当前位置:文档之家› 平面向量中“三点共线定理”妙用教学文稿

平面向量中“三点共线定理”妙用教学文稿

平面向量中“三点共线定理”妙用教学文稿
平面向量中“三点共线定理”妙用教学文稿

平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用

对平面内任意的两个向量b a b b a

//),0(, 的充要条件是:存在唯一的实数 ,使

b a

由该定理可以得到平面内三点共线定理:

三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点

的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v

1x y 。

特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy

笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。

例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若

1200OB a OA a OC u u u r u u u r u u u r

,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=

( ) A .100

B .101

C .200

D .201

解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()

1002

a a S ,故选

A 。

点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。

例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则

y

x 4

1

的最小值是

解:Q 点P 落在ABC V 的边BC 上 B ,P,C 三点共线

AP xAB yAC u u u r u u u r u u u r

Q 1x y 且x>0,y>0

14141444()1()()145y x y x

x y x y x y x y x y x y

Q x>0,y>040,0y x x y

由基本不等式可知:4424y x y x

x y x y

,取等号时4y x

x y

224y x 2y x 0,0x y Q 2y x 1x y Q 12,33x y ,符合 所以

y

x 4

1 的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.

例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC

中,13AN NC u u u r u u u r ,点P 是BC 上的一点,若211AP mAB AC u u u r u u u r u u u r

,则实数

m 的值为( ) A .911 B. 511 C. 311 D. 211

解:,,B P N Q 三点共线,又

Q 2284111111

AP mAB AC mAB AN mAB AN u u u r u u u r u u u r u u u r u u u r u u u r u u u r

8111m 3

11

m ,故选C

例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直

线分别交直线AB 、AC 于不同的两点M 、N ,若AB u u u r

= m AM ,AC =n AN ,则m +n 的值为 .

解:Q 因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行

四边形法则可知:1()2

AO AB AC u u u r u u u r u u u r

m AB AM u u u r u u u u r Q =,AC nAN u u u r u u u r

图3

图2

1()2AO mAM nAN u u u r u u u u r u u u r

22

m n AO AM AN u u u r u u u u r u u u r

又,,M O N Q 三点共线,

由平面内三点共线定理可得:

122

m n 2m n 例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、

Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.

设OA x OP ,OB y OQ ,证明:y

x 1

1

是定值; 证明:Q 因为G 是OAB V 的重心, 211()()323

OG OA OB OA OB u u u r u u u r u u u r u u u r u u u r

1OP xOA OA OP x

u u u r u u u r u u u r u u u r

Q 1OQ yOB

OB OQ y

u u u r u u u r u u u r u u u r

Q

111111()()

3333OG OA OB OP OQ OG OP OQ x y

x y

u u u r u u u r u u u r u u u

r u u u r u u u r u u u r u u u r

又,,P G Q Q 三点共线,11133x y 113x y 11

x y

为定值3

例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,

在平行四边形ABCD 中,13AE AB u u u r u u u r ,14AF AD u u u r u u u r

,CE 与BF 相交于G

点,记AB a u u u r r ,AD b u u u r r

,则AG u u u r _______

A .2177a b r r B. 2377a b r r C. 3177a b r r D. 4277

a b r r 分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

解:,,E G C Q 三点共线, 由平面内三点共线定理可得:存在唯一的一对实数x 使得

(1)AG x AE x AC u u u r u u u r u u u r

, Q 1133

AE AB a u u u r u u u r r ,AC a b u u u r r r

图4

图5

图6

12(1)()(1)(1)33

x AG x a x a b a x b u u u r r r r r

r …………………①

又,,F G B Q 三点共线, 由平面内三点共线定理可得:存在唯一的一对实数 使得

(1)AG AB AF u u u r u u u r u u u r

1144

AF AD b u u u r u u u r r Q ,,

1(1)4

AG a b u u u r r r

…………………………… ②

由①②两式可得:213

114x x

6737x

3177AG a b u u u r r r 点评:本题的解法中由两组三点共线(F 、G 、B 以及E,G,C 三点在一条直线

上),利用平面内三点共线定理构造方程组求解,避免了用的向量的加法和平面向理基本定理解答本题的运算复杂,达到了简化解题过程的效果。

例6的变式一:如图7所示,在三角形ABC 中,AM ﹕AB=1﹕3,AN ﹕AC=1﹕4,BN 与CM 相交于点P ,且a AB

,b AC ,试用a 、b

表示

解:,,N P B Q 三点共线, 由平面内三点共线定理可得:存在唯一的一对实数x,y

使得,1AP xAB y AN x y u u u r u u u r u u u r

,

Q AN ﹕AC=1﹕4, b AC AN 4141 1444

y y x AP xAB AC xa b xa b

u u u

r u u u r u u u r r r r r ……① 又,,C P M Q 三点共线, 由平面内三点共线定理可得:存在唯一的一对实数 , 使得

,1AP AM AC u u u r u u u u r u u u r ∵AM ﹕AB=1﹕3 ∴a AB AM

3

131 ,,

133

AP a b a b u u u r r r r r …………………………… ②

由①②两式可得:1314

x x

3112

11x

81,11x y y Q 321111AP a b u u u r r r P

A B

C

M

N

平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB =3a, CD =-5a ,且||||AD BC = ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =1 3 CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB =a +2b ,BC = -5a +6b ,CD =7a -2b ,则一定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =x AB ,AE =y AC ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB =2AC ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB =(sin α,cos β), α,β∈(-2π,2π),则α+β= * 11.已知a =(1,2) ,b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

2.3.1平面向量基本定理(教学设计)

2.3.1平面向量基本定理(教学设计) [教学目标] 一、知识与能力: 1.掌握平面向量基本定理; 2.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 二、过程与方法: 体会数形结合的数学思想方法;培养学生转化问题的能力. 三、情感、态度与价值观: 培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题. 教学重点:平面向量基本定理,向量的坐标表示;平面向量坐标运算 教学难点:平面向量基本定理. 一、复习回顾: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、师生互动,新课讲解: 思考:给定平面内任意两个向量e 1,e 2,请作出向量3e 1+2e 2、e 1-2e 2,平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?. 在平面内任取一点O ,作OA =e 1,OB =e 2,OC =a ,过点C 作平行于直线OB 的直线,与直线OA 交于点M ;过点C 作平行于直线OA 的直线,与直线OB 交于点N . 由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2. 由于OC OM ON =+,所以a =λ1e 1+λ2e 2,也就是说任一向量a 都可以表示成λ1e 1+λ2e 2的形式. 1. 平面向量基本定理 (1)定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使得

平面向量中三点共线定理探究

平面向量中“三点共线向量定理”探究 三点共线定理在教材中没有作为定理使用,但在各级考试中却应用广泛,笔者尝试通过 聚焦结论,优化思路,多维度揭示定理的价值所在. () 0.a b b a b a b λλ≠=r r r r r r r r 向量共线定理:对平面内的任意两个向量 、 , // 的充要条件是:存在唯一的 实数 ,使由该定理可以得到平面内三点共线定理: ()121212+= OA OB OP OP OA OB R λλλλλλ=+∈u u u r u u u r u u u r u u u r u u u r u u u r 三点共线定理:已知平面内一组基底 , 及任一向量 ,, , 则A ,B ,P 三点共线,当且仅当 1. ()() ()1122121,,1,=1,,+= A B P AP AB OP OA OB OA OP OA O OP OA O B B λλλλλλλλλλλλλ=?-=-?=-+-=+=u u u r u u u r u u u r u u u r u u u r u u u u u u r u u u r u u u r u u u r u u u r u u u r r 证明:如图 , 三点共线,当且仅当有唯一一个实数 , ,且使令则 1. ()()()()()() 1212112212=1,1;2+= OA OP OP OA OB OP OA OB OA AP AB OB OP OA OB λλλλλλλλλλλλλλ?-===-+?-=-?=+u u u r u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u u u r r u ur 的系数之和等于1 即为向量,的变化而变化的定理特.如图, 且1征:向量, 的系数点P 的位置是随着令 , 当点P 在线段AB 内()() ()() ()() 12121212121,1,,=10,10,1=1,01,0=10,,0=0=110 =1=10 1. λλλλλλλλλλλλλλλλλλλλλλλλλ-∈=∈-∈-∞=∈+∞<-<<>∈+∞=∈-∞-===-===此时 此时,0,当点P 在线段AB 的延长线上时, ,点P 在线段AB 反向延长线上时, ,当点P 与点A , ,当点P 与点B 重合时, 时此时此时此时,, ,重合时, 111AP PB OP OA OB λλλλ ?==+++u u u r u u u r u u u r u u u r u u u r 推论:在OAB 中,P 为直线AB 上的一点,且则 O 1()

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其扩展应用详解 一、平面向量中三点共线定理的扩展及其应用 一、问题的提出及证明. 1、向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是: .O A xOB yOC =+(O 为平面内任意一点),其中1x y +=. 那么1x y +<、1x y +>时分别有什么结证?并给予证明. 结论扩展如下:1、如果O 为平面内直线BC 外任意一点,则 当1x y +<时 A 与O 点在直线BC 同侧,1x y +>时, A 与O 点在直线BC 的异侧,证明如下: 设 O A xOB yOC =+ 且 A 与B 、C 不共线,延长OA 与直线BC 交于A 1点 设 1O A O A λ=(λ≠0、λ≠1)A 1与B 、C 共线 则 存在两个不全为零的实数m 、n 1 O A m O B n O C =+ 且1m n += 则 OA mOB nOC λ=+ m n OA OB OC λ λ ?=+ m x λ ∴= 、n y λ = 1 m n x y λ λ ++= = (1)1λ> 则 1x y +< 则 11 1 OA OA OA λ = < ∴A 与O 点在直线BC 的同侧(如图[1]) (2)0λ<,则1 01x y λ +=<<,此时OA 与1OA 反向 A 与O 在直线BC 的同侧(如图[2]) 图[2] B C A 1 O A O A 1 B C A 图[1]

(3)1o λ<<,则1x y +> 此时 111 OA OA OA λ => ∴ A 与O 在直线BC 的异侧(如图[3]) 图[3] 2、如图[4]过O 作直线平行AB , 延长BO 、AO 、将AB 的O 侧区 域划分为6个部分,并设OP xOA yOB =+, 则点P 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:0001x y x y ??<+??>??<+?? ????-<+

2.3.1平面向量基本定理(教、学案)

2. 3.1 平面向量基本定理 教学目标: (1)了解平面向量基本定理; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量 解决实际问题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa = 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ 2使 a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被 a ,1e ,2e 唯一确定的数量 三、讲解范例:

例1 已知向量1e ,2e 求作向量-2.51e +32e . 例2 如图 ABCD 的两条对角线交于点M ,且=a , =b ,用a ,b 表示,,和 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4 例4(1)如图,,不共线,=t (t ∈R)用,表示. (2)设OA 、OB 不共线,点P 在O 、A 、B 所在的平面内,且 (1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线. 例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的实数,d a b λμλμ=+、使与c 共线. 四、课堂练习:见教材 五、小结(略) 六、课后作业(略): 七、板书设计(略) 八、教学反思

向量证三点共线 (1)

利用共线向量巧解三点共线 例题:如图,A,B,C是平面内三个点,P是平面内任意一 点,若点C在直线AB上,则存在实数λ,使得PC=λPA+ (1-λ)PB. 证法探究: 分析:初看欲证目标,始感实难下手。我们不妨从结论出发探寻线路,欲证PC=λPA+(1-λ)PB,只需证=λ+-λ?-=λ(-)? =λ?∥.这样证明思路有了。 证法:∵向量BC与向量BA共线,∴BC=λBA,即PC-PB=λ(PA -PB),PC=λPA+PB-λPB,∴PC=λPA+(1-λ)PB. 证毕,再思考一下实数λ的几何意义究竟如何。考察向量等式BC=λBA,结合图形,易知,当点C在线段AB上时,则BC 与BA同向,有0≤λ≤1;当点C在线段AB延长线上时,则BC 与BA反向,有λ<0;当点C在线段BA延长线上时,则BC与BA 同向,有λ>1. 此例题逆命题亦成立,即 已知A,B,C是平面内三个点,P是平面内任意一点,若存在实数λ,μ,有PC=λPA+μPB,且λ+μ=1,则A,B,C三点共线. 故此逆命题可作三点共线判定方法。

为方便起见,我们将两命题作为性质叙述如下: 性质1:已知A ,B ,C 是平面内三个点, P 是平面内任意一点,若A ,B ,C 三点共线,则存在实数λ,使得PC =λPA +(1-λ)PB . 或叙述为: 已知A ,B ,C 是平面内三个点, P 是平面内任意一点,若A ,B ,C 三点共线,则存在实数λ,μ,使得PC =λPA +μPB ,则有λ+μ=1. 性质2:已知A ,B ,C 是平面内三个点,P 是平面内任意一点,若存在实数λ,μ,有PC =λPA +μ PB ,且λ+μ=1,则A , B , C 三点共线. 三点共线性质在解题中的应用: 例1 如图,在ABC ?中,点O 是BC 的中点,过点O 的直线分别 交直线AB 、AC 于不同的两点M 、N ,若AB =AM m ,AC =AN n ,则n m +的值为 . 解析:连结AO ,因为点O 是BC 的中点,所以有AO =2121+=AN n AM m 2121+,又因为M 、O 、N 三点共线,所以12121=+n m ,故2=+n m . 点评:因为点O 是BC 的中点,所以λ=21=,由性质1,

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

高中数学《平面向量基本定理》导学案

2.3.1平面向量基本定理 1.平面向量基本定理 2.向量的夹角

1.判一判(正确的打“√”,错误的打“×”) (1)平面向量的一组基底e 1,e 2一定都是非零向量.( ) (2)在平面向量基本定理中,若a =0,则λ1=λ2=0.( ) (3)在平面向量基本定理中,若a ∥e 1,则λ2=0;若a ∥e 2,则λ1 =0.( ) (4)表示同一平面内所有向量的基底是唯一的.( ) 答案 (1)√ (2)√ (3)√ (4)× 2.做一做 (1)设e 1,e 2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是( ) A .e 1,e 2 B .e 1+e 2,3e 1+3e 2 C .e 1,5e 2 D .e 1,e 1+e 2 答案 B 解析 ∵3e 1+3e 2=3(e 1+e 2), ∴两个向量共线,不能作为基底. (2)(教材改编P 94向量夹角的定义)在锐角三角形ABC 中,关于向量夹角的说法正确的是( ) A.AB →与BC → 的夹角是锐角 B.AC →与AB → 的夹角是锐角 C.AC →与BC → 的夹角是钝角 D.AC →与CB → 的夹角是锐角 答案 B 解析 AB →与BC →的夹角是钝角,AC →与AB →的夹角是锐角,AC →与BC →

的夹角是锐角,AC →与CB → 的夹角是钝角.故选B. (3)若向量a ,b 的夹角为30°,则向量-a ,-b 的夹角为( ) A .60° B .30° C .120° D .150° 答案 B 解析 将向量移至共同起点,则由对顶角相等可得向量-a ,-b 的夹角也是30°. (4)在等腰直角三角形ABC 中,∠A =90°,则向量AB →,BC → 的夹角为________. 答案 135° 解析 将向量移至共同起点,由向量的夹角的定义知AB →,BC → 夹角为135°. 探究1 正确理解基底的概念 例1 设O 是平行四边形ABCD 两对角线的交点,给出下列向量组: ①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB → ,其中可作为这个平行四边形所在平面的一组基底的是( ) A .①② B .①③ C .①④ D .③④ 解析 ①AD →与AB →不共线;②DA →=-BC →,则DA →与BC →共线;③CA → 与DC →不共线;④OD →=-OB →,则OD →与OB → 共线. 由平面向量基底的概念知,只有不共线的两个向量才能构成一组基底,故①③满足题意.

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点 共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线, (设直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则y x 4 1 的最小值是 解:Q 点P 落在ABC V 的边BC 上 B ,P,C 三点共线 AP xAB yAC u u u r u u u r u u u r Q 1x y 且x>0,y>0 14141444()1()()145y x y x x y x y x y x y x y x y   Q x>0,y>040,0y x x y 由基本不等式可知:4424y x y x x y x y ,取等号时

平面向量基本定理导学案

§2.3.1平面向量基本定理 高一( )班 姓名: 上课时间: 【目标与导入】 1、学习平面向量基本定理及其应用; 2、学会在具体问题中适当选取基底,使其他向量能够用基底来表达。 【预习与检测】 1、点C 在线段AB 上,且35 AC AB --→ --→ = ,AC BC λ--→--→=,则λ等于( ) A 、23 B 、32 C 、-23 D 、-32 2、设两非零向量12,e e →→不共线,且12k e e →→+与12e k e →→ +共线,则k 的值为( )。 .1.1.1.0A B C D -± 3、已知向量12,e e → → ,作出向量1223OA e e → → =+与 122(3)OB e e → →=+-。 两个向量相加与物理学中的两个力合成相似,如果与力的分解类比,上述所作的OA 分解成两个向量:在1e → 方向上的____与在2e → 方向上的______,OB 则分解成_____与_____。 4、阅读课本P93—94,了解平面向量基本定理:如果 12 ,e e →→ 是同一平面内的两个_______ 向量,那么对于这一平面内的______向量a → ,有且只有一对实数12,λλ, 使_____________, 其中不共线的向量 12 ,e e → →叫做表示这一平面内所有向量的一组__________。 5、已知两个非零向量,a b →→,作,O A a O B b →→→→==,则()0180A O B θθ∠=?≤≤?叫做向量a → 与 b → 的__________,若0θ=?,则a →与b →_______;若180θ=?,则a →与b → __________;若 90θ=?,则a → 与b → _______,记作______。 【精讲与点拨】 如图所示,在平等四边形ABCD 中,AH=HD ,MC= 1 4 BC ,设,AB a AD b →→→→==,以,a b →→ 为基底表示,,AM MH MD →→ 。 C 2 e → 1 e → A B

向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用 蒋李萍 2011年10月24日 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =)得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+ ∴()OB OA μOC OA -=- ∴AB μAC = ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+,且1λμ+=.揭示了三点共线的又一个性质; 3. 特别地,12λμ== 时,1 ()2 OB OA OC =+,点B 为AC 的中点,揭示了OAC 中线OB 的一个向量公式,应用广泛. 应用举例: 例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且1 3 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明BN λBM μBC =+,且1λμ+=. 证明:由已知BD BA BC =+,又点N 在BD 上,且1 3 BN BD = ,得 1111()3333BN BD BA BC BA BC ==+=+ 又点M 是AB 的中点, 1 2BM BA ∴=,即2BA BM = 21 33BN BM BC ∴=+ 而21133 += ∴M 、N 、C 三点共线. D A B C M N

平面向量基本定理03913

2.3.1平面向量基本定理 学习目标: 1. 了解基底的含义,理解平面向量基本定理,会用基底表示平面内任一向量. 2. 掌握两个向量夹角的定义以及两向量垂直的定义. 3. 两个向量的夹角与两条直线所成的角. 学习重点:平面向量基本定理 学习难点:两个向量的夹角与两条直线所成的角. 课上导学: [基础初探] 教材整理1平面向量基本定理 阅读教材P93至P94第六行以上内容,完成下列问题. 1. ____________ 定理:如果e i, e是同一平面内的两个向量,那么对于这一平面内的____________ 向量a, ______________ 实数入,入2,使a= _________________________ 2. ____________ 基底:___________________________ 的向量e1, e2叫做表示这一平面内______________________________ 向量的一

组基底. 判断(正确的打“,错误的打“X” ) (1) 一个平面内只有一对不共线的向量可作为表示该平面内所 有向量的基底.() (2) 若e i, e是同一平面内两个不共线向量,则入& + 说 k, 入2为实数)可以表示该平面内所有向量.() (3) 若ae i + be2=ce i + de2(a, b, c, d€ R),则a = c, b = d.( ) 教材整理2两向量的夹角与垂直 阅读教材P94第六行以下至例1内容,完成下列问题. 1. __________________ 夹角:已知两个_________________ a 和b,作OA= a, OB= b,则__ = B叫做向量a与b的夹角.

高中数学必修4优质学案(第三辑)平面向量基本定理 Word版含解析

§平面向量的基本定理及坐标表示 .平面向量基本定理 【课时目标】 .理解并掌握平面向量基本定理. .掌握向量之间的夹角与垂直. 【知识梳理】 .平面向量基本定理 ()定理:如果,是同一平面内的两个向量,那么对于这一平面内的向量,实数λ,λ,使=. ()基底:把的向量,叫做表示这一平面内向量的一组基底. . 两向量的夹角与垂直 ()夹角:已知两个和,作=,=,则=θ (°≤θ≤°),叫做向量与的夹角. ①范围:向量与的夹角的范围是. ②当θ=°时,与. ③当θ=°时,与. ()垂直:如果与的夹角是,则称与垂直,记作. 【作业反馈】 一、选择题 .若,是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) .-,-.+,+ .--.+,- .等边△中,与的夹角是( ) .°.°.°.° .下面三种说法中,正确的是( ) ①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;② 一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③ 零向量不可作为基底中的向量. .①②.②③.①③.①②③ .若=,=,=λ(λ≠-),则等于( ) .+λ.λ+(-λ) .λ++ .如果、是平面α内两个不共线的向量,那么在下列各命题中不正确的有( ) ①λ+μ(λ、μ∈)可以表示平面α内的所有向量; ②对于平面α中的任一向量,使=λ+μ的实数λ、μ有无数多对; ③若向量λ+μ与λ+μ共线,则有且只有一个实数λ,使λ+μ=λ(λ+μ); ④若实数λ、μ使λ+μ=,则λ=μ=. .①②.②③.③④.② .如图,在△中,是边上的中线,是上的一点,且=,连结并延长交于,则 等于( )

必修四平面向量基本定理

平面向量基本定理 [学习目标] 1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点一 平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 思考 如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG → , a . 答案 通过观察,可得: AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF → =4e 1-4e 2, GH → =-2e 1+5e 2,HG → =2e 1-5e 2,a =-2e 1. 知识点二 两向量的夹角与垂直 (1)夹角:已知两个非零向量a 和b ,如图,作OA →=a ,OB → =b ,则∠AOB =θ (0°≤θ≤180°),叫做向量a 与b 的夹角. ①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a⊥b .

思考 在等边三角形ABC 中,试写出下面向量的夹角. ①AB →、AC →;②AB →、CA →;③BA →、CA →;④AB →、BA →. 答案 ①AB →与AC → 的夹角为60°; ②AB →与CA → 的夹角为120°; ③BA →与CA → 的夹角为60°; ④AB →与BA → 的夹角为180°. 题型一 对向量的基底认识 例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________. ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量; ②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2= λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. 答案 ②③ 解析 由平面向量基本定理可知,①④是正确的. 对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的. 对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个. 跟踪训练1 设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)

苏教版高中数学《平面向量基本定理》word导学案

课题: 2.3.1平面向量基本定理 班级: 姓名: 学号: 第 学习小组 【学习目标】 1、了解平面向量基本定理; 2、掌握平面向量基本定理及其应用。 【课前预习】 1、共线向量基本定理 一般地,对于两个向量() b a a ,0≠, 如果有一个实数λ,使___________( ),那么b 与a 是共线向量;反之,如果 b 与)0(≠a a 是共线向量,那么有且只有一个实数λ,使______________。 2、(1)火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度。 (2)力的分解。 (3)平面内任一向量是否可以用两个不共线的向量来表示。如图,设21,e e 是平面内两个不共线的向量,a 是平面内的任一向量。 3、平面向量基本定理。 4、基底,正交分解。 思考:平面向量基本定理与前面所学的向量共线定理,在内容和表述形式上有什么区别和联系? 【课堂研讨】 例1、如图,平行四边形ABCD 的对角线AC 和BD 交于点M ,b AD a AB ==,, 试用基底b a ,表示MB MA MC ,,和MD 。 例2、如图,质量为m 的物体静止地放在斜面上,斜面与水平面的夹角为θ, 求 斜 面 对 物 体 的 摩 擦 力 f 。 O j v y v 1e a A B M D C 2e

例3、设21,e e 是平面内的一组基底,若1232,AB e e =-124,BC e e =+2198e e CD -= 求证:D B A ,,三点共线。 【学后反思】 θ W p f f -

课题: 2.3.1平面向量的基本定理 班级: 姓名: 学号: 第 学习小组 【课堂检测】 1、如图,已知向量21,e e ,求作下列向量: (1)2132e e +- (2)215.15.2e e + 2、若21,e e 是表示平面内所有向量的一组基底,则下面的四组向量中不能作为一组基底的是( ) A 、2121e e e e -+和 B 、12216423e e e e --和 C 、122133e e e e ++和 D 、212e e e +和 3、已知ABC ?中,D 是BC 的中点,用向量AC AB ,表示向量AD 。 4、设Q P ,分别是四边形的对角线AC 与BD 的中点,a BC =,b DA =并且b a ,不是共线向量,试用基底b a ,表示向量PQ 。 【课后巩固】 1、设b a ,是不共线向量,若b a 4-与b a k +共线,则实数________=k 2、ABC ?中,若F E D ,,依次是AB 的四等分点,则以21,e CA e CB ==为基底时, __________=CF 3、若21213,e e OB e e OA -=+=,215e e m OC -=,且C B A ,,三点共线, 则实数=m _________________。 4、设() 011≠e e ,四边形ABCD 中,e AD e DC e AB 2,5,3===,e BC 2=,则四边形是____________ 5、如图,ABCD 是一个梯形,CD AB //且CD AB 2=,M 、N 分别是DC 和AB 中 1e 2e A C D M N

人教A版高中数学必修4第二章平面向量2.3.1平面向量基本定理导学案

2.3.1.平面向量基本定理 学习目标.1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点一.平面向量基本定理 思考1.如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么? 答案. 能.依据是数乘向量和平行四边形法则. 思考2.如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么? 答案. 不一定,当a 与e 1共线时可以表示,否则不能表示. 梳理.(1)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二.两向量的夹角与垂直 思考 1.平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? 答案. 存在夹角,不一样. 思考2.△ABC 为正三角形,设AB →=a ,BC → =b ,则向量a 与b 的夹角是多少? 答案.如图,延长AB 至点D ,使AB =BD ,则BD → =a , ∵△ABC 为等边三角形,∴∠ABC =60°,则∠CBD =120°,故向量a 与b 的夹角为120°. 梳理.(1)夹角:已知两个非零向量a 和b ,作OA →=a ,OB → =b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).

平面向量三点共线性质定理的推论及空间推广

平面向量三点共线定理的推论及空间推广 南昌外国语学校 梁懿涛 邮编:330025 地址:江西省南昌市桃苑西路126号南昌外国语学校 电话: 电子信箱: 一.问题的来源 平面向量三点共线定理:对于共面向量,,OA OB OC u u u r u u u r u u u r ,OC xOA yOB =+u u u r u u u r u u u r ,则A 、B 、C 三点共线的充要条件是1x y +=. 二.问题的提出 问题1.在上述定理中,如果1x y +<、1x y +>时,分别有什么结论 问题2.x 、y 有什么特定的意义吗 问题3.上述问题可以推广到空间吗 三.问题的解决 推论1. 对于不共线向量,OA OB u u u r u u u r ,若OC xOA yOB =+u u u r u u u r u u u r ,则 (1)点C 在直线AB 外侧(不含点O 一侧)的充要条件是1x y +>. (2)点C 在直线AB 内侧(含点O 一侧)的充要条件是1x y +<. 证明:(1)必要性:如图1-1,连OC 交AB 于点C ',则存在实数λ,使得(1)OC OC λλ'=>u u u r u u u u r ,(1)OC x OA y OB x y '''''=++=u u u u r u u u r u u u r ,OC x OA y OB λλ''∴=+u u u r u u u r u u u r ,,x x y y λλ''==, ()1x y x y λ''∴+=+>. 充分性:1x y +>Q ,∴存在1λ>,使得,x x y y λλ''==且1x y ''+=. ()OC x OA y OB OC λλ'''∴=+=u u u r u u u r u u u r u u u u r ,C 'Q 在直线AB 上,C ∴在直线AB 外侧. 同理可证(2). 进一步分析,得: 推论1'. 对于不共线向量,OA OB u u u r u u u r ,若OC xOA yOB =+u u u r u u u r u u u r ,则 (1)连接AB 得直线1l ,过点O 作平行于1l 的直线2l ,则1l 、2l 将平面OAB 分成三个区域,如图1-2点C 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:1x y +>;(Ⅱ)区:01x y <+<;(Ⅲ)区:0x y +<.特别地,当点C 落在1l 上时,1x y +=;当点C 落在2l 上时,0x y +=. (2)直线OA 、OB 将平面OAB 分成四个区域,如图1-3,则点C 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:00x y >??>?;(Ⅱ)区:00x y ?;(Ⅲ)区:00x y ??>,则点C 在线段AB 上;当0,0x y ><,则点C 在线段BA 的延长线上;当0,0x y <>,则点C 在线段AB 的延长线 上. 证明:OC xOA yOB =+u u u r u u u r u u u r Q 且1x y +=,OC xOC yOC xOA yOB ∴=+=+u u u r u u u r u u u r u u u r u u u r ,xCA yBC =u u u r u u u r , ||||||||AC y BC x ∴=。当0,0x y >>时,CA u u u r 与BC uuu r 同向,如图2-1所示,则点C 在线段AB 上;当0,0x y ><时,CA u u u r 与BC uuu r 反向,且||||AC BC <,如图2-2所示,则点C 在线段BA 的延长线上;当0,0x y <>时,CA u u u r 与BC uuu r 反向,且||||AC BC >,如图2-3所示,则点C 在线段AB 的延长线上.

向量法证明三点共线的又一方法及应用 -

向量法证明三点共线的又一方法及应用 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+u u u r u u u r u u u r ,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =u u u r u u u r )得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+u u u r u u u r u u u r u u u r u u u r ∴()OB OA μOC OA -=-u u u r u u u r u u u r u u u r ∴AB μAC =u u u r u u u r ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+u u u r u u u r u u u r ,且1λμ+=.揭示了三点贡献的又一个性质; 3. 特别地,12λμ==时,1()2 OB OA OC =+u u u r u u u r u u u r ,点B 为AC u u u r 的中点,揭示了OAC V 中线OB 的一个向量公式,应用广泛. 应用举例 例 1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明 BN λBM μBC =+u u u r u u u u r u u u r ,且1λμ+=. D A B C M N

相关主题
文本预览
相关文档 最新文档