当前位置:文档之家› 内力组合及内力调整

内力组合及内力调整

内力组合及内力调整
内力组合及内力调整

7 内力组合及内力调整

内力组合

各种荷载情况下的框架内力求得后,根据最不利又是可能的原则进行内力组合。当考虑结构塑性内力重分布的有利影响时,应在内力组合之前对竖向荷载作用下的内力进行增幅。分别考虑恒荷载和活荷载由可变荷载效应控制的组合和由永久荷载效应控制的组合,并比较两种组合的内力,取最不利者。由于构件控制截面的内力值应取自支座边缘处,为此,进行组合前,应先计算各控制截面处的(支座边缘处的)内力值。

1)、在恒载和活载作用下,跨间max M 可以近似取跨中的M 代替,在重力荷载代表值和水平地震作用下,跨内最大弯矩max M 采用解析法计算:先确定跨内最大弯矩max M 的位置,再计算该位置处的max M 。当传到梁上的荷载为均布线荷载或可近似等效为均布线荷载时,按公式7-1计算。计算方式见图7-1、7-2括号内数值,字母C 、D 仅代表公式推导,不代表本设计实际节点标号字母。

2max 182M M M ql +≈-右左 且满足2max 1

16

M ql = (7-1)

式中:q ——作用在梁上的恒荷载或活荷载的均布线荷载标准值;

M 左、M 右——恒载和活载作用下梁左、右端弯矩标准值;

l ——梁的计算跨度。

2)、在重力荷载代表值和地震作用组合时,左震时取梁的隔离体受力图,见图7-1所示, 调幅前后剪力值变化,见图7-2。

图7-1 框架梁内力组合图

图7-2 调幅前后剪力值变化

图中:GC M 、GD M ——重力荷载作用下梁端的弯矩; EC M 、CD M ——水平地震作用下梁端的弯矩

C R 、

D R ——竖向荷载与地震荷载共同作用下梁端支座反力。

左端梁支座反力:()C 1

=2GD GC EC ED ql R M M M M l

--++;

由0M d

dx =,可求得跨间max M 的位置为:1C /X R q = ; 将1X 代入任一截面x 处的弯矩表达式,可得跨间最大弯矩为: 弯矩最大点位置距左端的距离为1X ,1=/E X R q ;()101X ≤≤; 最大组合弯矩值:2max 1/2GE EF M qX M M =-+;

当10X <或11X >时,表示最大弯矩发生在支座处,取1=0X 或1=X l ,最大弯矩组合设计值的计算式为:2max C 11/2GE EF M R X qX M M =--+; 右震作用时,上式中的GE M 、EF M 应该反号。

柱上端控制截面在上层的梁底,柱下端控制截面在下层的梁顶。按轴线计算简图算得的柱端内力值,宜换算到控制截面处的值。为了简化计算,也可以采用轴线处内力值,这样算得的钢筋用量比需要的钢筋用量略微多一点。

根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第条规定:A 级高度高层建筑的楼层抗侧力结构的层间受剪承载力不宜小于其相邻上一层受剪承载力的80%,不应小于其相邻上一层受剪承载力的65%;B 级高度高层建筑的楼层抗侧力结构的层间受剪承载力不应小于其相邻上一层受剪承载力的75%。

框架梁控制截面的内力组合

1、不考虑地震作用组合下的梁端弯矩设计值的组合。 ①、基本组合:

Qk Gk S S M 4.12.1+=;Qk Gk S S M ??+=7.04.135.1;

②、风荷载作用下的不利组合(不考虑活载):

)(4.12.1左Wk Gk S S M +=;)(4.12.1右Wk Gk S S M +=;

③、风荷载作用下的有利组合(不考虑活载):

)(4.10.1左Wk Gk S S M +=;)(4.10.1右Wk Gk S S M +=;

④、风荷载作用下的不利组合(考虑活载):

())(4.14.19.02.1左Wk Qk Gk S S S M ++=;())(4.14.19.02.1右Wk Qk Gk S S S M ++=;

⑤、风荷载作用下的有利组合(考虑活载):

())(4.14.19.00.1左Wk Qk Gk S S S M ++=;())(4.14.19.00.1右Wk Qk Gk S S S M ++=;

2、考虑地震作用组合下的梁端弯矩设计值的组合。

()(左)Ek Qk Gk S S S M 3.15.02.1++=;()(右)Ek Qk Gk S S S M 3.15.02.1++=;

()(左)Ek Qk Gk S S S M 3.15.00.1++=;()(右)Ek Qk Gk S S S M 3.15.00.1++=。

3、不考虑地震作用组合下的梁端剪力设计值的组合。 ①、基本组合:

Qk Gk V V V 4.12.1+=;Qk Gk V V V ??+=7.04.135.1;

②、风荷载作用下的不利组合(不考虑活载):

)(4.12.1左Wk Gk V V V +=;)(4.12.1右Wk Gk V V V +=;

③、风荷载作用下的有利组合(不考虑活载):

)(4.10.1左Wk Gk V V V +=;)(4.10.1右Wk Gk V V V +=;

④、风荷载作用下的不利组合(考虑活载):

())(4.14.19.02.1左Wk Qk Gk V V V V ++=;())(4.14.19.02.1右Wk Qk Gk V V V V ++=;

⑤、风荷载作用下的有利组合(考虑活载):

())(4.14.19.00.1左Wk Qk Gk V V V V ++=;())(4.14.19.00.1右Wk Qk Gk V V V V ++=;

4、考虑地震作用组合下的梁端弯矩设计值的组合。

()(左)Ek Qk Gk V V V V 3.15.02.1++=;()(右)Ek Qk Gk S V V V 3.15.02.1++=;

()(左)Ek Qk Gk V V V V 3.15.00.1++=;()(右)Ek Qk Gk V V V V 3.15.00.1++=。

内力未做调整前,横向框架梁的内力组合表,见表7-1~ 7-6。

注:1、表中M以下部受拉为正,V以顺时针为正;

弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

注:1、表中M以下部受拉为正,V以顺时针为正;

弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

表7-3 内力调整前横向框架梁的内力组合表(4层)注:1、表中M以下部受拉为正,V以顺时针为正;

γ弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

表7-4 内力调整前横向框架梁的内力组合表(3层)注:1、表中M以下部受拉为正,V以顺时针为正;

γ弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

表7-5 内力调整前横向框架梁的内力组合表(2层)注:1、表中M以下部受拉为正,V以顺时针为正;

γ弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

表7-6 内力调整前横向框架梁的内力组合表(1层)注:1、表中M以下部受拉为正,V以顺时针为正;

γ弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

框架柱控制截面的内力组合

1、不考虑地震作用组合下的梁端弯矩设计值的组合。 ①、基本组合:

Qk Gk S S M 4.12.1+=;Qk Gk S S M ??+=7.04.135.1;

②、风荷载作用下的不利组合(不考虑活载):

)(4.12.1左Wk Gk S S M +=;)(4.12.1右Wk Gk S S M +=;

③、风荷载作用下的有利组合(不考虑活载):

)(4.10.1左Wk Gk S S M +=;)(4.10.1右Wk Gk S S M +=;

④、风荷载作用下的不利组合(考虑活载):

())(4.14.19.02.1左Wk Qk Gk S S S M ++=;())(4.14.19.02.1右Wk Qk Gk S S S M ++=;

⑤、风荷载作用下的有利组合(考虑活载):

())(4.14.19.00.1左Wk Qk Gk S S S M ++=;())(4.14.19.00.1右Wk Qk Gk S S S M ++=;

2、考虑地震作用组合下的梁端弯矩设计值的组合。

()(左)Ek Qk Gk S S S M 3.15.02.1++=;()(右)Ek Qk Gk S S S M 3.15.02.1++=; ()(左)Ek Qk Gk S S S M 3.15.00.1++=;()(右)Ek Qk Gk S S S M 3.15.00.1++=。

3、不考虑地震作用组合下的梁端剪力设计值的组合。 ①、基本组合:

Qk Gk V V V 4.12.1+=;Qk Gk V V V ??+=7.04.135.1;

②、风荷载作用下的不利组合(不考虑活载):

)(4.12.1左Wk Gk V V V +=;)(4.12.1右Wk Gk V V V +=;

③、风荷载作用下的有利组合(不考虑活载):

)(4.10.1左Wk Gk V V V +=;)(4.10.1右Wk Gk V V V +=;

④、风荷载作用下的不利组合(考虑活载):

())(4.14.19.02.1左Wk Qk Gk V V V V ++=;())(4.14.19.02.1右Wk Qk Gk V V V V ++=;

⑤、风荷载作用下的有利组合(考虑活载):

())(4.14.19.00.1左Wk Qk Gk V V V V ++=;())(4.14.19.00.1右Wk Qk Gk V V V V ++=;

4、考虑地震作用组合下的梁端弯矩设计值的组合。

()(左)Ek Qk Gk V V V V 3.15.02.1++=;()(右)Ek Qk Gk S V V V 3.15.02.1++=; ()(左)Ek Qk Gk V V V V 3.15.00.1++=;()(右)Ek Qk Gk V V V V 3.15.00.1++=。

根据上述公式,梁支座边缘控制截面的弯矩与剪力可由公式7-2求得。

()2/b q g V V +-=';2/b V M M '-=' (7-3)

式中:V ',M '——梁控制截面的剪力和弯矩;

V ,M ——内力组合得到的轴线处的剪力和弯矩;

g ,q ——作用在梁上的竖向分布恒载与活载。

表7-6 内力调整前横向框架A柱弯矩和轴力组合

γ=;3、重力载=恒载+活载;4、弯矩单位为,轴力单位为kN。注:1、表中M以左侧受拉为正,N以压为正;2、承载力抗震调整系数

RE

表7-7 内力调整前横向框架B柱弯矩和轴力组合

γ=;3、重力载=恒载+活载;4、弯矩单位为,轴力单位为kN。注:1、表中M以左侧受拉为正,N以压为正;2、承载力抗震调整系数

RE

表7-8 内力调整前横向框架C柱弯矩和轴力组合

γ=;3、重力载=恒载+活载;4、弯矩单位为,轴力单位为kN。注:1、表中M以左侧受拉为正,N以压为正;2、承载力抗震调整系数

RE

表7-9 内力调整前横向框架D柱弯矩和轴力组合

γ=;3、重力载=恒载+活载;4、弯矩单位为,轴力单位为kN。注:1、表中M以左侧受拉为正,N以压为正;2、承载力抗震调整系数

RE

表7-10 内力调整前横向框架A柱剪力组合

表7-11 内力调整前横向框架B柱剪力组合

表7-12 内力调整前横向框架C柱剪力组合

表7-13 内力调整前横向框架D柱剪力组合

内力调整

为了保证框架结构具有满足工程的抗震性能,考虑到框架结构“强柱弱梁”、“强剪弱弯”、“强结点弱构件”的抗震设计原则,保证梁端的破坏要先于柱端的破坏,弯曲破坏要先于剪切破坏,构件的破坏要先于节点的破坏,因此,应对内力组合的结果中的最大内力组合设计值进行调整。

框架梁梁端剪力设计值调整

在结构抗震设计时,按照“强剪弱弯”的设计要求,根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第条规定:抗震等级为一、二、三、四级的框架结构的框架梁端剪力设计值应按照公式7-4进行计算,抗震等级为级的框架结构可直接取考虑地震作用组合的剪力设计值。

()

Gb n r b l

b Vb V l M M V ++=/η (7-4)

式中:r b l

b

M M ,——梁左、右端逆时针或者顺时针方向组合的弯矩设计值; Gb V ——考虑地震作用组合的重力荷载代表值作用下,按简支梁计算的梁端截面剪

力设计值;

n l ——梁的净跨;

Vb η——梁端剪力增大系数,抗震等级为一、二、三级的框架结构分别取、和。

梁左、右端逆时针或者顺时针方向组合的弯矩设计值r b l

b

M M ,的按图7-1所示进行推导。

图7-1 简支梁受荷简图

l GE l EK l b M M M 0.13.1-=;r

GK r EK r b M M M 2.13.1+=;

2

Ql l M M V r b l b A ++=;l M M V r

b l b B +=;

根据上述公式可得:2

)(2

Qx M x V x M l b

A +-=;

再根据微积分知识,

0)

(=dx

x dM 可求得:0=?+x Q V A ;Q V x A =。

依据上述推导出来的公式可将梁左、右端组合后的弯矩设计值求出。

地震作用组合的剪力设计值Gb V 的计算方式:()2/2.1n Gb l Q Q V ?+?=活恒。 第1~5层AB 跨:

()()kN l Q Q V n Gb 66.382

4.8

10.385.017.862.125.02.1=??+?=?

+?=活恒; 第6层AB 跨:

()()kN l Q Q V n Gb 87.362

4.813.51

5.023.582.125.02.1=??+?=?

+?=活恒; 第1~5层BC 跨:

()()kN l Q Q V n Gb 157.692

5.417.865.039.742.125.02.1=??+?=?

+?=活恒; 第6层BC 跨:

()()kN l Q Q V n Gb 98.852

5.410.865.025.082.125.02.1=??+?=?

+?=活恒; 第1~5层CD 跨:

()()kN l Q Q V n Gb 73.712

5.413.125.01

6.192.125.02.1=??+?=?

+?=活恒; 第6层CD 跨:

()()kN l Q Q V n Gb 98.852

5.410.865.025.082.125.02.1=??+?=?

+?=活恒;

表7-14梁端剪力设计值调整(4~6层)

框架柱柱端剪力设计值调整

在结构抗震设计时,按照“强柱弱梁”的设计要求,根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第条规定:抗震设计的框架柱、框支柱端部截面,抗震等级为一、二、三、四级的框架结构按公式7-5进行计算。

()

n b c t c Vb H M M V /+=η (7-5)

式中:b c t c M M ,——分别为左、右梁端截面逆时针或者顺时针方向组合的弯矩设计值;

Vb η——柱端剪力增大系数,对框架结构,抗震等级为二、三级的框架结构的柱端剪力增大系数分别取和,对于其他结构中的框架部分,抗震等级为一、二级分别取和,抗震等级为三、四级均取;

n H ——柱的净高。

柱端剪力设计值的调整见表7-15和表7-16。

表7-15 A-6柱和B-6柱柱端剪力设计值的调整

注:b

c t c M M ,的单位是m kN ?,Vb η取,n H 的单位是,V 的单位是kN 。

表7-16 C-6柱和D-6柱柱端剪力设计值的调整

注:b

c t

c M M ,的单位是m kN ?,Vb η取,n H 的单位是,V 的单位是kN 。

梁柱节点处柱端弯矩调整

框架结构的变形能力与框架的破坏机制密切相关,一般框架梁的延性远大于柱子。梁先屈服使整个框架有较大的内力重分布和能量消耗能力,极限层间位移增大,抗震性能较好。若柱子形成了塑性铰,则会伴随产生较大的层间位移,危及结构承受垂直荷载的能力,并可能使结构成为机动体系。

根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第条规定:抗震设计时,除顶层、柱轴压比小于者及框支梁柱节点外,框架的梁、柱节点处考虑地震作用组合的柱端弯矩设计值应符合公式7-5要求。

∑∑=b c c

M M

η (7-5)

式中:∑c M ——节点上、下柱端截面逆时针或者顺时针方向组合的弯矩设计值之和,上、下柱端的弯矩设计值,可按弹性分析的弯矩比例进行分配;

∑b

M

——节点左、右梁端截面逆时针或者顺时针方向组合的弯矩设计值之和,

当抗震等级为一级且节点左、右梁端均为负弯矩时,绝对值较小的弯矩值应取为0;

c η——柱端弯矩增大系数,对框架结构,抗震等级为二、三级的框架结构的柱

端弯矩增大系数分别取和,对于其他结构中的框架部分,抗震等级为一、二、三、四级的框架结构分别取、、和。本设计的抗震等级为三级,且为框架结构,3.1=c η。

底层柱底弯矩乘放大系数,避免柱脚过早屈服,当柱的反弯点高度不在柱的层高范围内时,柱端的弯矩设计值可直接乘以上述柱端弯矩增大系数。

梁柱节点处柱端弯矩计算按图7-2所示进行推导:

图7-2 梁柱节点处柱端弯矩示意

∑+=-c b

c u

c u

c u c M M M M M ;∑+=-c

b

c

u c b

c b

c

M

M M M M 。

地震往返作用,两个方向的弯矩设计值均应满足要求,当柱子考虑顺时针弯矩之和时,梁应考虑逆时针方向弯矩之和,反之亦然。可以取两组中较大者计算配筋。由于框架结构的底层柱过早出现塑性屈服,将影响整个结构的变形能力。同时,随着框架梁塑性铰的出现,由于塑性内力重分布,底层柱的反弯点具有较大地不确定性。

根据《建筑抗震设计规范》(GB50011-2010)第条规定:抗震等级为一、二、三、四级的框架结构,框架结构的底层,柱下端截面组合的弯矩设计值,应分别乘以增大系数、、和。本设计中框架结构的底层柱的增大系数取。

表7-17柱端剪力设计值调整(4~6层)

表7-17柱端剪力设计值调整(1~3层)

表7-18内力调整后横向框架A柱弯矩和轴力组合

γ=;3、重力载=恒载+活载;4、弯矩单位为,轴力单位为kN。注:1、表中M以左侧受拉为正,N以压为正;2、承载力抗震调整系数

RE

表7-19内力调整后横向框架B柱弯矩和轴力组合

γ=;3、重力载=恒载+活载;4、弯矩单位为,轴力单位为kN。注:1、表中M以左侧受拉为正,N以压为正;2、承载力抗震调整系数

RE

表7-20内力调整后横向框架C柱弯矩和轴力组合

γ=;3、重力载=恒载+活载;4、弯矩单位为,轴力单位为kN。注:1、表中M以左侧受拉为正,N以压为正;2、承载力抗震调整系数

RE

表7-21内力调整后横向框架D柱弯矩和轴力组合

γ=;3、重力载=恒载+活载;4、弯矩单位为,轴力单位为kN。注:1、表中M以左侧受拉为正,N以压为正;2、承载力抗震调整系数

RE

表7-21内力调整后横向框架A柱剪力组合

表7-22内力调整后横向框架B柱剪力组合

表7-23内力调整后横向框架C柱剪力组合

表7-24内力调整后横向框架D柱剪力组合

表7-25内力调整后横向框架梁的内力组合(6层)

注:1、表中M以下部受拉为正,V以顺时针为正;

γ弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

表7-26内力调整后横向框架梁的内力组合(5层)

注:1、表中M以下部受拉为正,V以顺时针为正;

γ弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

表7-27内力调整后横向框架梁的内力组合(4层)注:1、表中M以下部受拉为正,V以顺时针为正;

γ弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

表7-28内力调整后横向框架梁的内力组合(3层)注:1、表中M以下部受拉为正,V以顺时针为正;

γ弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

表7-29内力调整后横向框架梁的内力组合(2层)注:1、表中M以下部受拉为正,V以顺时针为正;

γ弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN 。

表7-30内力调整后横向框架梁的内力组合(1层)注:1、表中M以下部受拉为正,V以顺时针为正;

γ弯矩取,对剪力取;

2、承载力抗震调整系数

RE

3、重力载=恒载+活载;

4、弯矩单位为,剪力单位为kN。

内力组合计算书

5.4 内力组合 《抗震规范》第5.4条规定如下。 5.4截面抗震验算 5.4.1 结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算: G GE Eh Ehk Ev Evk w w wk S S S S S γγγψγ=+++ (5.4.1) 式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; γG ——重力荷载分项系数,一般情况应采用1.2,当重力荷载效应对构件承载能 力有利时,不应大于1.0; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表5.4.1 采用; γw ——风荷载分项系数,应采用1.4; s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ; ψw ——风荷载组合值系数,一般结构取0.0,风荷载起控制作用的高层建筑应采 用0.2。 注:本规范一般略去表示水平方向的下标。 表5.4.1 地震作用分项系数 5.4.2 结构构件的截面抗震验算,应采用下列设计表达式: RE R S γ= 式中: γRE ——承载力抗震调整系数,除另有规定外,应按表5.4.2采用; R ——结构构件承载力设计值。

表5.4.2 承载力抗震调整系数 5.4.3 当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用1.0。 本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表 结构安全等级设为二级,故结构重要性系数为 0 1.0 γ= 根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+? 活荷载控制下:Gk Qk S 1.2S 1.4S =+ 有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+± 对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为1.0,0.85,0.85,0.7,0.7。偏安全,不考虑因楼面活载布置面积对梁设计内力的折减。 梁柱截面标号示意见图5.22。

荷载内力计算和杆件截面选择计算

(1) 设计资料 昆明地区某工厂金工车间,屋架跨度为 24m ,屋架端部高度2m ,长 度90m ,柱距6m ,车间内设有两台30/5t 中级工作制桥式吊车,屋面采 用1.5 >6m 预应力钢筋混凝土大型屋面板。20mm 厚水泥砂浆找平层,三 毡四油防水层,屋面坡度i 1/10。屋架两端铰支于钢筋混凝土柱上,上 柱截面400X400mm ,混凝土 C20,屋面活荷载0.50 kN/m 2,屋面积灰荷 载 0.75 kN/m 2,保温层自重 0.4kN/m 2。 (2) 钢材和焊条的选用 屋架钢材选用Q235,焊条选用E43型,手工焊。 (3) 屋架形式,尺寸及支撑布置 采用无檩屋盖方案,屋面坡度i 1/10 ,由于采用1.5m 6m 预应力钢 筋混凝土大型屋面板和卷材屋面,故选用平坡型屋架,屋架尺寸如下: 屋架计算跨度: L 0 L 300 24000 300 23700 mm 屋架端部高度取: 为使屋架节点受荷,配合屋面板1.5m 宽,腹杆体系大部分采用下弦 节间为3m 的人字形式,仅在跨中考虑腹杆的适宜倾角,采用再分式杆系, 屋架跨中起拱48mm ,几何尺寸如图所示: 根据车间长度,跨度及荷载情况,设置三道上,下弦横向水平支撑,因车间 两端为山墙,故横向水平支撑设在第二柱间;在第一柱间的上弦平面设置刚性系 杆保证安装时上弦的稳定,下弦平面的第一柱间也设置刚性系杆传递山墙的风荷 载;在设置横向水平支撑的同一柱间, 设置竖向支撑三道,分别设在屋架的两端 跨中高度: 屋架高跨比: H o 2000mm 23700 1 H H o i 2000 3185 3190mm 2 2 10 H 3190 1 L 23700 7.4 u m J 启

内力组合

九 内力组合 本章中单位统一为:弯矩kN?m ,剪力kN ,轴力kN 。 根据前面第四至八章的内力计算结果,即可进行框架各梁柱各控制截面上的内力组合,其中梁的控制截面为梁端柱边及跨中,由于对称性,每层梁取5个控制截面。柱分为边柱和中柱,每根柱有2个控制截面。内力组合使用的控制截面标于下图。 (一)梁内力组合 1.计算过程见下页表中,弯矩以下部受拉为正,剪力以沿截面顺时针为正 注:(1)地震作用效应与重力荷载代表值的组合表达式为: Eh G E 3S .12S .1S += 其中,S GE 为相应于水平地震作用下重力荷载代表值效应的标准值。而重力荷载代表值表达式为: ∑=+=n 1i ik Qi k Q G G ψ G k ——恒荷载标准值; Q ik ——第i 个可变荷载标准值; ΨQi ——第i 个可变荷载的组合之系数,屋面活荷载不计入,雪荷载和楼面活荷载均为0.5。 考虑到地震有左震和右震两种情况,而在前面第八章计算地震作用内力时计算的是左震作用时的内力,则在下表中有 1.2(①+0.5②)+1.3⑤和1.2(①+0.5②)-1.3⑤两列,分别代表左震和右震参与组合。 (2)因为风荷载效应同地震作用效应相比较小,不起控制作用,则在下列组合中风荷载内力未参与,仅考虑分别由恒荷载和活荷载控制的两种组合,即1.35①+1.4×0.7③和1.2①+1.4③两列。 A B C D 12 34 5 22 1 1

梁内力组合计算表

梁内力组合计算表(续)

梁内力组合计算表(续)

2.根据上表计算所得的弯矩值计算V b ,并同上表的结果比较得梁剪力设计值V ,计算过程见下表 计算公式为:G b n r b l b vb b V l /)M M (V ++=η 梁剪力设计值计算表 (二)柱内力组合 1.计算过程见下表,弯矩以顺时针为正,轴力以受压为正 柱内力组合计算表

#简支T梁内力计算和结果比较

简支T 梁内力计算及结果对比 一、桥梁概况 一座九梁式装配式钢筋混凝土简支梁桥的主梁和横隔梁截面如图1-1所示,计算跨径29.5l m =,主梁翼缘板刚性连接。设计荷载:公路—I 级,人群荷载:3.0/kN m , 每侧的栏杆及人行道构件自重作用力为5/kN m ,桥面铺装5.6/kN m ,主梁采用C50混凝土容重为25/kN m 。 (a ) (b ) 图1-1主梁和横隔梁简图(单位:cm ) 二、恒载内力计算 ㈠.恒载集度 主梁:()10.080.140.18 1.30 1.600.18259.76/2g kN m ?+??? =?+?-?= ??????? 横隔梁: 对于边主梁:()12 1.600.18 1.000.110.1572529.500.56/2 g kN m -=-? ???÷= 对于中主梁:2 122220.56 1.12/g g kN m =?=?= 桥面铺装:3 5.6/g kN m =

栏杆和人行道:45/g kN m = 作用于边主梁的全部恒载为: 19.760.56 5.6520.92/i g g kN m ==+++=∑ 作用于中主梁的恒载为: 29.76 1.12 5.6521.48/i g g kN m ==+++=∑ ㈡.恒载内力 计算主梁的弯矩和剪力,计算图式如图2-1所示,则: ()222x gl x gx M x gx l x = ?-?=-,()222 x gl g Q gx l x =-=- g 图2-1 恒载内力计算图式 各计算截面的剪力和弯矩值见表2-1和表2-2。 边主梁恒载内力 表2-1 内力 截面位置 剪力()Q kN 弯矩()M kN m ? 0x = 308.572 gl Q = = 0M = 4l x = 154.294 gl Q == 2 31706.7832gl M == 2 l x = 0Q = 2 2275.708 gl M == 中主梁恒载内力

内力组合计算书

内力组合 《抗震规范》第条规定如下。 截面抗震验算 结构构件的地震作用效应和其他荷载效应的基本组合,应按下式计算: G GE Eh Ehk Ev Evk w w wk S S S S S γγγψγ=+++ () 式中: S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; γG ——重力荷载分项系数,一般情况应采用,当重力荷载效应对构件承载能力有 利时,不应大于; γEh 、γEv ——分别为水平、竖向地震作用分项系数,应按表 采用; γw ——风荷载分项系数,应采用; s GE ——重力荷载代表值的效应,有吊车时尚应包括悬吊物重力标准值的效应; s Ehk ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s Evk ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; s wk ——风荷载标准值的效应 ; ψw ——风荷载组合值系数,一般结构取,风荷载起控制作用的高层建筑应采用。 注:本规范一般略去表示水平方向的下标。 表 地震作用分项系数 结构构件的截面抗震验算,应采用下列设计表达式: RE R S γ= 式中: γRE ——承载力抗震调整系数,除另有规定外,应按表采用; R ——结构构件承载力设计值。 表 承载力抗震调整系数

当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均宜采用。 本次毕业设计,各截面不同内力的承载力抗震调整系数取值如下表 结构安全等级设为二级,故结构重要性系数为 0 1.0 γ= 根据《建筑结构荷载规范》和《建筑抗震设计规范》,组合三种工况:恒荷载控制下、活荷载控制下和有地震作用参加的组合。其具体组合方法如下: 恒荷载控制下:Gk Qk S 1.35S 1.40.7S =+? 活荷载控制下:Gk Qk S 1.2S 1.4S =+ 有地震作用参加的:Gk Qk Ehk S 1.2(S 0.5S ) 1.3S =+± Gk Qk Ehk S 1.0(S 0.5S ) 1.3S =+± 对柱进行非抗震内力组合时,根据规范,对活载布置计算的荷载进行折减,折减系数由上而下分别为,,,,。偏安全,不考虑因楼面活载布置面积对梁设计内力的折减。 梁柱截面标号示意见图。 图 梁截面标号示意图

内力组合表

表4.1横向框架A柱弯矩和轴力组合表横向框架A柱弯矩和轴力组合表 层次截面位置内力SGk SQk Swk 1.2SGk+1.4(SQk+Swk) 1.35SGk +SQk 1.2SGk +1.4SQk ∣Mmax∣ 与相应N Nmin与 相应的M Nmax与 相应的M →← 5 柱顶 M 133.9435.60 2.04 2.04208.15203.01216.42210.57216.42203.01216.42 N 261.3855.450.420.42384.05382.99408.31391.29408.31382.99408.31柱底 M 74.2424.300.590.59120.45118.96124.52123.11124.52118.96124.52 N 293.7855.450.420.42422.93421.87452.05430.17452.05421.87452.05 4 柱顶 M 38.7918.10 3.73 3.7374.0564.6570.4771.8974.0564.6570.47 N 478.27111.60 1.86 1.86716.88712.20757.26730.16716.88712.20757.26柱底 M 53.2620.63 1.79 1.7992.1687.6592.5392.7992.7987.6592.53 N 510.67111.60 1.86 1.86755.76751.08801.00769.04769.04751.08801.00 3 柱顶 M 53.2620.63 5.04 5.0496.2683.5692.5392.7996.2683.5692.53 N 694.70167.64 4.06 4.061049.981039.751105.491068.341049.981039.751105.49柱底 M 49.9319.34 3.36 3.3688.5280.0586.7586.9988.5280.0586.75 N 727.10167.64 4.06 4.061087.811078.631149.231107.221087.811078.631149.23 2 柱顶 M 58.0922.51 5.36 5.36104.8291.32100.93101.22104.8291.3291.32 N 911.28223.74 6.96 6.961384.221366.681453.971406.771384.221366.681366.68

第六章 框架内力组合

第六部分 框架内力组合 一. 框架梁内力组合见横向框架KJ-2内力组合表 对于框架梁,在水平荷载和竖向荷载的共同作用下,其剪力沿梁轴线呈线性变化,因此,除取梁的两端为控制截面外,还应在跨间取最大正弯矩的截面为控制截面。 对于框架梁的最不利内力组合有: 对梁端截面:max M +、max M -、m ax V 对梁跨间截面:max M +、max M - 荷载规范3.2.5基本组合的荷载分项系数,应按下列规定采用: 1.永久荷载的分项系数: (1) 当其效应对结构不利时, 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35. (2) 当其效应对结构有利时, 一般情况下应取1.0; 对结构倾覆、滑移和漂浮验算,应取0.9 2.可变荷载的分项系数 一般情况下应取1.4 对标准值大于4KN/m 2 的工业房屋楼面结构的活荷载应取1.3 荷载规范5.4.1结构构件的地震作用效应和其它荷载效应的基本组合,应按下式计算:S=WK W W EVK EV EhK EH GE G S S S S γψγ γ γ+++ 式中S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; G γ——重力荷载分项系数,一般情况应采用1.2,当重力荷载效应对构件 承载能力有利是,不应大于1.0; Eh γ、Ev γ——分别为水平、竖向地震作用分项系数,应按表6―1采用; w γ——风荷载分项系数,应采用1.4; GE S ——重力荷载代表值的效应, 有吊车时,尚应包括悬吊物重力标准值的效应; EhK S ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; EvK S ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; wK S ——风荷载标准值的效应; w ψ——风荷载组合值系数,一般结构取0.0,风荷载起控制作用的高层建筑应采用0.2

内力组合

内力组合 一、框架梁内力组合 1.梁控制截面内力标准值 下表是一层至六层梁在恒荷载、活荷载和风荷载标准值作用下,梁支座中心处及支座边缘处(控制截面)的弯矩值和剪力值,其中支座中心处的弯矩和剪力值以在内力计算中算出,支座边缘处的弯矩值和剪力值按下述方法计算: (1) 在均布荷载作用下时 2b V M M b ?-=, 2b q V V b ?-= (2) 在三角形荷载作用下时 2b V M M b ?-=, 2 2b q V V b ?-= (3) 在风荷载作用下时 2 b V M M b ? -=, V V b = 式中: 2 b ——梁支座宽度(柱截面高度)的一半; 在恒荷载作用下,第六层B 支座边缘处的内力为 m KN b V M M b ?-=?+-=?-=4.672 55 .03.634.842 2 22122041b l b q b q V b q V V b ???-?-=?-= KN 9.612 55 .095.1255.067.1721255.081.33.63=???-? -=

在活荷载作用下,第六层B 支座边缘处的内力为 m KN b V M M b ?-=?+-=?-=1.202 55 .07.211.262 2 22122041b l b q b q V b q V V b ?? ?-?-=?-= KN 56.212 55 .095.1255.087.1021255.065.27.21=???-?-= 在风荷载作用下,第六层B 支座边缘处的内力为 m KN b V M M b ?=?+=?-=4.62 55 .05.18.62 KN V V b 5.1==

第4章内力计算

第4章内力计算 4.1风荷载作用下框架内力计算 由D值法计算结构在风荷载作用下的内力,计算过程及结果见表4-1。 表4-1风荷载作用下柱端弯矩表(kN·m) 层次 边柱 D/∑D V i△y i M上M下 5 0.233 8.45 0.94 0.4465 3.27 2.64 4 0.233 18.48 1.27 0.4 5 7.10 5.81 3 0.233 27.97 1.49 0.5 9.78 9.78 2 0.23 3 36.57 1.86 0.5 12.78 12.78 1 0.24 2 44.2 3.21 0.55 21.90 26.77 层次 中柱 D/∑D V i△y i M上M下 5 0.267 8.45 1.41 0.45 3.72 3.05 4 0.267 18.48 1.49 0. 5 7.40 7.40 3 0.267 27.97 1.49 0.5 11.20 11.20 2 0.267 36.57 1.65 0.5 14.65 14.65 1 0.258 44.21 2.47 0.55 23.35 28.54 梁端风荷载弯矩、剪力、轴力见表4-2,其中λ=K R/(K R+K L)。 4.2水平地震作用下框架内力计算 以12轴横向框架为例进行计算,在水平地震作用下的框架住弯矩计算采用D值法,其计算过程见表4-3。 表4-2梁端风荷载弯矩(kN·m)、剪力(kN)、轴力(kN) 层次边柱处中柱处剪力轴力 ∑M c∑M c1-λλ ∑M c 右 ∑M c 左 AB BC边柱中柱

续表4-2 层次 边柱处 中柱处 剪力 轴力 ∑M c ∑M c 1-λ λ ∑M c 右 ∑M c 左 AB BC 边柱 中柱 5 3.27 3.72 0.31 0.69 2.57 1.15 0.82 2.14 0.82 1.32 4 9.74 10.45 0.31 0.69 7.21 3.24 2.40 6.01 3.22 4.93 3 12.59 18.60 0.31 0.69 12.83 5.77 3.40 10.69 6.62 12.22 2 22.5 6 25.85 0.31 0.69 17.84 8.01 5.66 14.8 7 12.2 8 21.43 1 34.68 38.00 0.31 0.69 26.22 11.78 8.60 21.85 20.88 34.68 风荷载作用下框架的弯矩、剪力、轴力图见图4-1,4-2。 图4-1风荷载作用下的框架弯矩(单位KN.m ) 图4-2风荷载作用下的剪力、轴力(单位KNm) 表4-3水平地震作用下框架柱弯矩计算 柱 层次 层剪力 总刚度 各柱刚 度 D /∑D Vi k yh M 下 M 上 边 柱 5 748.61 1102920 16870 0.0153 11.45 2.93 0.447 15.34 19.01 4 1366.51 1102920 16870 0.0153 20.91 2.93 0.45 28.23 34.50 3 1847.60 1102920 16870 0.0153 28.27 2.93 0.5 42.41 42.41

荷载内力计算和杆件截面选择计算

(1) 设计资料 昆明地区某工厂金工车间,屋架跨度为24m ,屋架端部高度2m ,长度90m ,柱距6m ,车间内设有两台30/5t 中级工作制桥式吊车,屋面采用×6m 预应力钢筋混凝土大型屋面板。20mm 厚水泥砂浆找平层,三毡四油防水层,屋面坡度=i 1/10。屋架两端铰支于钢筋混凝土柱上,上柱截面400×400mm,混凝土C20,屋面活荷载 kN/m 2,屋面积灰荷载 kN/m 2,保温层自重m 2。 (2)钢材和焊条的选用 屋架钢材选用Q235,焊条选用E43型,手工焊。 (3)屋架形式,尺寸及支撑布置 采用无檩屋盖方案,屋面坡度10/1=i ,由于采用?预应力钢筋混凝土大型屋面板和卷材屋面,故选用平坡型屋架,屋架尺寸如下: 屋架计算跨度: mm L L 23700300240003000=-=-= 屋架端部高度取: =o H 2000mm

跨中高度: mm i L H H 3190318510 12237002000200≈=?+=+ = 屋架高跨比: 4 .712370031900==L H 为使屋架节点受荷,配合屋面板宽,腹杆体系大部分采用下弦节间为3m 的人字形式,仅在跨中考虑腹杆的适宜倾角,采用再分式杆系,屋架跨中起拱48mm ,几何尺寸如图所示: 根据车间长度,跨度及荷载情况,设置三道上,下弦横向水平支撑,因车间两端为山墙,故横向水平支撑设在第二柱间;在第一柱间的上弦平面设置刚性系杆保证安装时上弦的稳定,下弦平面的第一柱间也设置刚性系杆传递山墙的风荷载;在设置横向水平支撑的同一柱间,设置竖向支撑三道,分别设在屋架的两端和跨中,屋脊节点及屋架支座处沿厂房设置通长刚性系杆,屋架下弦跨中设置一道通长柔性

箱梁内力计算及组合

内力计算及组合 一、永久作用效应计算 1.梁自重和横隔梁自重(一期荷载) 1 (1.23 1.04) 1.230.2222 1.0415 22526.59 19.4 g + ??+??+? =?=kN/m 2 0.3660.2253 0.283 19.4 g ??? ==kN/m 2. 桥面系自重(二期荷载) 桥面铺装采等厚度的10cm C50混凝土+SBS改性沥青涂膜防水层+10cm沥青混凝土,,则全桥宽铺装每延米重力为: 0.114(2325)6 ??+=kN/m 为计算方便近似按各梁平均分担来考虑,则每片梁分摊到的每延米桥面系重 力为: 367.2 13.44 5 g==kN/m 3. 湿接缝自重(二期荷载) 40.50.225 1.25 2 g ?? ==kN/m 4. 防撞护栏自重(二期荷载) 56.72 2.68 5 g ? ==kN/m 5. 横隔梁湿接自重(二期荷载) 6(0.10.2)0.20.525 0.019 219.4 g +??? == ? kN/m 由此得边梁每延米总重力g为: 1226.87 g g g I =+=kN/m(一期荷载) 345617.4 g g g g g ∏ =+++=kN/m(二期荷载) 6. 恒载内力 本桥为先简支后连续,施工过程包含结构的体系转化,所以结构的自重内力计算过程必须首先将各施工阶段内力计算出来,然后进行叠加。 第一施工阶段:结构体系为简支梁结构,自重作用荷载为g I ;

第二施工阶段:由于两跨间接头较短,混凝土重量较小,其产生的内力较小,且会减少跨中的弯矩,故忽略不计; 第三施工阶段:结构体系为连续体系,忽略临时支撑移除产生的效应,考虑翼缘板及横隔梁接头重力和桥梁二期结构自重作用荷载为桥梁二期荷载,即为 g ∏。 第一施工阶段结构自重作用效应内力计算: 以边梁为计算单元,此时结构体系为简支梁,计算跨径为19.7l =m ; 设x 为计算截面距支座的距离,并令x a l =,则主梁弯矩和剪力计算公式为: ()()211 1 12 1 12g 2a a M a a l g Q a l = -=- 图2-1 内力计算图 各计算截面如下图2—2所示,具体计算结构如表2—1: 图2-2边梁计算截面位置 表2—1 第一施工阶段自重作用效应内力

柱内力组合表

框架柱内力组合表 柱号截 面 内 力 恒活左风右风Nmax相应的M Nmin相应的M /M/max相应的N ①②③④组合项目值组合项目值组合项目值 顶层边柱柱顶 M/KN.m 31.12 4.76 -1.68 1.68 1.35①+1.0② 46.77 1.2①+1.4③ 34.99 1.2①+1.4②+ 1.4×0.6④ 45.42 N/KN 81.95 6.94 -0.49 4.49 117.57 97.65 111.83 柱底 M/KN.m -25.86 -7.31 0.96 -0.96 1.35①+1.0② -42.22 1.2①+1.4③ -29.69 1.2①+1.4②+ 1.4×0.6④ -42.07 N/KN 90.95 6.94 -0.49 0.49 129.72 108.45 119.27 V/KN 19 4 -0.88 0.88 29.65 21.57 29.14 中 间 层(3层) 边 柱柱顶 M/KN.m 23.28 8.57 -1.73 1.73 1.35①+1.0② 40.00 1.2①+1.4③ 25.51 1.2①+1.4×38.76 N/KN 353.13 71.34 -2.36 2.36 548.07 420.45 0.7②+1.4④496.97 柱底 M/KN.m -23.28 -8.57 1.51 -1.51 1.35①+1.0② -40.00 1.2①+1.4③ -25.82 1.2①+1.4× 0.7②+1.4④ -38.45 N/KN 362.13 71.34 -2.36 2.36 560.22 431.25 507.77 V/KN 15.52 5.7 -1.08 1.08 26.65 17.11 25.72 底层边柱柱顶 M/KN.m 21.61 5.52 -2.59 2.59 1.35①+1.0② 34.69 1.2①+1.4③ 22.31 1.2①+1.4×34.97 N/KN 627.21 135.64 -6.25 6.25 982.37 743.90 0.7②+1.4④894.33 柱底 M/KN.m -10.8 -2.76 4.8 -4.8 1.35①+1.0② -17.34 1.2①+1.4③ -6.24 1.2①+1.4× 0.7②+1.4④ -22.38 N/KN 636.21 135.64 -6.25 6.25 994.52 754.70 905.13 V/KN 10.8 2 -1.76 1.76 16.58 10.50 17.38

门式刚架荷载计算及内力组合

(一)荷载分析及受力简图: 1、永久荷载 永久荷载包括结构构件的自重和悬挂在结构上的非结构构件的重力荷载,如屋面、檩条、支撑、吊顶、墙面构件和刚架自重等。 恒载标准值(对水平投影面): 板及保温层0.30kN/㎡ 檩条0.10kN/㎡ 悬挂设备0.10kN/㎡ 0.50kN/㎡ 换算为线荷载:7.50.5 3.75 3.8/ =?=≈ q KN m 2、可变荷载标准值 门式刚架结构设计的主要依据为《钢结构设计规范》(GB50017-2003)和《冷弯薄壁型钢结构技术规范》(GB50018-2002)。对于屋面结构,《钢结构设计规范》规定活荷载为0.5KN/2m,但构件的荷载面积大于602m的可乘折减系

数0.6,门式刚架符合此条件,故活荷载标准值取0.3KN/2m 。由荷载规范查得,大连地区雪荷载标准值为0.40kN/㎡。 屋面活荷载取为 0.30kN/㎡ 雪荷载为 0.40kN/㎡ 取二者较大值 0.40kN/㎡ 换算为线荷载:7.50.43/q KN m =?= 3、风荷载标准值 :0k z s z ωβμμω= (1) 基本风压值 20kN/m 6825.065.005.1=?=ω (2) 高度Z 处的风振系数z β 取1.0(门式刚架高度没有超过30m ,高宽比不 大于1.5,不考虑风振系数) (3) 风压高度变化系数z μ 由地面粗糙度类别为B 类,查表得: h=10m ,z μ=1.00;h=15m ,z μ=1.14 内插:

低跨刚架,h=10.5m ,z μ= 1.14 1.11 1.00(10.510)1510-+ ?--=1.014; 高跨刚架,h=15.7m ,z μ= 1.25 1.14 1.14(15.715)2015-+?--=1.155。 (4) 风荷载体型系数s μ -0.5-0.6 -0.4 -0.4 -0.5 -0.5 -0.2 +0.8 μs μs1 其中,s μ= 0.2010.2 4.760.032301230 arctg -?=?=+ 1s μ=12 1.0 0.6(1)0.6(12)0.36915.710.5 h h ?-=?-=+- 各部分风荷载标准值计算: w 1k =0z s z βμμω=7.5×1.0×0.8×1.014×0.6825=4.15 kN/m w 2k =0z s z βμμω=7.5×1.0×0.032×1.014×0.6825=0.17kN/m w 3k =0z s z βμμω=7.5×1.0×(-0.6)×1.014×0.6825=-3.11kN/m w 4k = 0z s z βμμω=7.5×1.0×0.369×1.014×0.6825=1.91 kN/m w 5k = 0z s z βμμω=7.5×1.0×(-0.2)×1.014×0.6825=-1.04 kN/m w 6k = w 7k =w 8k =0z s z βμμω=7.5×1.0×(-0.5)×1.014×0.6825=-2.60 kN/m w 9k = w 10k =0z s z βμμω=7.5×1.0×(-0.4)×1.014×0. 6825=-2.08 kN/m 用PKPM 计算门式刚架风荷载结果如下:

相关主题
文本预览
相关文档 最新文档