当前位置:文档之家› Variation in two PPO genes associated with polyphenol

Variation in two PPO genes associated with polyphenol

Variation in two PPO genes associated with polyphenol oxidase activity in seeds of common wheat

Cheng Chang ?Hai-Ping Zhang ?Jie Xu ?

Ming-Shan You ?Bao-Yun Li ?Guang-Tian Liu

Received:28May 2006/Accepted:30September 2006/Published online:27October 2006óSpringer Science+Business Media B.V.2006

Abstract Polyphenol oxidase (PPO)is often regarded as a major factor resulting in time-dependent darkening and discoloration of Asian noodles and other wheat end products.To understand the relationship between variation of PPO genes and PPO activity of seed,the three PPO genes,which express in immature wheat grain,were investigated in 216common wheat cultivars.The results indicated that only TaPPO-A1and TaPPO-D1showed high polymorphisms

related to PPO activity.Two alleles in both TaPPO-A1(TaPPO-A1a and TaPPO-A1b )and TaPPO-D1(TaPPO-D1a and TaPPO-D1b )were detected using denaturing polyacrylamide gel electrophoresis.Wheat cultivars with TaPPO-A1b usually showed higher PPO activity than those with TaPPO-A1a .The TaPPO-D1a allele was often found in lower-PPO-activity cultivars,compared with TaPPO-D1b .The sequencing results of DNA fragments con?rmed that two introns existed in TaPPO-D1like TaPPO-A1.Some variation of introns was detected in the two alleles of TaPPO-D1.During seed development,the high-PPO-activity cultivar,Yangmai 158(TaPPO-A1b/TaPPO-D1b )showed higher tran-scription of the two PPO genes,in comparison to low-activity cultivar,Yongchuanbaimai (TaPPO-A1a /TaPPO-D1a ).These results suggested that variation in introns may in?uence the transcrip-tion of TaPPO-A1and TaPPO-D1in immature seeds of wheat.

Keywords Common wheat áPPO áVariation áChromosome location áExpression

Abbreviations PAGE Polyacrylamide gel electrophoresis QTL Quantitative trait loci

RT–PCR Reverse-transcriptase–polymerase

chain reaction

SSR Simple sequence repeat

Cheng Chang and Hai-Ping Zhang contribute equally.C.Chang áJ.Xu áM.-S.You áB.-Y.Li áG.-T.Liu

Beijing Key Laboratory of Crop Genetic

Improvement,Key Laboratory of Crop Genomics and Genetic Improvement,Ministry of Agriculture,Beijing,People’s Republic of China

C.Chang áJ.Xu áM.-S.You áB.-Y.Li (&)áG.-T.Liu

College of Agronomy and Biotechnology,China Agricultural University (CAU),2Yuanmingyuan West Road,Beijing 100094,People’s Republic of China

e-mail:libaoyun310@https://www.doczj.com/doc/2210330614.html,

C.Chang áH.-P.Zhang

Institute of Crop Sciences National Wheat

Improvement Centre,The National Key Facilities for Crop Genetic Resources and Improvement NFCRI,Chinese Academy of Agricultural Sciences (CAAS),12Zhongguancun South Street,Beijing 100081,People’s Republic of China

Euphytica (2007)154:181–193DOI 10.1007/s10681-006-9285-2

STS Sequenced tagged site

TBE Tris–boric acid–EDTA Introduction

Polyphenol oxidase(PPO, E.C. 1.14.18.1)is a copper-containing metallozyme that is ubiqui-tously distributed in higher plants(Flurkey1989; Steffens et al.1994;Lee and Whitaker1995).PPO causes a catalyzed oxidation by which endoge-nous o-mono-and-diphenols(E.C. 1.14.18.1; monophenol mono-oxygenase,tyrosinase,or cresolase activity)are changed to o-diquinones (E.C. 1.10.3.2;diphenol oxidase or catecholase activity)(Steffens et al.1994;Van Gelder et al. 1997).These quinones join secondary reactions with amines and thiol groups or polymerize nonenzymatically into a dark or brown product (Walker and Ferrar1998;Feillet et al.2000).

Many studies have pointed out that high PPO activity in kernels or?our has a close relationship with time-dependent discoloration and darkness of end products such as noodles(Kruger et al. 1992;Crosbie et al.1996;Mares and Campbell 2001),pasta(Feillet et al.2000),pan bread (McCallum and Walker1990),and steamed bread (Dexter et al.1984).No evidence proves that high PPO activity or concentration in these products will decrease their nutritional value,but it can negatively affect consumer choice(Simone et al. 2002).In eastern Asia,udon noodles,Chinese white noodles and yellow alkaline noodles with good brightness are always preferred.

Generally,PPO activity in immature seeds is high,and declines rapidly with grain maturation (Kruger1976).Predominant PPO activity or concentration exists in the wheat aleurone layer (Sullivan1946),which is mostly removed during milling.However,the residual PPO activity in ?our is suf?cient to cause discoloration of fresh noodles during food processing and storage(Rani et al.2001).Wheat cultivars with low PPO activity are desirable for consumers and?our manufacturers.Therefore,the wheat breeder aiming for improved noodle quality generally focuses on selecting and developing cultivars with low PPO activity(He et al.2004).

PPO activity in wheat grain is very different among different genotypes,and it is also in?u-enced by environment(Baik et al.1994;Park et al.1997;Ge et al.2003).Previous studies con?rmed several major quantitative trait loci (QTL)associated with PPO activity located on wheat homoeologous group2in various wheat populations(Udall1996;Jimenez and Dubcovsky 1999;Anderson and Morris2001;Demeke et al. 2001;Mares and Campbell2001;Raman et al. 2005).Other genomic regions in groups3and5 (Udall1996;Demeke et al.2001)and chromo-some6B(Demeke et al.2001)also carry QTLs effecting PPO activity.Several simple sequence repeat(SSR)markers linked to the QTL on chromosome2A,including Xgwm312,Xgwm294, Xwmc170,Xgwm312,Xgwm294b and Xwmc198, can be routinely used for marker-assisted selec-tion in wheat-breeding programs(Ge et al.2003; Raman et al.2005;Zhang et al.2005).Sun et al. (2005)identi?ed an STS marker derived from a PPO gene located on2AL(Accession No. AY596268)that was regarded as an ef?cient and reliable molecular marker for PPO activity of wheat seeds.

PPO usually occurs in gene families in higher plant species,such as tomato(Newman et al. 1993;Thipyapong et al.1997),potato(Thygesen et al.1995),and vicia faba(Cary et al.1992).In common wheat,PPO activity is not controlled by a single gene,but by multiple genes that are expressed in different tissues(Jukanti et al.2004). Demeke and Morris(2002)cloned a PPO gene from wheat using a pair primers designed from conserved copper-binding regions of other plant PPO genes.By Southern blot using a probe of the gene,cultivars with high PPO activity could be distinguished from cultivars with low activity.

Jukanti et al.(2004)cloned several PPO genes by assembling expressed sequence tags(ESTs)in wheat.On the basis of similarity of the sequences, these PPO genes grouped into two clusters.One cluster including three PPO genes(Accession Nos.AY596268,AY596269,and AY596270) expressed in developing kernels,and the other of three genes(Accession Nos.AY596266, AY596267,and AF507945*)came from tissues other than kernels.Anderson(2004)submitted an mRNA sequence of PPO to NCBI(Accession

No.AY515506),which derives from the same PPO gene as AY596270.Further studies indicated that PPO genes in the?rst cluster possibly contained allelic variation and played an impor-tant role for food biochemistry.Sun et al.(2005) found a191bp variation in the?rst intron of a PPO gene(AY596268)located on chromosome 2AL between cultivars with high PPO activity and low PPO activity.The result proved that varia-tions in PPO genes really have an effect on PPO activity in wheat grain.

The aim of this study was to research(1) variation in PPO genes associated with PPO activity in wheat seeds and(2)effects of the variations on expression of PPO genes during seed development.

Materials and methods

Plant materials

In total,216Chinese wheat cultivars and land-races were used for identi?cation of variations of PPO genes associated with PPO activity.Of them, 139Chinese landraces collected from seven provinces including Xinjiang,Jiangsu,Henan, Sichuan,Shandong,Anhui,and Shanxi,were kindly provided by Dr.Shi-He Xiao,CAAS, Beijing.The remainders were current Chinese cultivars.Twenty-two Aegilops tauschii accessions (DD genome)were kindly supplied by Dr.Li-Hui Li,CAAS(Table1).

To identify the chromosome location of PPO gene,AY515506,a set of Chinese Spring nullisomic–tetrasomic lines(except for nullisomic 5A and nullisomic7D),kindly provided by Prof. Zhi-Yong Liu,CAU,Beijing,22Ae.tauschii accessions,and two wild emmers(T.turgidum var.dicoccoides,AABB genome),IW124and IW126,were used.

Two wheat cultivars,Yangmai158(high PPO activity value,42.3)and Yongchuanbaimai(low PPO activity value,11.6),were used for analysis of expression of PPO genes in immature kernels. Fresh seeds were harvested from only the primary and secondary?orets of the centre spikelet of spikes on the main culm at10,15,20,25,and 30days after pollination(DAP),respectively. These seed samples were used for PPO activity assays and RNA isolation.

Field trials and PPO activity assay

The216Chinese wheat cultivars and landraces were grown under a randomized complete block design with two replicates at the Changping Experimental Station of China Agricultural Uni-versity(Beijing)and the experimental?eld of CAAS during2003and2004.Each plot contained two 1.5-m rows spaced20cm apart,with 60plants in each row.

PPO activity assays followed the method of Anderson and Morris(2001)and Sun et al.(2005) with slight changes.A total of15seeds of wheat, or30seeds of Ae.tauschii,were used with4.5ml of10mM L-DOPA(3,4-dihydroxyphenylalanine)

Table1.Accession name,PPO activity,and origin of Ae.tauschii

Accession name Species Origin PPO activity Accession name Species Origin PPO

activity Y1Ae.tauschii China16.7Y159Ae.tauschii China19.6

Y2Ae.tauschii China16.2Y193Ae.tauschii China21.6

Y5Ae.tauschii China17.5Y225Ae.tauschii China19.9

Y6Ae.tauschii China27.6Y229Ae.tauschii China16.6

Y7Ae.tauschii China13.9Y232Ae.tauschii China25.2

Y13Ae.tauschii China11.4Y233Ae.tauschii China24.1

Y14Ae.tauschii China12.8Y234Ae.tauschii China21.7

Y23Ae.tauschii China21.1Y240Ae.tauschii China12.6

Y88Ae.tauschii China25.8Y287Ae.tauschii China22.2

Y103Ae.tauschii China18.7Ae11Ae.tauschii China18.7

Y108Ae.tauschii China23.9Ae12Ae.tauschii China23.2

in50mM MOPS[3-(N-morpholino)propane sulfonic acid]buffer(pH6.5).The reaction was performed in25-mL centrifuge tube with constant rotation at room temperature for 30min.Absorbance(A475)was measured on a 0.3-ml incubated solution at475nm using a ZS-3 spectrophotometer(Beijing Xinfeng Machine Company,Beijing,China).

The L-DOPA solution was made fresh daily. One unit of PPO activity was de?ned as a change of1absorbance(A475nm)unit/min g·10–3in a 1-cm path at475nm.Statistical analysis was performed by SPSS software(Version11.0,SPSS, Inc.).Based on the descriptions by Sun et al. (2005),PPO activity could generally be classi?ed as low level(<25A475nm/min g·10–3),med-ium(25–35A475nm/min g10–3),and high(>35 A475nm/min g·10–3).

Extraction and assay of PPO in fresh seeds

Ten grams of fresh seeds were frozen immedi-ately in liquid nitrogen and powdered.The powdered samples were washed three times with cold acetone(–20°C)for removing pigment (chlorophyll)and phenol.After drying in cold condition,0.3g dried sample was used for PPO extraction and the activity assay,according to published methods(Anderson and Morris2001; Sun et al.2005).

Variation analysis of PPO genes

Genomic DNA was extracted from young leaves using the method described by Guidet et al.(1991). Three PPO genes with Accession Nos.AY596268, AY596269,and AY515506and expressing in wheat kernels were named TaPPO-1,TaPPO-2,and TaPPO-3,respectively.Two pairs of primers named WP3-1and WP3-2,respectively,which covered the full length of the ORF of TaPPO-3, were designed using GeneTool software(Bio-Tools,Inc.,Advanced Bioinformatics Solutions). PPO18was a STS primer that derived from mRNA sequence of TaPPO-1(Sun et al.2005).Two pairs of primers for TaPPO-2(WP2-1and WP2-2)were designed according to its mRNA sequence.All these primer pairs are shown in Table2.

All PCR reactions were conducted in T1-Thermocycler48(Biometra,Biomedizinische Analytik GmbH,Goettingen,Germany).The pro?le of PCR was as follows:denatured at 94°C for5min,followed by40cycles of denatur-izing at95°C for1min,annealing at60°C for 1min and extension at72°C for2min,and a?nal extension for10min at72°C.Each tube con-tained60ng of genomic DNA,10pmol of each primer,200l M dNTP in1·ampli?cation buffer, and1unit Pfu Taq DNA polymerase(Hualvyuan Biotechnology Company,Beijing,China)per 20l l.

PCR products were separated by denaturing PAGE according to Myers et al.(1987)with partial modi?cations.The gel consisted of10%T, 2.0%C,6M urea,and1·TBE buffer(pH8.0). The gel was run at120V using DYY-24A electrophoresis apparatus(Liu-Yi Instrumental Company,Beijing,China,https://www.doczj.com/doc/2210330614.html,)until the tracking dye reached the bottom,and then stained using silver staining(Sambrook et al. 1989).

Sequencing of PCR products

PCR fragments ampli?ed using two primer pairs,WP3-1and WP3-2,from two low-PPO-activity wheat cultivars(Yongchuanbaimai and Ningmai9312)and two high-PPO-activity culti-vars(Zhongyou9507and Yangmai158)were used for DNA sequencing.The target DNA band was detected by ultraviolet light and cut out with a sharp knife.Purifying and sequencing of products were performed by Augct Biotech-nology Company(Beijing,China,https://www.doczj.com/doc/2210330614.html,).PCR products for sequencing were from two independent samples.To avoid false priming,Pfu Taq DNA polymerase was used, and the PCR products were sequenced from both directions.The sequences were aligned using DNAMAN software(Version4.0,Lynnon Biosoft,USA).

RT–PCR of PPO genes

Total RNA was extracted from2g of fresh seeds of wheat by the method described by Chomczyn-ski and Sacchi(1987).The purity of RNA was

determined visually by gel electrophoresis and RNA concentration was estimated by measuring A260.

The primers WP3-2(for TaPPO-3)and PPO18(for TaPPO-1)were used for RT–PCR. The RT–PCR reaction mixture,made of50ng total RNA,10pmol each of primers,1·one-step RT–PCR Master mix reagent(2.5mM MgCl2,50mM KCl,10mM Tris–Cl,pH8.3, 200units M-MLV reverse transcriptase,and1 unit Taq DNA polymerase),20units RNase inhibitor(?nal volume25l L),was?rst incu-bated for30min at55°C,to allow cDNA synthesis.This was followed by10min at94°C and by40cycles of denaturizing at95°C for 1min,annealing at60°C for1min,extension at 72°C for2min,and?nal extension for10min at72°C.All the PCR reagents were supplied by Hualvyuan Biotechnology Company.Reverse transcription and RT–PCR were?nished in one step in a T1-Thermocycler48(Biometra, Biomedizinische Analytik GmbH,Goettingen, Germany).Ten microliters of PCR product was run on a1.5%agarose gel,stained with ethidi-um bromide,and visualized using UV light.Results

Variation in the three PPO genes Polymorphisms of PCR fragments were found in TaPPO-1and TaPPO-3(Figs.1and2).As shown in Fig.1,fragments ampli?ed by primer pair PPO-18of TaPPO-1showed two PAGE patterns named as a1(upper band)and a2(lower band) which corresponded to the876and685bp bands described by Sun et al.(2005).

Two patterns(b1and b2)ampli?ed by the WP3-2primer pair in TaPPO-3were also identi-?ed utilizing denaturing PAGE in some wheat cultivars(Fig.2).In Ae.tauschii,fragments ampli?ed by the WP3-2primer pair also showed polymorphisms(b1and b2patterns)(Fig.3). However,the fragment ampli?ed by WP3-1did not show variation in the gels.The fragments of TaPPO-3(b1and b2)in common wheat and Ae. tauschii were all larger than the expected size (442bp).In addition,?ve cultivars including Gaiyuerui(lane2,Fig.2),9114,ZM2851, ZM2855,and Xiaobingmai33had no fragments of TaPPO-3ampli?ed by the two primer

pairs. Fig.1Variation of TaPPO-1ampli?ed by PPO18primer

pair in common wheat.1.Nongda183(20.1*),2.Ningmai

9312(16.9),3.Zhongyou9507(46.2),4.Jing9428(18.6),

5.Yongchuanbaimai(11.6),

6.Tachun3(5

7.8),7.

Yangmai5(16.7),8.Yangmai158(42.3),9.Chuan

24146(15.8),10.8612(38.7),11.Baiyupi(22.4),12.

Yumai21(39.6),13.Sifangmai(22.8),14.Tachun2

(52.4),15.Zhoumai13(43.1),16.Jing771(25.7),17.

Yupi(24.3),18.Dahuangpi(29.3),19.Neixiangbodijiang

(21.4),20.Shan354(51.3).The alleles of TaPPO-1were

marked a1and a2.‘‘H’’and‘‘L’’mean high PPO activity

and low activity,respectively.Mh medium to high PPO

activity;M DNA size marker.*PPO activity(A475nm/

min g·10–3)

Table2.Primer pairs used in this study

Primer pairs Forward primer Reverse primer

PPO185¢-AACTGCTGGCTCTTCTTCCCA-3¢5¢-AAGAAGTTGCCCATGTCCGC-3¢WP2-15¢-ATCGACCAGAACCTCAACATCA-3¢5¢-TCCTCCGCCTCCTCCTTCTC-3¢WP2-25¢-CGACGCTGAGGGAGACGGT-3¢5¢-GTTCACCGTTCCGATTGTTCT-3¢WP3-15¢-ACTGCCAAACGCCCGACCT-3¢5¢-CCGATGAGCTTGCCGAGGAT-3¢WP3-25¢-AGGTTCTACGTCTACTTCCAC-3¢5¢-CCGCCGAGAAGAAGTTGC-3¢

We detected no variation by using WP2-1and WP2-2for gene TaPPO-2(data not shown).Chromosome location of TaPPO-3

As shown in Fig.4,the expected fragment of TaPPO-3was ampli?ed by the WP3-2primer pair in the DD genome species (Ae.tauschii acces-sions Y6and Y23)and common wheat (AABBDD)(Yangmai 5and Chinese Spring).However,wild emmers (IW124and IW126,AABB genome)gave no PCR products.These results suggested that TaPPO-3is located in the D genome.Among Chinese Spring nullisomic–tet-rasomic lines,only N2D–T2A and N2D–T2B gave no PCR fragment of TaPPO-3,indicating that TaPPO-3gene is located in chromosome 2D.The two alleles of TaPPO-1and TaPPO-3were designated as TaPPO-A1a (a1pattern),TaPPO-A1b (a2pattern),and TaPPO-D1a (b1pattern)and TaPPO-D1b (b2pattern),respectively (McIntosh et al.2005)

.

Fig.2Variation of TaPPO-3ampli?ed by WP3–2primer pair in common wheat.1.Nongda 183(20.1),2.Gaiyuerui (2.3),3.Ningmai 9312(16.9),4.8612(38.7),5.Yongchu-anbaimai (11.6),6.Wanxianbaimai (13.2),7.Zhongyou 9507(46.2),8.Yangmai 5(16.7),9.Baiyupi (22.4),10.Tachun 3(57.8),11.Wanmai 19(14.7),12.Yangmai 158(42.3),13.Chuan 24146(15.8),14.Yupi (24.3),15.Huaimai 17(39.1),16.Ningmai 8(21.4),17.Sifangmai (22.8),18.Baikezao (12.4),19.Zhoumai 13(43.1),20.Neixiangbodijiang (21.4),21.Dahuangpi (29.3),22.Wanmai 38(22.9).The alleles of TaPPO-3were marked with b1and b2,

respectively

Fig.3Variation of TaPPO-3ampli?ed by WP3–2primer pair in 22Ae.tauschii .1.Y6(27.6),2.Y 23(21.1),3.Y1(16.7),4.Y88(25.8),5.Y2(16.2),6.Y5(17.5),7.Y108(23.9),8.Y159(19.6),9.Y193(21.6),10.Y7(13.9),11.Y13(11.4),12.Y232(25.2),13.Y14(12.8),14.Y233(24.1),15.Y234(21.7),16.Y103(18.7),17.Y287(22.2),18.Y225(19.9),19.Ae11(18.7),20.Ae12(23.2),21.Y229(16.6),22.Y 240(12.6).Ml medium to low PPO

activity

Fig.4Chromosome location of TaPPO-3ampli?ed by WP3–2in common wheat,wild emmer,Ae.tauschii and Chinese Spring nullisomic–tetrasomics.1.Y6,2.IW124,3.Y23,4.IW126,5.Yangmai 5,6.Chinese Spring,7.N1B–T1D,8.N1A–T1D,9.N1D–T1B,10.N2B–T2A,11.N2A–

T2B,12.N2D–T2A,13.N2A–T2D,14.N2D–T2B,N3A–T3B,15.N3B–T3A,16.N3D–T3A,17.N4B–T4A,18.N4D–T4A,19.N5D–T5A,20.N5B–T5A,21.N6A–T6B,22.N6B–T6A,23.N7A–T7B,24.N7B–T7D

Effects of variation in TaPPO-A1and WPPO-

D1on PPO activity

Wheat cultivars carrying both TaPPO-A1b and TaPPO-D1b(a2/b2)conferred the highest average PPO activity in seeds(41.4A475nm/ min g·10–3),followed by genotypes with TaP-PO-A1b/TaPPO-D1a(a2/b1,30.1A475nm/ min g·10–3)(Table3).Lower PPO activities were detected in cultivars with TaPPO-A1a/ TaPPO-D1b(a1/b2,20.7475nm/min g·10–3) and TaPPO-A1a/TaPPO-D1a(a1/b1,14.2 A475nm/min g·10–3).The genotype TaPPO-A1a/b-null was always related to very low PPO activity of seeds.In Ae.tauschii,the PPO activ-ities of kernels were generally lower,ranging from11.4to27.6A475nm/min g·10–3.

By analyzing the relationship between varia-tion in the two genes and PPO activity,the results showed that TaPPO-A1a(876bp)and TaPPO-A1b(685bp)usually corresponded to low and high PPO activity,respectively.This was consis-tent with the results of Sun et al.(2005).In addition,wheat cultivars with genotype TaPPO-A1a/TaPPO-D1a and TaPPO-A1b/TaPPO-D1a had lower PPO activity than those cultivars carrying TaPPO-A1a/TaPPO-D1b and TaPPO-A1b/TaPPO-D1b(Table3).This also suggests that TaPPO-D1a confers lower PPO activity than TaPPO-D1b.This aspect was recon?rmed by the fact that accessions of Ae.tauschii with TaPPO-D1a showed signi?cantly lower average PPO activity than accessions with TaPPO-D1b (Fig.5).

The TaPPO-A1a allele in wheat cultivars with low PPO activity and TaPPO-A1b in most cultivars with high activity indicated that TaP-PO-A1has a major in?uence on PPO activity of seeds in wheat.Undeniably,TaPPO-D1was also involved in the regulation of PPO activity of seeds.It was notable that TaPPO-D1a associated with lower PPO activity mainly occurred in Chinese landraces derived from three provinces including Jiangsu,Sichuan,and Anhui.

Analysis of the DNA sequences ampli?ed

by WP3-1and WP3-2

The fragments ampli?ed from wheat genome DNA by WP3-1and WP3-2contained about 476and567bp when analyzed by sequence.On the basis of the contig of the sequence of the two fragments,an ORF sequence989bp in size was assembled using DNAMAN software(Fig.6).By alignment between TaPPO-D1and the assem-bled sequence,two insertion sequences were observed at the positions491th and750th bases of the gene,respectively.This was why the PCR fragment ampli?ed with WP3-2from wheat genomic DNA was larger than the expected size (442bp)of AY515506.The two insertions have typical characteristics of‘‘TTAA’’repeats and exon–intron boundary‘‘GT/C-AG,’’which were proved to be two introns(Dibb and Newman 1989;Yan et al.2000;Xing and Shuai2002; Alexei et al.2003).

The conserved two bases(AG)at the3’-end of the?rst intron were changed to‘‘TG’’in cultivars with TaPPO-D1a,in comparison to cultivars with TaPPO-D1b.The second inser-tion also showed differences between cultivars with the two alleles,and one‘‘TTAA’’repeat was deleted in cultivars with TaPPO-D1b.In addition,three single nucleotide polymorphisms except that in the?rst intron were detected (524th,610th,and790th base,respectively)in the DNA sequences of PCR fragments between the cultivars with TaPPO-D1a and TaPPO-D1b (Fig.6).

Table3.Genetic variation in TaPPO-

A1and TaPPO-D1among 216wheat cultivars

a PPO activity(A475nm/ min g·10–3)TaPPO-A1/TaPPO-D1Sample number Range of PPO-A a Mean PPO-A TaPPO-A1b/TaPPO-D1b7636.4–57.841.4

TaPPO-A1b/TaPPO-D1a627.1–36.230.1

TaPPO-A1a/TaPPO-D1b11512.7–29.320.7

TaPPO-A1a/TaPPO-D1a1410.8–21.414.2

TaPPO-A1a/absence5 1.7–8.7 5.5

Expression of TaPPO-A1and TaPPO-D1 during seed development

Variations of TaPPO-A1(Sun et al.2005)and TaPPO-D1mainly occurred in introns and have an effect on PPO activity.Therefore,it is neces-sary to know whether the variation in introns could mediate DNA transcription of the two PPO genes during seed development.

In Fig.7,fragments of RT–PCR ampli?ed by PPO18and WP3-2primers exhibited bands with the expected sizes of AY596268(458bp)and AY515506(442bp)in the agarose gels,respec-tively.This provided additional evidence that the two genes contain introns,as indicated in previ-ous studies(Sun et al.2005).At10DAP,TaPPO-A1had started to express in kernels.The highest level of expression occurred20–25DAP,and this was followed a large decrease at30DAP. Generally,a clear higher-level expression of TaPPO-A1b was detected in Yangmai158with high PPO activity,compared with Yongchuan-baimai(TaPPO-A1a)with low activity,during seed development(Fig.5A).A similar higher expression pattern was obtained with TaPPO-D1b compared to TaPPO-D1a(Fig.5B).

PPO activity was highest at25DAP and decreased signi?cantly with seed maturation, generally consistent with the study of Kruger et al.(1976).It is necessary to point out that no obvious variation between the two cultivars was found during10–20DAP(Fig.8).Nevertheless, from20DAP to seed maturation,Yangmai158 exhibited much higher PPO activity than Yongchuanbaimai.During these stages,the changes in PPO activity were consistent with expression of the two PPO genes.

Discussion

Effect of variation in TaPPO-A1

and TaPPO-D1on kernel PPO activity

Sun et al.(2005)found that a difference of192-bp size in the?rst intron of TaPPO-A1was associ-ated with PPO activity of wheat grain.The result was con?rmed in this study.The TaPPO-A1b (685bp)allele has a predominant distribution in wheat cultivars with high activity.Therefore, variation of TaPPO-A1located on2AL is a major factor in?uencing PPO activity of seeds,as reported by Sun et al.(2005).However,it does not mean that PPO activity is controlled only by this gene.Some cultivars with TaPPO-A1a (876bp)also contain relatively high PPO activity, and the STS marker,PPO18explained28–43%of the phenotypic variation for PPO activity(Sun et al.2005).In this study,there was also variation in TaPPO-D1that in?uenced PPO activity.Other genes besides these may also play a role in regulating PPO activity of seeds of cultivars with varying genetic backgrounds.

Wheat cultivars with TaPPO-A1a/TaPPO-D1a and TaPPO-A1a/TaPPO-D1b should be targeted because of their low PPO activity.A useful ?nding in this study was the very low PPO activity detected in?ve cultivars with a null allele at TaPPO-D1,viz.,Gaiyuerui(2.3A475nm/ min g·10–3),9114(1.7A475nm/min g·10–3), ZM2851(7.9A475nm/min g·10–3),ZM2855 (6.9A475nm/min g·10–3),and Xiaobingmai 33(8.7A475nm/min g·10–3).In order to con-?rm the TaPPO-D1null in these cultivars, another primer pair was designed based on the sequence of the Cu-A and Cu-B regions that are conserved domains in PPO genes.No fragment was ampli?ed by the newly designed

primers

Fig.6Alignment of TaPPO-D1and PCR fragments

ampli?ed in wheat cultivars with low PPO activity

(Yongchuanbaimai with TaPPO-D1a)and cultivars with

high PPO activity(Yangmai158with TaPPO-D1b).Two

primer pairs for TaPPO-D1were marked with single

underlining and introns with double underlining.Mutated

bases are shown in bold black letters

(data not shown)indicating that TaPPO-D1is not present in these cultivars(as in wild emmer), and providing additional evidence that the gene possibly has an important function in preventing PPO activity from decreasing to a very low or zero level.Such wheat cultivars could be

useful Fig.6continued

for wheat breeding,or could be used to increase understanding of the molecular basis of variation in PPO activity of seeds.

Chromosome location and molecular characteristics of TaPPO-D1

TaPPO-A1is closely linked to SSR markers Xgwm312and Xgwm294on chromosome 2AL in common wheat (Sun et al.2005).In our study,TaPPO-D1was located on chromosome 2D.Raman et al.(2005)believed that the PPO gene tagged on chromosome 2A was a homologue of those on 2B and 2D.This is supported by the fact that both the wheat ESTs exhibiting sequence identities with the common domain of tyrosinase

also map to homoeologous group 2in the Chinese Spring deletion lines (Sorrells et al.2003).More-over,a signi?cant identity (93.6%)was observed between TaPPO-A1on 2AL and TaPPO-D1on 2D by alignment of coding region sequences.Hence,TaPPO-D1is probably a candidate gene of the major QTL for PPO activity identi?ed in chromosome 2D (Jimenez and Dubcovsky 1999;Demeke et al.2001;Mares and Campbell 2001),which should be con?rmed by the further location and linkage analysis.

A 191-bp deletion exists in the ?rst intron of TaPPO-A1b in wheat cultivars with high PPO activity,compared with those cultivars with low activity (TaPPO-A1a )(Sun et al.2005).Like TaPPO-A1,variations in TaPPO-D1are mainly present in introns.A conserved extron–intron boundary in the ?rst intron,‘‘GT-AG,’’was found in genotypes with TaPPO-D1b .In cultivars with TaPPO-D1a ,the conserved boundary sequence was changed to ‘‘GT-TG.’’In addition,one ‘‘TTAA’’repeat was deleted in the second intron of TaPPO-D1b ,but three ‘‘TTAA’’repeats exist in the second introns of cultivars with TaPPO-D1a .

Our study has shown that variations in introns are related to transcriptions of TaPPO-A1and TaPPO-D1during seed development.However,changes in PPO activity from 10to 20DAP were not consistent with expression of the two genes.This is possibly because other genes may be involved in PPO activity at the early stages of seed development.From 20DAP to seed matu-ration,changes in PPO activity were in accor-dance with the level of transcription of the two

Fig.7Expression of TaPPO-A1and TaPPO-D1during different stages of seed development.Two cultivars,Yangmai 158(high activity,lanes 1–5)with TaPPO-A1b /TaPPO-D1b and Yongchuanbaimai (low activity,lanes

6–10)with TaPPO-A1a /TaPPO-D1a were used for ana-lyzing TaPPO-A1expression (A)and TaPPO-D1expres-sion (B),respectively

genes.This means that the two genes are prob-ably involved in regulating PPO activity at later stages of seed development.The PPO gene thus has different transcription levels at different seed development stages indicating that upstream fac-tors may regulate expression of the gene over time.Further research will be carried out to investigate the regulation of PPO activity during seed development and maturation.

Acknowledgments We thank Dr.Shi-He Xiao(Institute of Crop Sciences in CAAS)and Prof.Zhi-Yong Liu (CAU)for kindly providing materials.We also thank Dr. Hong-Wei Cai(Forage Crop Research Institute,Japan Grassland Agriculture and Forage Seed Association)for helpful discussion on the manuscript.This work was supported by grants from the National Nature Foundation of China(Numbers30270823and30471076). References

Alexei F,Scott R,Larisa F,Walter G(2003)Mystery of intron gain.Genome Res13:2236–2241

Anderson JV(2004)Triticum aestivum polyphenol oxidase (PPO)mRNA:GenBank Accession Number AY515506.https://www.doczj.com/doc/2210330614.html,/

Anderson JV,Morris CF(2001)An improved whole-seed assay for screening wheat germplasm for polyphenol oxidase activity.Crop Sci41:1697–1705

Baik BK,Czuchajowsk Z,Pomeranz Y(1994)Comparison of polyphenol oxidase in wheats and?ours from Australian and US cultivars.Cereal Sci19:291–296 Cary JW,Lax AR,Flurkey WH(1992)Cloning and characterization of cDNAs coding for Vicia faba polyphenol oxidase.Plant Mol Biol20:245–253 Chomczynski P,Sacchi N(1987)Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction.Anal Biochem 162:156–159

Crosbie GB,Solah VA,Chiu P,Lambe WJ(1996) Selection for improved color stability in noodles.In: Wrigley CW(ed)Proceedings of the46th Australian cereal chemical conference,Sydney,Royal Australian Chem Inst.North Melbourne,Vic Australia,pp120–122

Demeke T,Morris CF(2002)Molecular characterization of wheat polyphenol oxidase(PPO).Theor Appl Genet104:813–818

Demeke T,Morris CF,Campbell KG,King GE,Anderson JA,Chang HG(2001)Wheat polyphenol oxidase distribution and genetic mapping in three inbred line populations.Crop Sci41:1750–1757

Dexter JE,Preston KR,Matsuo RR,Tipples KH(1984) Development of a high extraction?our for the GRL pilot mill to evaluate Canadian wheat potential for the Chinese market.Can Inst Food Sci Technol 14:253–259Dibb NJ,Newman AJ(1989)Evidence that introns arose at proto-splice sites.EMBO J8:2015–2021

Feillet P,Autran JC,Icard-Verniere C(2000)Pasta brownness:an assessment.J Cereal Sci32:215–233 Flurkey WH(1989)Polypeptide composition and amino-terminal sequence of broad bean polyphenol oxidase.

Plant Physiol91:481–483

Ge XX,He ZH,Yang J,Zhang QJ(2003)Polyphenol oxidase activities of Chinese winter wheat cultivars and correlations with quality characteristics.Acta Agron Sin29:481–485

Guidet F,Rogowsky P,Taylor C,Song W,Langridge P (1991)Cloning and characterization of a new rye speci?c repeated sequence.Genome34:81–87

He ZH,Yang J,Zhang Y,Quail KJ,Pena RJ(2004)Pan bread and dry white Chinese noodle quality in Chinese winter wheats.Euphytica139:257–267 Jimenez M,Dubcovsky J(1999)Chromosome location of genes affecting polyphenol oxidase activity in seeds of common and durum wheat.Plant Breed 118:395–398

Jukanti AK,Bruckner PL,Fischer AM(2004)Evaluation of wheat polyphenol oxidase genes.Cereal Chem 81:481–485

Kruger JE(1976)Changes in the polyphenol oxidases of wheat during kernel growth and maturation.Cereal Chem53:201–213

Kruger JE,Matsuo RR,Preston K(1992)A comparison of methods for the prediction of Cantonese noodle colour.Can J Plant Sci72:1021–1029

Lee CY,Whitaker JR(1995)Enzymatic browning and its prevention ACS Symp Ser600American Chemical Soc.Washington,DC

Mares DJ,Campbell AW(2001)Mapping components of ?our and noodle colour in Australian wheat.Aust J Agric Res52:1297–1309

Myers RM,Maniatis T,Lerman L(1987)Detection and localization of single base changes by denaturing gradient gel electrophoresis.Meth Enzymol155:501–527

McCallum JA,Walker JRL(1990)o-diphenol oxidase activity,phenolic content and colour of New Zealand wheats,?ours and milling streams.J Cereal Sci 12:83–96

McIntosh RA,Devos KM,Dubcovsky J,Rogers WJ,Morris CF,Appels R,Anderson OD(2005)Catalogue of gene symbols for wheat.https://www.doczj.com/doc/2210330614.html, Newman SM,Eannetta NT,Yu H,Prince JP,de Vicente MC,Tanksley SD,Steffens JC(1993)Organization of the tomato polyphenol oxidase gene family.Plant Mol Biol21:1035–1051

Park WJ,Shelton DR,Peterson CJ,Martin TJ,Kachman SD,Wehling RL(1997)Variation in polyphenol oxidase activity and quality characteristics among hard white wheat and hard red winter wheat samples.

Cereal Chem74:7–11

Raman R,Raman H,Johnstone K,Lisle C,Smith A, Martin P,Allen H(2005)Genetic and in silico comparative mapping of the polyphenol oxidase gene in bread wheat(Triticum aestivum L.).Funct Integr Genomics5:185–200

Rani KU,Rao P,Leelavathi JS,Rao HP(2001)Distribu-tion of enzymes in wheat?ourmill streams.J Cereal Sci34:233–242

Sambrook J,Fritsch EF,Maniatis T(1989)Molecular cloning,a laboratory manual,2nd edn.Cold Spring Harbor Laboratory Press,pp327–329,886–887 Simone R,Pasqualone A,Clodoveo LM,Blanco A(2002) Genetic mapping of polyphenol oxidase in tetraploid wheat.Cell Mol Biol Lett7:763–769

Sorrells ME,Rota ML,Bermudez-Kandianis CE, Greene RA,Kantety R(2003)Comparative DNA sequence analysis of wheat and rice genomes.

Genom Res13:1818–1827

Steffens JC,Harel E,Hunt MD(1994)Polyphenol oxidase.In:Ellis BE,Kuroki GW,Stafford HA (eds)Genetic engineering of plant secondary metab-olism.Plenum Press,New York,pp275–313 Sullivan B(1946)Oxidizing enzyme systems of wheat and ?our.In:Anderson JA(eds)Enzymes and their role in wheat technology.Interscience,New York,pp215 Sun DJ,He ZH,Xia XC,Zhang LP,Morris CF,Appels R, Ma WJ,Wang H(2005)A novel STS marker for polyphenol oxidase activity in bread wheat.Mol Breed16:209–218

Thipyapong P,Joel DM,Steffens JC(1997)Differential expression and turnover of the tomato polyphenol

oxidase gene family during vegetative and reproduc-tive development.Plant Physiol113:707–718 Thygesen PW,Dry IB,Robinson SP(1995)Polyphenol oxidase in potato.Plant Physiol109:525–531

Udall J(1996)Important alleles for noodle quality in winter wheat as identi?ed by molecular markers.MS Thesis.University of Idaho,Aberdeen,ID,USA Van Gelder CWG,Flurkey WH,Wichers HJ(1997) Sequence and structural features of plant and fungal tyrosinases.Phytochemistry45:1309–1323

Walker JRL,Ferrar PH(1998)Diphenol oxidase,enzyme-catalysed browning and plant disease resistance.

Biotech Genet Eng Rev15:457–498

Xing JW,Shuai SR(2002)Ampli?cation and sequence analysis of pig growth hormone(PGH)gene.J South-west Agric Univ24:182–185

Yan L,Bhave M,Fairclough R,Konik C,Rahman S, Appels R(2000)The genes encoding granule-bound starch synthases at the waxy loci of the A,B,and D progenitors of common wheat.Genome43:264–272 Zhang LP,Ge XX,He ZH,Wang DS,Yan J,Xia XC, Sutherland MW(2005)Mapping QTLs for polyphe-nol oxidase activity in a DH population from common wheat.Acta Agron Sin31:7–10

五线谱入门基础教程

五线谱入门基础教程 五线谱是记录音乐的一种语言,是一种记谱方法。五线谱,顾名思义是由五条平行线组成 的,当然还包括每相邻两条平行线之间的“间”。五条线的顺序是由下往上数的。最下面第一 条线叫做“第一线”,往上数第二条线叫“第二线”,再往上数是“第三线”、“第四线”, 最上面一条线是“第五线”。“间”也是自下往上数的。最下面的一间叫做“第一间”。往上 数是第二间、第三间、第四间。 方法/步骤 1. 如果五线四间不够用,还可以添加平行线,如“上加一间”、“上加一线”、“上加二间”、 “上加二线”、“下加一间”、“下加一线”、“下加二间”、“下加二线”等等。 2. 在钢琴上,为便于称呼,把每12个键(包括黑白两种键)分成一组,如大字组(倍低音

组)、小字组(低音组)、小字一组(中音组)、小字二组(高音组)等等。每组的白键从左 到右依次用C、D、E、F、G、A、B七个字母表示,不过有的大写,有的小写,有的还有上标 或下标(详见下图),方便称呼不同的键。在钢琴上,琴键发出的声音从左到右是由低到高 的,即相邻的两个键(无论黑白)发出的声音总是左低右高,右比左高半音。五线谱与钢琴 有着密不可分的关系(见下图)。五线谱上的“线”和“间”表示的音高与钢琴的白键是一 一对应的,即五线谱上所标音符的音高,只要弹一下对应的琴键就听到了。 那么,钢琴上的黑键与五线谱上的什么对应呢?是与五线谱上标记了升(或降)音记号的线 或间对应。例如,小字一组左起第一个黑键对应于标记了升音记号#的下加一线(升高半音), 或对应于标记了降音记号b的下加一间(降低半音),也就是说,五线谱上标记了升(或降) 音记号的线或间表示的音高等于用黑键弹出来的声音。用类似的方法同样可知其余黑键弹出的 声音分别等于五线谱上标记了升(或降)音记号的线或间所表示的音高。 3. 五线谱是由音符、谱号、谱表三个主要的部分组成的。 谱表

五分钟教你学会五线谱

五分钟教你学会五线谱 一、以下图示五条线,就是五线谱.分一、二、三、四、五条线 二、五条线中间的空白处为间,共有四间 三、放在五线谱开头分别为高音谱号和低音谱号。 四、五线谱、简谱音阶对照示意图 五、简谱唱法与五线谱的音名唱法对照表 六、简谱与钢琴(电子琴)键盘位置对照图 七、你先在下面钢琴上试一下 八、你现在可以享受学会五线谱的喜悦了,练好下面的乐曲,你就学会了弹钢琴了。 用鼠标先点键盘,再按下问号键,就会出现钢琴上的黑白键提示。 O(∩_∩)O哈哈~~感觉如何?记得下次来弹琴可不要忘了带朋友一起来享受啊 附:乐谱 《月亮代表我的心》:LOQSONQS STUVTS QPOOO QPOOO PQPOMPQP LOQSONQS STUVTSQPOOO QPOOO PQPMNOPO QSQPOSN MNMNMLQ SQPOSN MNOOOPQP LOQSONQSSTUVTS QPOOO QPOOO PQPMNOPO 《心语心愿》:TVUTSTQ TSTVUVUTUV VWXXXXW VUTUS TVUTST QSTXWVUV VUTTTTSSTQ SSTXWVUVV VUTTSUT

《童话》:LONOL LONOL LONO OOMMLLONOL LQPPO LONOM MMOTS PPRRQQ QQNPOONOONOR LSRQPPPRRQQ QQVUTUV VPOT TTSSSLSRQQRQ QRQ RQPOOQST TTSPPRQOQST TTSPPRQRQPO PQMMOONO 《安静》:QQQQPONPPPO LQPOOOLQPOOPQQQQPONPPPO LQPOOOLQPOOPPQRRRRRQPOOOPPLSSSRQPPPQQMRQRQPOONOL QRQRQPOPSLQRSRQSLQRSRQSLQRSRQOPPPQOSSOONOOSSOONOO RRQQPPORRQQPPOLQRSRQSLQRSRQSLQRSRQOPPPQOSSOONOOSSOONOO RRQQPPOORQPOMOO 《好好恋爱》:JKLLLLLKJIIL NNONOOOPQNNLHMMMJMOLLLLJHKKKJKLMMMOMLJKJJKLLLLJIHHO NMLMLJHHMMLLLKJ OOOONOPPLRQLLRPLRQRQRQPO ONMMQMQMLLQLQLRQRQOP LRQLLRSPLRQQQRQPQONMMQMQMLLQLQPOMOPNMNMNQPOO 《痴心绝对》:OPQQQRQPPOPPSP ONOOOQQOOMNNQNMLMMMRRQSO MLMMMRROOMPOOPQQQRQPPOPPSP ONOOOQQOOMNNQNMLMMRRQSOMLMMMRROOONO 《会呼吸的痛》:STVTXXTW WWVUVWXWSV VUTUVRRRVVWVSSS SYXWXX STVTXXTWWWVUVWXWSVV VUTUVRRRVVWVSSS STUVVUVV 《欢乐颂》:J J K L L K J I H H I J J I IJ J K L L K J I H H I J I H H II J H I J K J H I J K J I H I E J J K L L K J I H H I J I H H 《小星星》OOSSTTS RRQQPPO SSRRQQP SSRRQQPOOSSTTS RRQQPPO 《千千阙歌》:HHIJ LMONNNLJ IIIJK MOQPPNLHHIJ LMONNNLJ IIIJKMOQPPNLMLMLMNNMN PPPPNOPQQQPPPOQ NLMLMOPQQPQ QPOP OMM LMOP QQPQQSTSQQQQPPOPOM QQRQPOP QQ Q PPOP OMOO 《婚礼进行曲》:HKKK HLJK HKNNMLKJKL HKKK HLJK HKMOMKILMKNMLII JKLL NMLIIJKLL HKKK HLJK HKMOMKILMKILMKK 《樱花》MMN- MMN- (-延长音的意思) MNON MNMK- ( 下划线是连音的意思)J HJ K JJHG- MMN-MMN-JKNMK J--- 想唱就唱onopol jkkklj onopol lmmmon onopqolj opolj onopqolo rqpoq qrstoopqp pqrs srqpq qrstss uuvuspq rqrs qrst oopqp pqs quuqv vuvtsootsrqrs ts qrst oopqp pqrs srqpq qrstss uuvuspq rqrs qrst oopqp pqsquuqv vuvtsoo tsrqrs 梦里qqqqqqpo lmoooomq qqqqstsqp lpppppsq qqrs oopq llmoqpsq qqrsoopq llmoqpoo opqrsssrqrss ssssvtsq qqpo opm moppppqp opqrsssrqrssssssvtsq qqpo opm mopqqqqpom

五分钟教你认识简谱和五线谱

和语言一样,不同民族都有过自己创立并传承下来的记录音乐的方式---记谱法。各民族的记谱方式各有千秋,但是目前被更广泛使用的是五线谱和简谱(据说简谱是由法国思想家卢梭于1742年发明的)。 简谱应该说是一种比较简单易学的音乐记谱法。它的最大好处是仅用7个阿拉伯数字 ----1234567,就能将万千变化的音乐曲子记录并表示出来,并能使人很快记住而终身不忘;同时涉及其他的音乐元素也基本可以正确显示。简谱虽然不是出现在中国,但是好象只有在中国得到非常广泛的传播。 一般来说,所有音乐的构成有四个基本要素,而其中最重要的是“音的高低”和“音的长短”: 1 音的高低:任何一首曲子都是高低相间的音组成的,从钢琴上直观看就是越往左面的键盘音越低,越往右面的键盘音越高。 2 音的长短:除了音的高低外,还有一个重要的因素就是音的长短。音的高低和长短的标住决定了该首曲子有别于另外的曲子,因此成为构成音乐的最重要的基础元素。 3 音的力度:音乐的力度很容易理解,也叫强度。一首音乐作品总会有一些音符的力度比教强一些,有些地方弱一些。而力度的变化是音乐作品中表达情感的因素之一。 4 音质:也可以称音色。也就是发出音乐的乐器或人声。同样的旋律音高男生和女声唱就不一样的音色;小提琴和钢琴的音色就不一样。 上述四项构成了任一首乐曲的基础元素。应该说简谱基本可以将这些基础性元素正确标住。 音符 在简谱中,记录音的高低和长短的符号,叫做音符。而用来表示这些音的高低的符号,是用七个阿拉伯数字作为标记,它们的写法是: 1 2 3 4 5 6 7读法为:do re mi fa so la si(多来米发梭拉西)。这些唱出来的声音符号叫唱名。这七个音还有与之相对应的英文字母的名称:1--C;2--D;3--E;4--F;5--G;6--A;7--B。这些字母叫做音名。它们是固定不变的。 音符是和音高紧密相连的,没有一个不带音高的音符。 音高 音符的数字符号如1 2 3 4 5 6 7就表示不同的音高。在钢琴键盘上可以很直观地理解音符和音高。广义上说音乐里总共就有7个音符。在音符上边出现有圆点的,则表示要将该音升高一个音组,行话说“高8度”。如出现加两个圆点就表示将该音升高两个音组,余类推。在音符下边出现有圆点的,则表示要将该音降低一个音组,即“低8度”。如出现加两个圆点就表示将该音降低两个音组,余类推。音高与钢琴键盘的对应关系如下: 现在重点看黄线框里面的音符上下都不带圆点的一般叫中音区音符。如果您记忆的话先将中央1(C)牢记在心---这可以说是所有88个键盘位置的基础。至于说为什么还叫C您可以参考有关调式的解释。这7个白键的就是如我们通常唱的1 2 3 4 5 6 7 这七个音符。那么5个黑键呢?请看下面有关半音/全音的解释。 黄线右面的音符上边出现有圆点的,则表示要将该音升高一个音组,行话说“高8度”。如出现加两个圆点就表示将该音升高两个音组,余类推。在音符下边出现有圆点的,则表示要将该音

2019-2020年六年级下册第4课《查尔达斯舞曲》(小提琴独奏)教案

2019-2020年六年级下册第4课《查尔达斯舞曲》(小提琴独 奏)教案 教学目标: 1、了解意大利的风土人情,以及意大利音乐风格特点和意大利舞蹈特点。 2、能够对意大利音乐感兴趣,能积极参与相关音乐实践活动并认真探索其文化内涵。 教学重点: 感受意大利乐曲的音乐情绪,体验其丰富的音乐文化内涵。 教学难点: 能积极参与相关音乐实践活动并认真探索其文化内涵。提高对外国音乐文化多样性的认识。教学过程: 一、谈话导入课题。 1、同学们喜欢跳舞吗?能说说你知道的舞蹈吗? 2、今天老师带同学们去感受一曲意大利舞曲——查尔达斯舞曲。 二、新授。 1、完整欣赏小提琴独奏《查尔达斯舞曲》,感受意大利音乐风格与特点。 2、请学生说说听后的感受。 3、再次欣赏《查尔达斯舞曲》,引导学生感受整体音乐速度的变化并从作品中体会意大利舞曲“查尔达斯舞曲”由慢而快的速度特点。深入体会意大利音乐元素。 4、分主题聆听,体验各主题情绪之间的不同。 三、总结。 众多的国家都有灿烂的文化与艺术,体会到了意大利人民热情的舞曲与舞蹈,希望在今后的学习中,能够更多的了解体验各国家的音乐作品。 附送: 2019-2020年六年级下册第4课《龙腾虎跃》教案 教学内容: 《龙腾虎跃》。 教学目标: 1、过程与方法:通过聆听《龙腾虎跃》,让学生在综合感受中国民族乐器及打击乐器鼓的丰富表现力的同时,体会不同的节奏、节拍、速度在乐曲中表现的不同作用。

2、知识与技能:通过聆听,帮助学生理解乐曲的音乐形象,整体体会音乐情绪;指导学生能够利用打击乐器或手、脚为主旋律伴奏。 3、情感态度与价值观:通过乐曲题目中的“龙”进行爱国主义教育,让学生在音乐课堂中学到更多方面的知识,体会更深层面的意义。 教学重点: 让学生在音乐中展开想象的翅膀,并体会乐曲欢快、热烈的节奏。 教学难点: 让学生模仿鼓乐演奏的节奏,为主题旋律伴奏。 教学过程: 一、导入: 1、出示实物(小堂鼓),指导学生认识乐器的名称及结构构成。设问:这些是什么?我们能用它们做什么?请你来演示一下。 2、引导学生感受鼓的使用方法并回答问题鼓能带给大家什么感受?什么场合会用到鼓?他有什么作用?并邀请学生学打一个鼓点节奏: 3、人们的生活中离不开鼓,鼓能给我们增添欢乐。出示图片(在2003年9月,香港举办了鼓乐节群英会,中外鼓王云集,这是演出时的盛况)。最引人注目的是李民雄创作并亲自演奏的一首民间器乐曲──鼓乐《龙腾虎跃》,这首乐曲荣获二十一世纪最受乐迷欢迎的中国音乐作品,今天老师就和大家一起来欣赏这首鼓乐曲《龙腾虎跃》。 二、讲授新课: 1、简介作曲家、作品: 作曲家:李民雄,浙江嵊州人。民族音乐理论家、鼓演奏家、作曲家、音乐教育家、硕士生导师、上海音乐学院教授等。 作品简介: 《龙腾虎跃》是以山西民间器乐曲牌《撩单子》的音调为主要素材进行改编创作的。是一首鼓乐曲,表现的是欢庆节日的场面,分为三大部分。 2、欣赏引子部分、第一部分,小组合作探讨,边聆听边思考问题:分段欣赏、思考并讲解。 3、学唱主题旋律: (1)通过多媒体展示乐谱、教师范唱。 (2)让学生自己轻声随琴演唱乐谱主题,让学生找出乐谱中不易演唱的地方,单独挑出演

小星星变奏曲教学设计

小星星变奏曲教学设计 Teaching design of variations of little star

小星星变奏曲教学设计 前言:小泰温馨提醒,音乐是用各种各样的乐器和声乐技术演奏的,从唱歌到说唱 ; 仅存在器乐作品,仅存在声乐作品以及将唱歌和乐器结合在一起的作品,是用组织音构成的听觉意象,来表达人们的思想感情与社会现实生活的一种艺术形式。本教案根据音乐课程标准的要求和针对教学对象是初中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生乐感为根本目的。便于学习和使用,本文下载后内容可随意修改调整及打印。 说课稿 一、说教材 本课题属校本教材,主要任务是通过欣赏莫扎特的钢琴变奏曲《小星星变奏曲》和辅助练习,让学生进一步认识变奏曲及运用。 音乐知识“变奏曲”这一概念放在初二年级下学期教,主要是让学生在上学期欣赏英国作曲家本杰明?布里顿创作的《青少年管弦乐指南》中接触过的“变奏、变奏曲”的基础上,进一步加以认识,理解和简单的运用。让学生更理性地欣赏音乐作品,扩展学生知识面,培养学生的音乐欣赏能力。 二、说学情 初二的学生正处于不稳定的年龄段,生性好强易冲动,喜欢表现,对音乐比较感兴趣,求知欲比较强,《小星星变奏曲》主题合乎学生年龄特点比较熟悉意境,较易想象,并且在上学期已接触过“变奏、变奏曲”等音乐知识。因此,在讲解欣赏上较为

易懂,学生主动性、积极性较为容易调动,但也正因为初二年级 学生兴趣广泛,好动性强,因而无意注意占优势,自控力较差, 其心理因素处于不稳定阶段,加之乡村音乐教育不规范,基础设 施较差,使学生基础知识不扎实,学后易忘,知识新旧连接较难。此外,创作是第一次接触学生心理上放不开,这些因素都给本课 教学带来了一定的难度,这就需要在教学中采用有趣性的教学方 法和变换练习方式来吸引学生的注意力,激发学生的学习兴趣, 以保证教学活动顺利进行。 针对学生的实际情况,我制定了本课的教学目标:重点、难点。 三、说目标、重点难点 (一)目标 1、通过教学,使学生认识什么是“变奏曲”的知识概念, 初步掌握“变奏曲”的主题变奏创作的几种手法。 2、通过习题运作,加深理解,吃透“变奏曲”的含义,使 学生学以致用,培养学生的运用能力和创新,创造能力。 3、通过欣赏《小星星变奏曲》,提高学生音乐感受,欣赏 和审美能力,开阔学生的视野,提高他们的文化素养。 (二)重点 1、对“变奏曲”含义的理解。 2、在听觉上感受主题与变奏的关系。 3、通过习题运作培养学生在实践中运用“变奏曲”的几种

快速让孩子认识五线谱的几种办法

快速让孩子认识五线谱的几种办法 第一种:教条式 楼房识谱法 将高音谱号和低音谱号分管的不同音区形象地比喻为高音楼和低音楼,将其中的五根线与线之间的四个间比喻成不同的楼层,然后让小小音符们来爬楼房。爬到一个楼层或者是房间小小音符们来爬楼房,爬到一个楼层的时候就唱歌:“do,do,do”、“re,re,re,”。幼儿一边做游戏,一边唱歌,就将一个音阶内的音都学会了。 身体音高对应法 高音谱号与低音谱号所对应的音阶,有上行和下行。孩子在音与音高的关系及音高的概念上很容易混淆和不理解。为此,我设计了一个利用身体位置的高低,让幼儿掌握音阶上行和下行的方法。即在学习上行音阶时,将“do”的位置放在脚上,并随着一个八度音阶的上行逐渐上移,让孩子利用对身体高度的认知,感知音在五线谱上的高度。下行时则从头顶开始,逐渐下移,来感知音高逐渐降低。这样做可以让幼儿将音符与钢琴上的键盘位置对应,学习起来比较容易。 音阶推移法 在掌握了音阶的高低位置后,我将认识音符和整个八度音阶联系起来。让幼儿学习唱的时候,进行自我推算和学习,对于一些空间知觉特别差、认谱能力弱的幼儿,这是一个补救的好办法。 行动学习法

学习的最大兴趣与成功的关键莫过于自身的参与。因此,我将五线谱制成一个大的地图,贴在运动场地上,利用户外活动时带领幼儿去跳、走。通过边唱边跳,让幼儿参与到认识音符的活动中来,起到良好的作用。幼儿参与的积极性很高,认识的主动性也明显提高。 反复运用巩固法 在新认识一个音符之后,需要一个反复巩固、加深印像的过程。我们需要选择几首含有该音符的乐曲,让幼儿来弹奏,在弹奏曲子的同时认知该音符在五线谱中的位置。一般在几首曲子弹熟练以后,该音符就能被幼儿牢牢地掌握了。 第二种:儿歌 孩子的小手就是认识五线谱的最好工具——轻便并且随身携带:开始学时可以边念儿歌边在自己手指上比划,要不了多久就熟了! 下加一线敲敲门do do do (哆哆哆) 下加一间打招呼re re re (来来来) 第一线上小猫叫mi mi mi (咪咪咪) 第一间里放沙发fa fa fa (发发发) 第二线上把话说sol sol sol (说说说) 第二间里把手拉la la la (拉拉拉) 第三线呀笑嘻嘻si si sI (嘻嘻嘻) 第三间里歌儿多do do do (哆哆哆) 让孩子伸出左手张开〔将手心对着自己横摆〕,把五根手指当成五条线,手指间的缝当成间,用右手不断变换地指着“线”、“间”,口唱

欣赏《小星星变奏曲》教案

欣赏《小星星变奏曲》教案 第五课欣赏——小星星变奏曲 【教学内容】 1、歌曲复习《闪烁的小星》 2、欣赏《小星星变奏曲》 3、拓展欣赏及表演《小星星》 【教学目标】 1、指导学生能用断、连的方法复习演唱歌曲《闪烁的小星》,同时让学生体验、感受歌曲 的情绪以及所表达夜晚优美、安静的意境。 2、通过欣赏《小星星变奏曲》的片段,在游戏、模仿、表演等音乐活动中体会乐曲不同的 情绪。 3、欣赏不同版本的“小星星”,在感受乐曲的同时,选择自己喜欢的版本为其配上不同的 表演动作,结合歌唱,做到以情感为主线,以动作为中心,达到唱听一体化。 【教学重、难点】 1、用断、连的方法唱好歌曲《闪烁的小星》。 2、欣赏几种版本的“小星星”音乐,体会、感受乐曲的不同情绪,并能根据情绪即兴配上 合适的动作。 【教学过程】 一、歌曲复习 (一)复习演唱《闪烁的小星》 (二)教师指导学生演唱《闪烁的小星》,并进行歌曲处理 (三)创设情景 教师启发学生想象夜晚的情景,一起动手营造安静、祥和的氛围。 (四)歌表演 要求:学生手拿荧光棒,即兴摆造型并边唱边表演,表达对歌曲的体验。同时教师用铃鼓 为学生伴奏。 二、欣赏《小星星变奏曲》 (一)初听 要求:学生初步感受乐曲的主旋律以及音乐的变化,并了解其演奏形式是钢琴演奏。 (二)复听:游戏“变变变” 1、教师介绍游戏要求 师:请你在音乐一开始就做一个造型,当听到音乐有明显的变化时,再变一个造型,等音 乐结束的时候,请告诉大家你变了几次造型? 2、学生听音乐,变造型 3、学生反馈

(三)完整欣赏音乐并看多媒体画面,自找音乐“变几次”答案 要求:通过观看媒体,让原本比较抽象的音乐具体化、形象化,帮助学生感受、体验乐曲 中的情绪变化,并为下面的表演做铺垫。 (四)即兴表演 三、拓展欣赏 (一)欣赏两个不同版本的“小星星”(迪斯科节奏版本,3/4拍节奏版本) (二)分组,为乐曲起名字 要求:首先学生根据自己的喜好自主结合分成两组,并请他们讨论并回答,师生共同归纳两个名字。教师把学生起的名字即兴打在媒体课件上。 (三)即兴模仿 1、学生跟音乐模仿教师动作 2、师生评价,(可以个别表演) (四)汇总表演 要求:教师在汇总表演之前一定要交代清楚表演的顺序。 唱〈闪烁的小星〉——表演迪斯科节奏版本〈闪烁的小星〉——唱〈闪烁的小星〉——表演3/4拍节奏版本〈闪烁的小星〉——唱〈闪烁的小星〉,同时打击乐器伴奏。 四、小结 师:在今天的课中,我们不但和小星星成为了好朋友,还和小星星一起唱了歌曲、欣赏了音乐,感受了音乐给我们带来的快乐。以后,我们还会通过学习认识更多的音乐朋友。

学习五线谱(初学者专用)

首先,五线谱是由三个主要的部分组成的:音符、谱号、谱表。 第一节谱表 现在我们首先来介绍一下谱表: 用来记写音符高低的表格,就叫做“谱表”。 五线谱,顾名思义是由五条线组成的。的确,是由五条平行的“横线”和四条平行的“间”组成的。这就是五线谱的谱表。它们的顺序是由下往上数的。 最下面第一条线叫做“第一线”,往上数第二条线叫“第二线”,再往上数是“第三线”、“第四线”,最上面一条线是“第五线”。 由于音符非常多,所以“线”与线之间的缝隙也绝对不能浪费的,也就是“线”与“线”之间的地方叫做“间”。这些间也是自下往上数的。同“线”一样。最下面的一间叫做“第一间”。往上数是第二间、第三间、第四间。下面请看谱例: 每一条线和每一个间都代表着一个音的高度。 然而这五条“线”和四个“间”还不够表达我们的情感心声,如果还有更高的音或者更低的音出现怎么办呢?于是就产生了更多的“线”和“间”。 这些临时多出来的“线”和“间”叫做“上加线”和“下加线”。上面多出来的线叫做“上加线”,上面多出来的“间”叫做“上加间”。下面多出来的“线”和“间”叫做“下加线”和“下加间”。这些“线”和“间”向上下两边呈放射形。“上加线”和“上加间”是自下而上,往上数的,分别叫做“上加一间”、“上加一线”、“上加二间”、“上加二线”、“上加三间”、“上加三线”…………以此类推。 在五条线下面加出的线是从上面向下数的(与上加线相反)。分别称作“下加第一间”、“下加第一线”、“下加第二间”、“下加第二线”……也是以此类推。(如下图) 这里面有一个需要注意的有两点: 1、“上加线”和“下加线”根据音符只需要画一条短线,不需要很长。够表示音符就可以了。(如下图) 2、在表示“上加间”和“下加间”的时候,不需要再把这个音符上面或下面的线画出来了。(如下图)

《查尔达什》小提琴与二胡版本的比较

《查尔达什》小提琴与二胡版本的比较 又 《查尔达什》小提琴与二胡版本的比较 宋婉忻(福建师范大学音乐学院福建福g,l1350000) 摘要:本文对《查尔达什》的乐曲进行了简要的分析,然后通 过对小提琴与二胡在调式与音域,音色以及演奏枝珐这三个方面进行的对比,指出=胡作为中国传统弓弦乐器与西方弓弦乐器小提琴十分类似的乐器,由于乐器的构造与拉奏方法的不同,在演奏同一首曲子上的异同点,以及两个乐器之间的联系与区别. 关键词:《查尔达什》;小提琴;二胡;对比;调式与音域; 音色;演奏枝法 《查尔达什》(Cs6rd6s)是意人利小捉琴家,作曲家蒙蒂 (Vittorio,Monti)的小提琴代表作,已被改编成了其他乐器 演奏的作品,比较出名的有二胡,手风琴,大捉琴,簧管,长 笛,小号等,与小提琴的版本相比都各有自己的特色,其中二胡 作为rrl国传统弓弦乐器_卜西方弓弦乐器小提琴十分类似的乐器, 存演奏同~首曲子上,有许多相同点和异同点. 一 ,《查尔达什》小提琴与二胡版本的共同点 1.曲式结构不变

都采用的是复三部曲式. 小捉琴与二胡的作品《垒尔达什》一开始部是山略微深沉的 引子引入.引子部分节奏十分自由,并采用大量滑音,使乐曲听 起来富有味道.然后引子之后,由这一主题组成查尔达什舞曲 特有的”拉绍”段落.在这一小调色彩的抒情旋律发展之后,又 出现另一支流畅而华丽的小调旋律.这两支旋律都具有鲜明的匈牙利及吉普赛音乐的特点.接着延续之前引子部分滑音的应用, 使乐曲有种粘稠,深沉的特点.使这酋曲’了具有很浓烈的民族风文化教自水平十’分落后.郑珍善于甄别拔人才,因材施教.存他 所教的这批学生中,邡珍最喜欢的足胡长新.胡家贫好学,才思 敏捷,且学业根底深厚.郑认为”此了如不废学,必作黔尔冠呜”.当然,得意门生胡长新也没有辜负老帅的期望,十1845 年中举,中了进士.他先后担任过贵阳府学教授,思南府学教 授,黎阳书院Il1长等职,并有许多诗文传世. 另外,郑珍秉承”有教无类”的教学思想,不论地位,不讲贫 贵,都予以~视同仁.如有位姓刘的生员,家里特别穷,连贽金都 交不起,很久之后,才把四丁文铜元交给老师,然郑珍没有丝毫责备之意;还有一个叫刘之砺的学生,是个扎灯笼的匠人,特别爱写诗.郑珍便悉心指点,对其关爱有加,师生相处的_:常融洽. 然而,好景不长.在i845年十月份,郑珍接到檄文:他的职 位彼人取代,即行作交代准备.可这又有什么办法呢?郑珍存等 待交割之期,仍不忘教诲学牛,鼓励他仃J:

小星星变奏曲说课稿

《小星星变奏曲》说课稿 一、说教材 本课题属校本教材,主要任务是通过欣赏莫扎特的钢琴变奏曲《小星星变奏曲》和辅助练习,让学生进一步认识变奏曲及运用。 音乐知识“变奏曲”这一概念放在初二年级下学期教,主要是让学生在上学期欣赏英国作曲家本杰明?布里顿创作的《青少年管弦乐指南》中接触过的“变奏、变奏曲”的基础上,进一步加以认识,理解和简单的运用。让学生更理性地欣赏音乐作品,扩展学生知识面,培养学生的音乐欣赏能力。 二、说学情 初二的学生正处于不稳定的年龄段,生性好强易冲动,喜欢表现,对音乐比较感兴趣,求知欲比较强,《小星星变奏曲》主题合乎学生年龄特点比较熟悉意境,较易想象,并且在上学期已接触过“变奏、变奏曲”等音乐知识。因此,在讲解欣赏上较为易懂,学生主动性、积极性较为容易调动,但也正因为初二年级学生兴趣广泛,好动性强,因而无意注意占优势,自控力较差,其心理因素处于不稳定阶段,加之乡村音乐教育不规范,基础设施较差,使学生基础知识不扎实,学后易忘,知识新旧连接较难。此外,创作是第一次接触学生心理上放不开,这些因素都给本课教学带来了一定的难度,这就需要在教学中采用有趣性的教学方法和变换练习方式来吸引学生的注意力,激发学生的学习兴趣,以保证教学活动顺利进行。

针对学生的实际情况,我制定了本课的教学目标:重点、难点。.三、说目标、重点难点 (一)目标 1、通过教学,使学生认识什么是“变奏曲”的知识概念,初步掌握“变奏曲”的主题变奏创作的几种手法。 2、通过习题运作,加深理解,吃透“变奏曲”的含义,使学生学以致用,培养学生的运用能力和创新,创造能力。 3、通过欣赏《小星星变奏曲》,提高学生音乐感受,欣赏和审美能力,开阔学生的视野,提高他们的文化素养。 (二)重点 1、对“变奏曲”含义的理解。 2、在听觉上感受主题与变奏的关系。 3、通过习题运作培养学生在实践中运用“变奏曲”的几种手法,并培养学生的创新、创作能力。 (三)难点 1、在听觉上与概念上帮助学生对“变奏曲”概念的理解和掌握如何辨别主题与变奏的关系。 2、学生在实际创作中运用“变奏手法”。 四、说教法 为了完成教学目标,使学生更好地掌握重点,突破难点,我采用了以下方法: (一)分层辨析与读谱结合法。

教你一分钟快速认识五线谱十二个调

教你一分钟快速认识五线谱十二个调 1、只要你知道C大调A小的调号没有升降号的,如果加上三个bbb号 这就成C小调了,从它的关系大小调来认的话,那就是 bE大调、C小调。 02、 此调号为#C大调,bB小调,如果你不知道是什么调,你 减掉三个#号,剩下的四个#号就成了,这就是#C小调了,它的关系大小调就是 E大调 ,#C小调。 3、此调为D大调,B小调,如果是#号开头的调我们就往下减去三个#号,不足三个的我们加上一个b号来取代,最后只留一下了一个b号, 就得到了这个,这个就是由原来的D大调变成了D小调,它的关系大小调就是F大调,D小调。 4、此调为bE大调、C小调,如果是降号开头的调的话我们 就往上加,我们加上三个b号就得到,就由原来的bE大调变成bE小调了,它的关系大小调就是 bG大调,bE小调,一般通常我们最好叫做#F大调、#D小调。 5、此调号为E大调 #C小调,如果是#号开头的调我们就 往下减去三个#号,最后只剩下了一个#号,这就由E大调变成了E小调,它的关系大小调最终我们就认定它就是G大调 E小调。

6、此调为F大调 D小调,我们加上三个b号就得到了 ,由原来的F大调变成了F小调,它的关系大小调就是bA大调 F小调。 7、此调为#F大调,减去三个#号只剩下三个#号就得到 ,由原来的#F大调变成#F小调,它的关系大小调就是 A大 调 #F小调。8、此调为G大调,因为不足三个#号,我们先 加上两个b号,我们去把#号去掉只剩下两个b号就得到了,由原来的G大调变成G小调,最后得到的关系大小调就是 bB大调 G小调。9、 此调为bA大调,我们在它的基础上加上三个b号就得到了 ,此调为bA小调,它的关系大小调是bC大调,一般我们不说bC大调,都是B大调,它跟B大调是等音调关系。以上是7个降号,我们去掉5个b号剩下的两个b号再加上三个#号,把那两b号变成#号就得到 五个#号就民B大调,#G小调。 10、此调为A大调 #F小调的话,正好三个#号,我们都去 掉了,由原来的A大调变成了A小调,它的关系大小调就是 C大调 A小调。 11、此调为bB大调,我们加上三个b号就得到了

人教版一年级下册音乐教案《小星星变奏曲》

一年级下册第六单元《月儿弯弯》 《小星星变奏曲》教学设计 教学目标: 1、有感情背唱歌曲《闪烁的小星》。准确视唱《小星星变奏曲》主题旋律。 2、通过大小屏切换的白板功能提升音乐表现力,在游戏、律动、微课等音乐活动中,初步感受《小星星变奏曲》各主题变奏。 教学准备: 电子琴、白板、头饰、星卡等 教学重难点: 重点:背唱《闪烁的小星》歌曲,准确视唱《小星星变奏曲》主题。 难点:根据《小星星变奏曲》的7个主题变奏变换动作。 教学过程: 一、情绪游戏欣赏导入 1、律动《If you are happy and you konw it》 师:同学们,请打开身体,准备好用肢体表现音乐了吗?

生:准备好了! 2、欣赏《摇篮曲》,导入情景。 师:请大家安静地闭上眼睛,静静聆听一首乐曲。你联想到了什么?……想好的同学,请轻轻睁开眼睛,慢慢走回座位。(学生依次回座位,屏幕空白页) 生:我想到了妈妈陪我入睡。 生:我想到了花园里,蝴蝶翩翩起舞。 生:我想到美丽夜空,月亮出来了…… 师:说得真好。请看,这首优美的《摇篮曲》把我们带到了这里(屏幕呈现-星空)。今天我们就来学习一首和繁星有关的歌曲。(ppt歌曲) 【设计意图:通过常规律动《if you are happy and you ko nw it》激发学生的表现热情。让学生在激情表演喜、怒、哀、乐的情绪中,开启音乐学习的旅程。此处强调带着问题倾听,通过静听《摇篮曲》,创设教学情景,引导学生感受夜色的美好与宁静。】 二、学习歌曲熟悉曲谱 1、初听

师:这首歌熟悉吗?会唱的小朋友可以在心里唱,我们一起边听边思考:这首歌有几个乐句?哪些乐句是相同的? 生:六个乐句,有三句是重复的。 2、视唱,纠正音高。 师:请跟老师唱曲谱,数一数这首歌用了哪些小音符写成? 生:do,re,mi,fa,sol,la六个音符写成的。(学生在黑板上指出歌曲使有的音。) 3、运用科尔文手势视唱。 4、划旋律线视唱。 5、轻声跟唱。 6、边唱边模仿星星闪烁的样子。 7、带头饰演唱,教师使用白板大小屏切换功能,现场录制学生表演和演唱。 8、学生看回放,自评、互评。 9、跟伴奏演唱、表演。 10、再次自评、互评。

五分钟教你认识简谱及五线谱

从零学音乐----教你认识简谱 和语言一样,不同民族都有过自己创立并传承下来的记录音乐的方式---记谱法。各民族的记谱方式各有千秋,但是目前被更广泛使用的是五线谱和简谱(据说简谱是由法国思想家卢梭于1742年发明的)。 简谱应该说是一种比较简单易学的音乐记谱法。它的最大好处是仅用7个阿拉伯数字 ----1234567,就能将万千变化的音乐曲子记录并表示出来,并能使人很快记住而终身不忘;同时涉及其他的音乐元素也基本可以正确显示。简谱虽然不是出现在中国,但是好象只有在中国得到非常广泛的传播。 一般来说,所有音乐的构成有四个基本要素,而其中最重要的是“音的高低”和“音的长短”: 1 音的高低:任何一首曲子都是高低相间的音组成的,从钢琴上直观看就是越往左面的键盘音越低,越往右面的键盘音越高。 2 音的长短:除了音的高低外,还有一个重要的因素就是音的长短。音的高低和长短的标住决定了该首曲子有别于另外的曲子,因此成为构成音乐的最重要的基础元素。 3 音的力度:音乐的力度很容易理解,也叫强度。一首音乐作品总会有一些音符的力度比教强一些,有些地方弱一些。而力度的变化是音乐作品中表达情感的因素之一。 4 音质:也可以称音色。也就是发出音乐的乐器或人声。同样的旋律音高男生和女声唱就不一样的音色;小提琴和钢琴的音色就不一样。 上述四项构成了任一首乐曲的基础元素。应该说简谱基本可以将这些基础性元素正确标住。 音符 在简谱中,记录音的高低和长短的符号,叫做音符。而用来表示这些音的高低的符号,是用七个阿拉伯数字作为标记,它们的写法是: 1 2 3 4 5 6 7读法为:do re mi fa so la si(多来米发梭拉西)。这些唱出来的声音符号叫唱名。这七个音还有与之相对应的英文字母的名称:1--C;2--D;3--E;4--F;5--G;6--A;7--B。这些字母叫做音名。它们是固定不变的。 音符是和音高紧密相连的,没有一个不带音高的音符。 音高

五线谱入门教学

一、五线谱入门 五线谱的构成 用来记载音符的五条平行横线叫做五线谱。五线谱的五条线和由五条线所形成的间,都自下而上计算的。假使音乐作品是写在数行五线谱上,那么,这数行五线谱还要用连谱号连结起来。连谱号:包括起线(连结数行五线谱的垂直线)和括线(连结数行五线谱的括弧)两个组成部分。 括线分花的和直的两种。 音符和休止符

用以记录不同长短的音的进行的符号叫做音符。 用以记录不同长短的音的间断的符号叫做休止符。 音值的基本相互关系是:每个较大的音值和它最近的较小的音值的比例是2与1之比。例如:全音符等于两个二分音符,一个二分音符等于两个四分音符;全休止符等于两个二分休止符等。 拍号 ~ 在一段音乐进行过程中,乐音通常会以一定的力度強弱來反复进行,如一般常见的华尔兹舞曲就是以"澎-恰-恰"(強-弱-弱)的三拍子形式來进行,这就是拍号。(1):二拍子系统:二拍子系统是以強-弱、強-弱的力度形态进行的拍子系统,常见的二拍子拍号如下:

在上方的数字代表一个小节有几拍,下方的数字则代表用几分音符当一拍,例如2/4代表一个小节有2拍,用4分音符当一拍;4/4代表一个小节有4拍,用4分音符当一拍。 (2)三拍子系统:三拍子系统是以強-弱-弱的力度形态进行的拍子系统,常见的三拍子拍号如下: 例:3/4代表一个小节有3拍,用4分音符当一拍;3/8代表一个小节有3拍,用8分音符当一拍;6/8代表一个小节有6拍,用8分音符当一拍;9/8代表一个小节有9拍,用8分音符当一拍。 (3)后拍子系统:后拍子系统是前二者的综合运用,常见的有5拍和7拍两种。 谱号 前面已经讲过,在五线谱上音的位置愈高,音也愈高,反之音的位置愈低,音也愈低,但到底高多少低多少却无法确定。在五线谱上要确定音的高低,必须

欣赏 乐曲《查尔达斯舞曲》片段 教学设计

欣赏乐曲《查尔达斯舞曲》片段教学设计 1教学目标 《查尔达斯舞曲》原是意大利作曲家维里奥?蒙蒂的一首带有吉普赛风格的小提琴曲,包括“慢—快—慢—快”4个主题,乐曲慢板主题悠扬而舒缓,快板主题急促欢快,从而形成鲜明的对比,后来该曲被改编成多种乐器的独奏曲目并广为流传。通过对这首歌曲的欣赏,学生进一步加深对大号、小号、长号、圆号这4种乐器的认识,提高聆听不同乐器音色、辨认乐器名称的能力。 2学情分析 孩子们对欣赏教材上的古典音乐不感兴趣,这是许多教中、高年级的音乐教师头疼的问题。如何让孩子乐于参与敢于表现是我们要思考的问题。本课教学设计以管弦乐队演奏为切入点,用激动人心的演奏会吸引孩子的眼球,从而知道乐曲的结构,四个主题段落分别用四种乐器演奏,引导学生用不同的方式去表现音乐,将他们不喜欢的古典音乐变成这么动感有魅力的。 本课通过聆听乐段找出演奏乐器、用舞蹈表现音乐来调动学生的主动学习性,让孩子在舞蹈中感受音乐旋律与节奏,从而熟悉音乐主题,进一步感受音乐与动作之间的联系,对音乐主题有更深层的理解。 通过本课学习,让学生能够关注古典音乐,辨认乐器,为进一步认识更多乐器打好基础。 3重点难点 辨认乐器,感受不同乐器演奏出不同的情绪、速度,能够主动参与律动,熟悉音乐主题,并能感受音乐与动作之间的联系。 4教学过程 活动1【导入】一、热情导入 师用西洋乐器—萨克斯演奏所学歌曲《土风舞》,带领学生一起唱起来、跳起来,激起课堂气氛。 活动2【讲授】二、听赏视频 1、邀请学生欣赏管弦乐演奏会,提出疑问,引出课题《查尔达斯舞曲》。 (播放管弦乐队演奏视频《查尔达斯舞曲》(完整版)。) 2、提问:这段乐曲的速度有没有变化?根据速度的变化,你觉得乐曲可以分为几个部分?(学生自由回答后请几个学生来贴一贴速度术语) 3、师介绍曲名:这首乐曲是意大利作曲家蒙蒂所创作的——查尔达斯舞曲。 设计意图: 大部分学生对古典音乐不感兴趣,以学生感兴趣的音乐会版本《查尔达什舞曲》吸引住学生的眼球,让学生古感受古典+流行完美结合的新音乐模式带给人们的震撼,并让学生初步感受乐曲慢-快-慢-快的结构特点,为下面的欣赏学习做铺垫。 活动3【活动】三、走进乐曲 (一)1、听A部分主题,听辨乐器音色特点 ①提问:四位演奏家藏在了乐曲当中,聆听第一段,看是谁演奏的? (第一段音乐是大号演奏,大号的音色是低沉的,乐段速度慢,旋律有忧郁感。) ②提问:乐曲速度有什么变化? (慢—快—慢—快) 2、低沉的音乐可以用什么方式来表现? (学生聆听完自由发言:唱歌、跳舞的方式去表现乐曲。) A第一遍:老师用自己的方式表现乐段,引导学生从速度、情绪、节奏等方面来比较 B第二遍教师在聆听过程中用手势引导学生感受旋律的高低起伏,师生用双手握球的感觉向前拉伸体验吹长泡泡,提示学生感受乐句。

五分钟教你认识简谱和五线谱

五分钟教你认识简谱和五线谱

三十二 八分之一拍 分音符 上例可以看出:横线有标注在音符后面的,也有记在音符下面的,横线标记的位置不同,被标记的音符的时值也不同。从表中可以发现一个规律,就是:要使音符时值延长,在四分音符右边加横线“—”,这时的横线叫延时线、延时线越多,音持续的时间(时值)越长。相反,音符下面的横线越多,则该音符时间越短。 休止符 音乐中除了有音的高低,长短之外,也有音的休止。表示声音休止的符号叫休止符,用“0”标记。通俗点说就是没有声音,不出声的符号。 休止符与音符基本相同,也有六种。但一般直接用0代替增加的横线,每增加一个0,就增加一个四分休止符时的时值。 半音与全音 音符与音符之间是有“距离”的,这个距离是一个相对可计算的数值。在音乐中,相邻的两个音之间最小的距离叫半音,两个半音距离构成一个全音。表现在钢琴上就是钢琴键盘上紧密相连的两个键盘就构成半音,而隔一个键盘的两个键盘就是全音。 白键位置上的3和4音、7和音之间构成半音;而1和2之间,2和3之间,以及4和5、6和7之间构成是全音。而1和2之间隔着一个黑键,1和2与这个黑键都构成半音。 变化音 将标准的音符升高或降低得来的音,就是变化音。将音符升高半音,叫升音。用“#”(升号)表示,一般写在音符的左上部分,如下所示: 标准的音降低半音,用“ b "(降号)表示,同样写在音符的左上部分: 基本音升高一个全音叫重升音,用“x"(重升)表示,这和调式有关。 基本音降低全音叫重降音。用“ bb”(重降)表示。 将已经升高(包括重升)或降低(包括重降)的音,要变成原始的音,则用还原记号“”表示 附点音符附点就是记在音符右边的小圆点,表示增加前面音符时值的一半, 带附点的

湘艺版音乐六年级下册第4课《查尔达斯舞曲》(小提琴独奏)教案

《查尔达斯舞曲》(小提琴独奏)教案 教学目标: 1、了解意大利的风土人情,以及意大利音乐风格特点和意大利舞蹈特点。 2、能够对意大利音乐感兴趣,能积极参与相关音乐实践活动并认真探索其文化内涵。 教学重点: 感受意大利乐曲的音乐情绪,体验其丰富的音乐文化内涵。 教学难点: 能积极参与相关音乐实践活动并认真探索其文化内涵。提高对外国音乐文化多样性的认识。教学过程: 一、谈话导入课题。 1、同学们喜欢跳舞吗?能说说你知道的舞蹈吗? 2、今天老师带同学们去感受一曲意大利舞曲——查尔达斯舞曲。 二、新授。 1、完整欣赏小提琴独奏《查尔达斯舞曲》,感受意大利音乐风格与特点。 2、请学生说说听后的感受。 3、再次欣赏《查尔达斯舞曲》,引导学生感受整体音乐速度的变化并从作品中体会意大利舞曲“查尔达斯舞曲”由慢而快的速度特点。深入体会意大利音乐元素。 4、分主题聆听,体验各主题情绪之间的不同。 三、总结。 众多的国家都有灿烂的文化与艺术,体会到了意大利人民热情的舞曲与舞蹈,希望在今后的学习中,能够更多的了解体验各国家的音乐作品。

1、我流泪并不是因为我想你,而是我恨我自己。我不哭并不是因为我不爱你,而是爱你胜过爱自己。 2、纵然我有千万般好,你也不会看到,因为你没有一双爱我的眼睛。 3、任何时候都可以开始做自己想做的事,希望你不要用年龄和其他东西去束缚自己。 4、思念一个人,不必天天见,不必互相拥有或相互毁灭,不是朝思暮想,而是一天总想起他几次。听不到他的声音时,会担心他;一个人在外地时,会想念和他一起的时光。 5、想像中的一切,往往比现实稍微美好一点。想念中的那个人,也比现实稍微温暖一点。思念好像是很遥远的一回事,有时却偏偏比现实亲近一点。 6、不幸是一种秘密。一说就会扩散,人人尽知,从而将不幸扩大。因此,要绷住,不要泄露,不要倾诉,不要告诉任何人。

浅析莫扎特《小星星变奏曲》

浅析莫扎特《小星星变奏曲》 【摘要】音乐天才莫扎特的创作成就遍及各个领域,钢琴音乐是其重要组成部分,本文以《小星星变奏曲》(K265)为例,浅谈莫扎特音乐的优雅与细腻,体会其音乐所歌颂的真、善、美,深入了解欧洲音乐文化中的这一抹璀璨。 【关键词】莫扎特;《小星星变奏曲》 莫扎特写过很多变奏曲,《小星星变奏曲》(K265)的音乐主题出自法国歌曲《妈妈,让我告诉你吧》,节奏与旋律单纯质朴,莫扎特为它配上十二段可爱又富有魅力的变奏,使得音乐自然而愉快地流淌。这首乐曲后被改编成儿歌《小星星》,跳跃而活泼的曲调“一闪一闪亮晶晶,满天都是小星星”朗朗上口,广为流传。乐曲调性为C大调,在变奏中转为c小调,最后以C大调结粗束。主题的呈示,简单而欢快,瞬间唤起了童年时无数美好的回忆。 演奏者弹奏时应富有童心,把自己想象成一个小小幻想家,在璀璨的月空和广袤的宇宙里遨游,在月亮船上遨游世界,要表达童年对世间一切美好幻想。谱面的速度与感情记号已经无法全面而深刻地表达音色,十二段不同音色的变化需要用想象出的音色来表现,在童话的世界里弹出闪烁般的新意。主题是喜悦而天真的,只有拥有童趣的心才能感受到好奇的美好,不可以只读音符,弹奏成齐步走的进行曲感觉,旋律应起伏、歌唱与蔓延,富有想象力。 第一次变奏,围绕主题旋律展开,右手十六分音符的跑动,轻快、欢腾,勾勒出一幅与同伴嬉笑打闹的场面,左手围绕着主和弦做了相应的变化,左手在连线处应该把音符弹得流畅婉转和右手的连续的十六分音符形成对比,从而衬托主题。第一次变奏,不能完全的宣泄,应含蓄地表达,像远处吹来的风使得风铃微微飘荡,又像母亲摸着小宝贝光滑的皮肤,小心翼翼、无限疼爱。 第二次变奏,右手是主题的呈示,音符由原来的单音变成了音程与和弦,加强了音响效果。装饰音强调了旋律的色彩感,左手换成了十六分音符的跑动,与第一段变奏似乎形成了应答关系,音程的跨度很大,有点像捉迷藏的感觉,时而出现,时而隐藏。像是小宝宝与妈妈说话,牙牙学语般的稚嫩,弹奏应轻巧而柔软,与第一段形成呼应。 第三次变奏,右手换成了分解和弦,旋律如山峦起伏的外形,有一种歌唱的感觉,中间也有一些大跳,如小鸟歌唱一样悦耳动听,同时也充满了活力。右手的旋律全部都是三连音,可以想象成小宝宝在妈妈的帮助下从高高的滑梯上滑下,

相关主题
文本预览
相关文档 最新文档