息的时代,时间是非常宝贵的,人们由于种种原因没有时间到书店去,也不知道哪家书店有自己需要的书籍,同时那些传统书店的经营者又没什么好的方法让人们知道我这就有顾客需要的书籍,这种买卖双方之间信息交流上的阻碍成为“网上书城”网站发展的原动力。 网上书城网站的建立可以跟好的解决这方面的问题,向广大用户推出的是一种全新的网上信息服务,旨在书店与消费者之间架起了一座高速、便捷的网上信息桥梁。 1.2初步调查 截止至2010年6月底,中国网民的数量达到4.21亿人,互联网电子商务化的程度也越来越高,网络购物、网上支付和网上银行的使用率分别达到33.8%、30.5%和29.1%。而在众多的电子商务行为中,因网上购书具有较高的可信性和打折优惠,网上购书的比例逐年提高。当当网、卓越亚马逊两间网上书城更是在同类B2C网站中占据头两位。很多人看到了书这种网上销售的诸多好处:方便购买、金额小、风险小、用户容易决定;信息的完整性以及很少出现质量问题和退货现象等,无论是当当、卓越还是99读书人,网上书店的强大搜索功能帮助顾客查找图书和选择图书,与传统书店中令人无所适从的货架分类不同,网上书店通过强大的搜索引擎为用户挑书提供了最大的便利。早在2005年底,著名调查公司AC尼尔森的

相关主题
文本预览
相关文档 最新文档