当前位置:文档之家› 无刷电机调速

无刷电机调速

无刷电机调速
无刷电机调速

摘要

本无刷直流电机驱动电路采用宏晶公司的8位单片机STC12C5A60S2作为控制核心,换向线路采用三相桥式电路,主电路功率器件选用6个N沟道功率场效应管,半桥驱动电路采用IR2104芯片,桥式电路工作方式为三相六拍的工作方式,PWM驱动信号的开关频率为20kHz,电机调速采用开环调速,带过流、过压保护电路。可以实现无刷电机的正反转,加速和减速,具有堵住保护功能,且能将电机转速实时转速通过LCD显示。通过实验,电机运行稳定。

关键词:无刷直流电机,场效应管,PWM,调速,堵转保护

Design of no brush DC motor driver circuit

Abstract

The brushless DC motor drive circuit adopts the macro crystal company 8 bit microcontroller STC12C5A60S2 as the control core, three-phase bridge circuit adopts a reversing circuit, the main circuit power device using 6 N channel power MOSFET, a half-bridge drive circuit using IR2104 chip, the three-phase bridge circuit works to three-phase six pat, PWM driver the switching frequency signal for 10kHz, motor speed control using open loop speed control, with over-current, over-voltage protection circuit. Can realize the brushless motor stepless speed regulation, and the real-time speed of the motor through the LCD display, man-machine interface is friendly. Applicable to motor speed.

Key words: Brushless DC motor, FET, PWM, open loop control

目录

1 前言 (1)

1.1 选题背景 (1)

1.2 相关研究现状及前景 (1)

1.3内容章节概述 (1)

2 系统分析 (2)

2.1 无刷直流电机概念 (2)

2.2直流电动机的PWM调速原理 (4)

2.3霍尔传感器 (5)

2.4 无刷直流电机应用 (5)

3 硬件设计 (6)

3.1硬件系统框图 (6)

3.2 控制方式 (6)

3.3单片机选择 (7)

3.4 电路供电电源的选择 (7)

3.5 场效应管的驱动电路选择 (8)

3.6输入设备的选择 (9)

3.7显示模块选择 (9)

3.8 电流检测电路 (9)

3.9 电压检测电路 (11)

4 程序设计 (13)

4.1 程序编译环境 (13)

4.2三路PWM的产生 (13)

4.3换相控制 (14)

4.4电流电压检测 (17)

4.5程序流程图 (18)

5 实验测试 (19)

5.1 仿真 (19)

5.1.2 Proteus波形图 (19)

5.2实物图片 (20)

5.3单片机输出PWM的测试 (20)

5.3.1测试仪器 (20)

5.3.2测试方法 (20)

5.3.3测试结果 (21)

5.4无刷电机控制电路的霍尔逻辑测试 (21)

5.4.1测试仪器 (21)

5.4.2测试方法 (21)

5.4.3测试结果 (21)

5.5无刷电机控制电路电机运转测试 (22)

5.5.1测试仪器 (22)

5.5.2测试方法 (22)

5.5.3测试结果 (23)

5.6测试结论 (23)

致谢 (27)

附录:部分程序代码 (28)

1 前言

1.1 选题背景

近年来随着电子电力技术和永磁材料的迅速发展,永磁直流无刷电机在机电一体化产品中的应用越来越广泛。尤其是大功率直流无刷电机的应用在工业上有着有刷直流电机不可比拟的优势.直流无刷电机采用电子换向代替传统的机械换向,既具备交流电机结构简单、运行可靠、维护方便等优点,又具备有刷直流电机运行效率高、无励磁损耗、调速方法简单等优点,使无刷电机的研究具有重大意义。

1.2 相关研究现状及前景

有刷直流电动机作为最早的电动机广泛应用于工农业生产的各个领域,由于其宽阔而平滑的优良调速性能,在需要调速的应用领域占有重要地位,但机械换向装置的存在,限制了其发展和应用范匿。直流电动机的机械电刷和换向器因强迫性接触,造成其结构复杂、可靠性差、火花、噪声等一系列问题,影响了直流电动机的调速精度和性能。

科学技术的飞速发展,带来了半导体技术的飞跃,开关型晶体管的研制成功为创造新型的无刷直流电动机带来生机。1955年,美国人首次提出用晶体管换向线路代替机械换向装置,经过反复实验,人们终于找到了用位置传感器和电子换相线路来代替有刷直流电动机的机械换相装置,出现了磁电耦合式、光电式及霍尔元件作为位置传感器的无刷直流电动机,以后人们发现电量波形和转子磁场的位置存在着一定的对应关系,因此又出现了通过观测电枢绕组中不同电量波形,监测转子位置的无位置传感器的电动机。

无刷直流电动机兼有直流电动机调整和起动性能好以及异步电动机结构简单无需维护的优点,因而在高可靠性的电机调速领域中获得了广泛应用。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控靠方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广。

1.3内容章节概述

本文主要从系统分析、硬件设计、程序设计和实验测试四个方面阐述“无刷直流电机驱动电路设计”。开始概述永磁无刷直流电机的基本结构和三相无刷直流电机星形连接全桥驱动原理以及直流电动机的PWM调速原理,硬件设计介绍本次设计系的统结构框图,简要说明了单片机的选型、半桥驱动电路等,软件设计主要说明本设计的程序流程图;实验分为仿真和设计电路测试,说明仿真结果和试验结果。

2 系统分析

直流电机具有响应快速、起动转矩较大,以及从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩,则电枢磁场与转子磁场须恒维持90°,这就需要碳刷及整流子。碳刷及整流子在电机转动时会产生火花、碳粉,因此除了会造成组件损坏之外,使用场合也受到限制。

交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能实现。现今半导体发展迅速,功率组件切换频率加快许多,提升了驱动电机的性能。微处理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制交流电机在两轴电流分量,可达到类似交流电机的控制并有与直流电机相当的性能。无刷直流电机即是以电子方式控制交流电机换相,得到类似直流电机特性且结构上优于直流电机的一种电机。

2.1 无刷直流电机概念

2.1.1永磁无刷直流电机的基本结构

稀土永磁无刷直流电动机的基本构成包括电动机基体、开关电路、位置传感器三部分,如图2.1所示。

图2.1永磁无刷直流电动机的组成

(1)电机基体

稀土永磁电动机基体是由带有电枢绕组的定子和永磁转子组成。常用的有三种结构形式:转子铁心外圆粘贴瓦片形稀土永磁体;转子铁心中嵌入矩形板状稀土永磁体:转子外套上一个整体粘结稀土磁环的环形永磁体。还有一种外转子式结构,即带有稀土永磁极的转子在外,嵌有绕组的定子在里。电机运行时,外转子旋转。

(2)开关电路

开关电路由逆变器和驱动电路组成。逆变器主电路有桥式(图2.2a)和非桥式(图2.2b)两种。电枢绕组与逆变器联接形式多种多样,但应用最广泛的是三相星形六状态(图2.2a)。驱动电路将控制4电路的输出信号进行功率放大,并向各开关管送去能使其饱和导通与关断的驱动信号。

图2.2桥式(a)与非桥式(b)逆变电路

(3)转子位置传感器

转子位置传感器是检测转子磁极相对于电枢绕组轴线的位置,向控制器提供位置信号的一种装置。它由定、转子组成,其转子与电动机同轴,以跟踪电机本体转子位置;其定子固定于电机本体定子或端盖,以感应和输出转子位置信号。

2.1.2三相无刷直流电机星形连接全桥驱动原理

无刷直流电机转子的转速受电机定子旋转磁场的速度及转子极数的影响,在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机控制器包括电源部分和控制部分,如图2.3所示。电源部分提供三相电源给电机,控制部分则按照需求转换电源频率。电源部分可以直接以直流电输入或者以交流电输入,如果是以交流电输入就需先经转换器(convcfter)转成直流电。不论是直流电输入或是交流电输入,送入电机线圈前须先将直流电压由逆变器(invatcr)转成三相电压来驱动电机。逆变器一般由六个功率晶体管,分为上桥臂和下桥臂,连接电机作为控制流经电机线圈的开关。控制部分则提供PWM脉冲宽度调制信号决定功率晶体管开关频率及逆变器换相的时机。对于无刷直流电机,当负载变动时,一般希望速度可以稳定于设定值而不会有太大的变动,所以电机内部装有霍尔传感器(hall-sansor),作为速度的闭回路控制,同时也作为相序控制的依据。

电机转动由霍尔传感器感应到的电机转子所在位置,决定开启或关闭逆变器中功率晶体管的顺序来控制,如图2.3所示,逆变器中的AH、BH、CH(上桥臂功率晶体管)及AL、BL、CL(下桥臂功率晶体管),使电流依序流经电机线圈,产生顺向或逆向旋转磁场,并与转子磁铁产生的磁场相互作用,使电机顺向或逆向转动。当电机转子转动到霍尔传感器感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环,电机就可以实现转动。功率晶体管的开启方法举例如下:AH、BL一组一AH、CL一组一BH、CL一组一BH、AL一组一CH、AL一组一CH、BL一组,但不能使AH、AL

或BH、BL或CH、CL,即同相上下桥臂同时导通。此外,因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上譬)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。设电机转子位置传感器采集的位置信号为Ha、Hb、Hc,分别对应于逆变器的A相、B相、C相,则当前位置与下一位置电子开关导通相的对应关系如表2.4所示。

在电机转动时,控制部分会根据系统设定的速度决定功率管的导通时间。若系统要求加速,则增长功率管导通的时间,若要求减速,则缩短功率管导通的时间,此部分工作由PWM脉宽调制信号控制。

图2-3 六臂全桥式驱动电路

Q1到Q6为功率场效应管,当需要AB 相导通时,只需要打开Q1, Q4管,而使其他管保持截止。此时,电流的流经途径为:正极→Q1→线圈A →绕组B →Q4→负极。这样,六种相位导通模式:AB, AC, BC, BA, CA, CB 分别对应的场效应管打开顺序为Q1Q4, Q2Q2, Q3Q2, Q3Q6, Q5Q6, Q5Q4。

图2.3三相无刷直流电机工作原理

HA

HB

HC

霍尔传感器波形

A+

B+C+A-B-

C-

桥臂驱动信号

图2.4霍尔传感器信号与桥臂驱动信号示意图

2.2直流电动机的PWM 调速原理

直流调速系统中应用最广泛的一种调速方法就是调节电枢电压。改变电枢电压调速的方法有稳定性较好、调速范围大的优点。为了获得可调的直流电压,利用电力电子器件的完全可控性,采用脉宽调制(PWM)技术,直接将恒定的直流电压调制成可变大小和极性的直流电压作为电动机的电枢端电压,实现系统的平滑调遽,这种调速系统就称为直流脉宽调速系统。它被越来越广泛的应用在各种功率的调速系统中。

本系统利用开关驱动方式使半导体功率器件工作在开关状态,通过脉宽调制(PVCiV 工)来控制电动机电枢电压,实现调速。当开关的栅极输入高电平时,开关管导通,直流电动机电枢绕组两端有电压Us ,tt 秒后,栅极输入变为低电平,开关管截止,电动机电枢两端电压为晓fz 秒后,栅极输入重新变为高电平,开关管的动作重复前面的过程。

2.3霍尔传感器

霍尔器件是一种磁传感器。按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量,可用于磁场的测量和控制。霍尔器件具有许多优点,它们的体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHz),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高。此外,其工作温度范围宽,可达-55℃~150℃。

由无刷直流电机控制系统工作原理可知,电机位置传感器在无刷直流电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息。由于电动自行车的电机安装在轮毂内,对电机的尺寸和位置传感器体积的要求都比较高,考虑传感器的体积和性能,通常采用的传感器是磁敏式开关式传感器,目前使用最广泛的是开关型霍尔集成传感器。

当霍尔传感器用作无刷直流电机转子位置信息检测装置时,将其安放在电机定子的适当位置,霍尔器件的输出与控制部分相连。当无刷直流电机的永磁转子经过霍尔器件附近时,永磁转子的磁场令霍尔器件输出一个电压信号,该信号被送到控制部分,由控制部分发出信号使得定子绕组供电电路导通,给相应的定子绕组供电,从而产生和转子磁场极性相同的磁场,推斥转子继续转动。当转子到下一位置时,前一位置的霍尔器件停止工作,下一位置的霍尔器件输出电压信号,控制部分使得对应定子绕组通电,产生推斥场使转子继续转动,如此循环,维持电机运转。

2.4 无刷直流电机应用

无刷直流电机的应用十分广泛,如汽车、工具、工业工控、自动化以及航空航天等等。总的来说,无刷直流电机可以分为以下三种主要用途:

持续负载应用:主要是需要一定转速但是对转速精度要求不高的领域,比如风扇、抽水机、吹风机等一类的应用,这类应用成本较低且多为开环控制。

可变负载应用:主要是转速需要在某个范围内变化的应用,对电机转速特性和动态响应时间特性有更高的需求。如家用器具中的、甩干机和压缩机就是很好的例子,汽车工业领域中的油泵控制、电控制器、发动机控制等,这类应用的系统成本相对更高些。

定位应用:大多数工业控制和自动控制方面的应用属于这个类别,这类应用中往往会完成能量的输送,所以对转速的动态响应和转矩有特别的要求,对控制器的要求也较高。测速时可能会用上光电和一些同步设备。过程控制、机械控制和运输控制等很多都属于这类应用。

3 硬件设计

无刷直流电机控制器在控制方式上主要有以专用集成芯片、单片机和DSP 芯片控制三种方式。专用集成芯片为核心的控制器,系统结构简单,价格较便宜,但是系统灵活性不足,保护功能有限;以DSP 芯片为核心的控制器,控制精度较高,但是算法较复杂,开发周期长,成本较高,不易在市场上推广。本设计使用单片机作为主控芯片能弥补上述两方案的不足。

3.1硬件系统框图

本系统主要采用的硬件有稳压芯片、6颗MOS 构成的三相全桥电路、直流无刷电机、按键、单片机、显示模块、三相霍尔、2104驱动电路、电流检测电路以及一些外围电路,具体系统框图如图3-1所示。

STC12C 5A60S2单片机

IR2104构成的

三相MOS 驱动电路

6颗MOS 构成的三相全桥

按键电路

液晶显示电路

PWM ADC

ADC ADC

电压检测电路

电流检测电路

15~24V DC

5V 稳压芯片

5V

12V 稳压芯片

有感无刷电机

三相霍尔信号

3.1系统框图

3.2 控制方式

由于该电路有6个MOS 管,上桥臂开关管采用PWM 工作方式,下桥臂为选通工作方式,所以需要三路PWM 信号,由于有3路硬件PWM 信号输出的单片机型号较少,本设计采用与非门电路,只需1路PWM 信号即可实现控制目的。

3.2与门电路

3.3单片机选择

目前,市场上有很多无刷电机专用控制芯片,很多生产厂商采用MC3303无刷电机专用控制芯片,它具有无刷直流电机控制系统所需要的基本功能。本设计采用STC12C5A60S2单片机作为主控芯片,不仅可以实现专用控制芯片MC33035的全部功能,而且容易实现系统扩展,通过软硬件设计,实现多功能的电机控制。

STC12C5A60S2单片机有60K的Flash程序存储字节,36个I/O口,具有两路PWM输出、8路10位ADC模数转换、每个I/O能设置成弱上拉、强上拉、高阻、开漏模式,I/O在弱上拉时输出电流为0.15~0.25mA。该单片机内置上电复位电路,性价比高,抗静电,抗干扰,低功耗,低成本。

图3-3 STC12C5A60S2单片机实物图

3.4 电路供电电源的选择

线性降压芯片7805。这个稳压IC需要的外围元件很少,IC内部还有过流、过热及调整管的保护措施,不但价廉且输出电压很稳定。78系列的稳压集成块要考虑输出与输入压差带来的功率损耗,所以一般输入输出之间压差要大于2V。其应用电路图如图3-4所示。

图3-4 7805应用电路

3.5 场效应管的驱动电路选择

如图3.3所示三相电桥电路图,其电路功率器件选用6个功率场效应管,由于市电电压为交流220V,整流后的电压为310V,要预留10%余量,故需要选择耐压值大于350V的场效应管。

电机的功率为600A V,功率因素为0.6,实际的工作功率为360W,故实际工作电流为1.16A,由于电机启动瞬间电流会大于正常工作电流的3倍以上,但是持续时间较短,预留200%余量,故需要选择电流大于4A场效应管。

由于高压场效应管均发热量比较大,所以系统采用加风扇散热,以达到降低热阻的效果。选用仙童公司生产的8N60场效应管,该管的耐压值为600V,25°C时最大通过电流为8A,100°C时最大通过电流为4.6A,内阻为1.2Ω,管子的开通时间为60.5ns,关断时间为64.5ns能达到系统的要求。

A、B、C分别与无刷直流电动机三相绕组成三角形接法。

3.5三相电桥电路图

半桥驱动电路。IR2104是一种高性能的半桥驱动芯片,该芯片采用被动式泵荷升压原理。上电时,电源流过快恢复二极管D向电容C充电,C上的端电压很快升至接近Vcc,这时如果下管导通,C负级被拉低,形成充电回路,会很快充电至接近Vcc,当PWM波形翻转时,芯片输出反向电平,下管截止,上管导通,C负极电位被抬高到接近电源电压,水涨船高,C正极电位这时已超过Vcc电源电压。因有D的存在,该电压不会向电源倒流,C此时开始向芯片内部的高压侧悬浮驱动电路供电,C上的端电压被充至高于电源高压的Vcc,只要上下管一直轮流导通和截止,C就会不断向高压侧悬浮驱动电路供电,使上管打开的时候,高压侧悬浮驱动电路电压一直大于上管的S极。采用该芯片降低了整体电路的设计难道,只要电容C选择恰当,该电路运行稳定。

图3.6半桥驱动电路

3.6输入设备的选择

方案一:按键。按键的输入量单一,不能实现电机自由变速。

方案二:电位器。输入量大且输入量的大小客观可见,方便操作者生理感官直接感受。

由于输入的数据量大,方案二最符合这个要求,故选择方案二输入设备。

图3-7 按键电路

3.7显示模块选择

方案一:数码管。数码管价格低廉,显示方案需要增加驱动电路,而且显示内容单一,驱动电流比液晶显示电流大。

方案二: 1602液晶显示。液晶驱动电流较小,能显示较大信息量,无需增外设电路。

由于系统需要显示多行数据,方案二最符合这个要求,故选择方案二为显示模块。

图3-8 1602液晶显示

3.8 电流检测电路

方案一:霍尔电流传感器。电流流过霍尔传感器的线圈发生磁场,磁场随电流的大小变化而变化,磁场汇集在磁环内,霍尔元件输出跟着磁场变化的电压信号。经过检测电压值,能得到电流的大小。

方案二:电阻分压检测电路。经过在输出回路中串连采样电阻,将经过电阻的电流转换成两端的电压,经过检测电压值从而获得电流值。该检测方式电路和程序控制都比较简洁。

要完成对输出电压和电流的闭环控制,务必对输出电流和电压进行采样反馈。本设计采用如下图所示的电流电压检测电路。为了便于MCU采集,分压电阻发生的电压经过由LM358组成的同相比例放

大器放大后,输入到MCU 的ADC 端口。

LM358内部集成的是双运放,单电源和双电源都能使其工作。

图3-9 Lm358引脚图及引脚功能

要完成对输出电压和电流的闭环控制,务必对输出电流经过运放放大后进行采样反馈。本设计采用如图3-10所示的电流检测电路。

图3-10 电流检测电路

为了板子器件的安全,我们设定保护电流为2A ,即电流超过2A ,系统进入保护状态。本设计采用电阻分压的式样对输出的电压进行实时检测,因为采样电压直接输送给单片机10位ADC 进行检测,单片机供电电源为5V ,所以其内部自带的检测的最高电压也为5V , 这个电路中,LM358由5V 电压供电,最大输出电压和供电电源电压之前有1.2V 压差,所以能输出最大电压为:

V

v V V m 8.32.15ax =-= (3-1)

2A 电流经过0.025Ω电阻得到的电压为

V

A V 050.00.025Ω*2i == (3-2) 该电压要经过放大后才能更容易被单片机检测到,在这个应用中运放的放大倍数应该小于

76050.08.3==

V

V

β (3-3)

这里选择R12和R10为33K 和1K ,放大倍数为

3411k 33202022=+=+=

K

k R R R o β (3-4)

因为β>

o β, 符合设计要求。

即当电流为2A 时,运放输出电压为:

V

V 70.134*050.0out == (3-5)

3.9 电压检测电路

输入电压为24V ,而单片机的采样电压最高位5V ,故电压采样电阻比例应该小于

8.45

2451=>R R (3-6) 这里取R1和R5是100K 和10K ,

1110101002=+=K

K

K β (3-7)

因为β1<β2,所以满足条件。

当24V 输入时,单片机检测到的电压是,

V

K

K K

V 18.21010010*

24out4=+= (3-8)

电压分压检测电路如图3-11所示。

图3-11 电压检测电路

综合以上的分析论证,本无刷直流电机驱动电路采用STC12C5A60S2单片机作为控制核心,霍尔传感器反馈电机转子当前位置,单片机处理后的输出信号经各级处理电路,控制三相电桥的通断状态,实现控制电机转速的目的。采用电位器为电机转速输入设备,采用1602液晶显示电机转速信息,主电路功率器件选用6个N 沟道功率场效应管,半桥驱动电路采用IR2104芯片。整体电路图如图3.12所示

11

223

3

4

4

D

D

C C

B B

A

A

Title Number

Revision

Size A4Date:2016/1/31Sheet of File:

D:\Project Design\..\无刷电机控制器.SCHDOC Drawn By:

Q1IRF540*6

1

2P1

470uF C135V

GND

1234

5

678P2IR2104

10Ω

R9D54148

+12

I N 10.05Ω

R15100K

R110K

R5OUT1OUT2OUT3

+24V

8

1

4

3

2

1

U3A LM358J P 1_1

1k

R2033k

R22GND

GND

33k R19104

C6

IN

1

2

OUT 3GND

U17812GND

GND 10K

R1210ΩR6

Q4

Q21234

5

678P3IR2104

D64148

+12

GND 10K

R1310ΩR7

Q5

Q3

1234

5

678P4

IR2104

D74148

+12

GND

10K

R1410ΩR8

Q6

10K

R210K

R310K

R4IN2

IN3

1

2

3

U4A 74HC084

5

6

U4B

74HC088

910

U4C

74HC08

I N 2I N 3IN1

104

C10470pF

C9GND

IN

12

OUT 3

GND

U27805470pF C7104

C8VCC

1234

P6

下载程序

GND

VCC

GND

S1

C1133

C12331211.0592M Y1GND

123456789101112131415161718192021

22232425262728293031323334353637383940P4.7

P1.0P1.1P1.2P1.3P1.4P1.5P1.6P1.7P3.0/RX P3.1/TX P3.2P3.3P3.4P3.5P3.6P3.7XTAL2XTAL1GND

VCC P0.0P0.1P0.2P0.3P0.4P0.5P0.6P0.7P4.6P4.5P4.4P2.7P2.6P2.5P2.4P2.3P2.2P2.1P2.0

U5

STC12C5A60S2单片机

P1_0P1_1P1_2P1_3P1_4P1_5P1_6P1_7P3_0P3_1P3_2P3_3P3_4P3_5P3_6P3_7P0_0P0_1P0_2P0_3P0_4P0_5P0_6P0_7

P2_0P2_1P2_2P2_3P2_4P2_5P2_6P2_7VCC

P3_0P3_1

P2_1

12345678910111213141516P51602液晶

100

R242k R23GND VCC

GND

VCC

GND

P0_0P0_1P0_2P0_3P0_4P0_5P0_6P0_7P2_5P2_6P2_7S2

P2_2

S3

P2_3

12345P7

GND OUT1OUT2OUT3

VCC

VCC P1_3

P 1_5

P 1_6

470uF C2

35V

10Ω

R1010Ω

R11P3_5

P3_6P3_7P3_2

P3_3

P3_4P 1_7

+12P1_0

10k

R30

123

P8

+24V

2.2uF C3

2.2uF C4 2.2uF C52.2uF

C17100

R41100

R43100

R4510uF C0VCC

10K

R42GND

无刷电机的三个相位

无刷电机的霍尔传感器

3.12整体电路

4 程序设计

4.1 程序编译环境

单片机及其外围硬件的执行离不开软件的运作。为了实现单片机采集信号、控制系统,需要编制相应的软件程序。对于51系列单片机的编程,主要有汇编和C语言两种编程语言,汇编语言功能强、运行速度快,但编程复杂,调试繁琐,并且移植性差;而C语言作为准高级语言,具有良好的可读性,调试简单,移植性好。本系统采用C语言编写程序,Keil C51作为集成开发环境。

4.2三路PWM的产生

由于该电路有6个MOS管,上桥臂开关管采用PWM工作方式,下桥臂为选通工作方式,所以需要三路PWM信号,单路PWM(P1_3脚)信号可以通过与门电路实现PWM 的选通而产生3路PWM信号

4-1与门电路

其逻辑真值表如下

PWM IN1 SD1 PWM IN2 SD2 PWM IN3 SD3

0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

1 1 1 1 1 1 1 1 1

采用PWM控制的方法控制上管进行PWM,下管选通。

另外的,由于人耳朵的听力范围为20~20KHz的声波,所以PWM要避开这一人耳敏感的频率,单片机选择21KHz的PWM输出,降低了无刷直流电机的运行噪声。

用按键调节控制电机的PWM占空比,从而达到电机转速的可控性。由于按键不需要响应反应很快,故按键程序直接在主程序中调用。

4.3换相控制

该电机的霍尔为0°、60°、120°,其霍尔输入信号和三相桥臂MOS管的控制逻辑关系如图4-2所示:

图4-2 霍尔输入信号和三相桥臂MOS管的控制逻辑关系

在程序中需要及时监测电机的霍尔换向,不然就会带来换相缓慢造成的电机驱动电流过大,缩短电机使用寿命的结果。

电机的最大转速为20000r/min,故每秒转速为333r/s,故霍尔每秒钟换向999次,在程序中设置在定时器中读取是否霍尔换向,从而控制相应桥臂输出,所以每秒查询频率要远大于999次,设定进入定时器中断频率为10K,故定时器的时间设定为100us。

在程序中,检测到换向动作时,若要打开某个管子,则要在此之前先关闭需要关闭的管子,程序的运行指令周期为2个机器周期,对于12M晶振的51单片机运行在12T方式下,则两条指令之间间隔时间为2us,超过管子的开通时间的60.5ns,足以造成控制电路的瞬态短路,增加电路自身的损耗。

其中断的程序如下所示:

ENTER

Timer Interrupt Timer reshipment initial value,

100 us regularly Any Hall output"1"?

NO

YES

A Hall output"1"

C Hall output"1"

B Hall output"1"

B Hall output"1"

NO

NO

YES

YES

A half-bridge OFF

B half-bridge OFF

C half-bridge OFF

A half-bridge PWM

B down MOS ON

C half-bridge OFF YES

YES

A half-bridge OFF

B half-bridge PWM

C down MOS ON A half-bridge PWM B half-bridge OFF C down MOS ON

Speed_mark=0

Speed_mark=1

Speed_mark==0?

Speed++

YES

NO

B Hall output"1"

NO

C Hall output"1"

A down MOS ON

B half-bridge OFF

C half-bridge PWM

A down MOS ON

B half-bridge PWM

C half-bridge OFF A half-bridge OFF B down MOS ON C half-bridge PWM

YES

YES

NO

NO A half-bridge OFF B half-bridge OFF C half-bridge OFF

Time2++

Time2>9999? (1S )

Time2=0Speed1=Speed Speed=0OUT

YES

NO

void Timer0Interrupt(void) interrupt 1

{

TH0 = 0xFF;

TL0 = 0x9c; //100us

Temp = (P3&0xE0)>>5;

if(ZF)

{

switch(Temp)

{

case 7: {IN_A=0;IN_B=0; IN_C=0;SD_A=0; SD_B=0;SD_C=0; };

break; //霍尔状态全为1

case 5: {SD_C=0;IN_C=0; IN_B=0;SD_B=1; IN_A=1;SD_A=1; };

break; //霍尔状态1

case 4: {SD_B=0;IN_B=0; IN_C=0;SD_C=1; IN_A=1;SD_A=1;

if(!speed_mark)

{speed_mark=1; speed1++;}

};

break; //霍尔状态2

case 6: {SD_A=0;IN_A=0; IN_C=0;SD_C=1; IN_B=1;SD_B=1;

speed_mark=0;};

break; //霍尔状态3

case 2: {SD_C=0;IN_C=0; IN_A=0;SD_A=1; IN_B=1;SD_B=1; };

break; //霍尔状态4

case 3: {SD_B=0;IN_B=0; IN_A=0;SD_A=1; IN_C=1;SD_C=1; };

break; //霍尔状态5

case 1: {SD_A=0;IN_A=0; IN_B=0;SD_B=1; IN_C=1;SD_C=1; };

break; //霍尔状态6

default:break;

}

}

else

{

switch(Temp)

{

case 7: {IN_A=0;IN_B=0; IN_C=0;SD_A=0; SD_B=0;SD_C=0; };

break; //霍尔状态全为1

case 5: {SD_C=0;IN_C=0; IN_A=0;SD_A=1; IN_B=1;SD_B=1; };

break; //霍尔状态1

case 4: {SD_B=0;IN_B=0; IN_A=0;SD_A=1; IN_C=1;SD_C=1;

if(!speed_mark)

{speed_mark=1; speed1++;}

};

break; //霍尔状态2

case 6: {SD_A=0;IN_A=0; IN_B=0;SD_B=1; IN_C=1;SD_C=1;

speed_mark=0;};

直流电机的调速方法

第八章直流调速系统 8.1 概述 调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此,在生产机由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长位。当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,在许多场合正逐渐取代直流调速仍然是自动调速系统的主要形式。在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需泛采用直流调速系统。而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础 8.1.1直流电机的调速方法 根据第三章直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种: (1)调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 (2)改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 (3)改变电枢回路电阻。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,几乎没什么调速作用;还会在调速电阻上消耗大量电能。 改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动和调压调速配合使用,在额定转速以上作小围的升速。因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速直流电动机电枢绕组中的电流与定子主磁通相互作用,产生电磁力和电磁转矩,电枢因而转动。直流电动机电磁转矩中的常方便地分别调节,这种机理使直流电动机具有良好的转矩控制特性,从而有优良的转速调节性能。调节主磁通一般还是通过调节速,还是调磁调速,都需要可调的直流电源。 8.1.3 调速系统性能指标 任何一台需要转速控制的设备,其生产工艺对控制性能都有一定的要求。例如,精密机床要求加工精度达到几十微米至几的围调速,最高和最低相差近300倍;容量几千kW的初轧机轧辊电动机在不到1秒的时间就得完成从正转到反转的过程;高速造速误差小于0.01%。所有这些要求,都可以转化成运动控制系统的稳态和动态指标,作为设计系统时的依据。 转速控制要求 各种生产机械对调速系统提出了不同的转速控制要求,归纳起来有以下三个方面: (1)调速。在一定的最高转速和最低转速围,分档(有级)地或者平滑(无级)地调节转速。 (2)稳速。以一定的精度在所需转速上稳定地运行,不因各种可能的外来干扰(如负载变化、电网电压波动等)而产生(3)加、减速控制。对频繁起、制动的设备要求尽快地加、减速,缩短起、制动时间,以提高生产率;对不宜经受剧烈速量平稳。 以上三个方面有时都须具备,有时只要求其中一项或两项,其中有些方面之间可能还是相互矛盾的。为了定量地分析问题个调速系统的性能。 稳态指标 运动控制系统稳定运行时的性能指标称为稳态指标,又称静态指标。例如,调速系统稳态运行时调速围和静差率,位置随控制系统的稳态力误差等等。下面我们具体分析调速系统的稳态指标。 (1)调速围D 生产机械要求电动机能达到的最高转速nmax和最低转速nmin之比称为调速围,用字母D表示,即

直流无刷电机硬件设计文档

硬件电路设计说明书V1 文档版本 1.0 编写人:彭威 编写时间:2015-06-10 部门:研发部 审核人: 审核时间:

1.引言 1.1编写目的 本文档是无刷直流电机风机盘管电源电路及控制驱动电路的硬件设计说明文档,它详细描述了整个硬件模块的设计原理,其主要目的是为无刷直流电机控制驱动电路的原理图设计提供依据,并作为 PCB 设计、软件驱动设计和上层应用软件设计的参考和设计指导。 1.2产品背景 1.3参考资料 Datasheet:Kinetis KE02 Datasheet:MKE02Z16VLC2 Datasheet:MKE02Z64M20SF0RM Datasheet:FSB50760SFT Datasheet:TNY266 Datasheet:FAN7527 2.硬件电路概述 2.1电源部分 电源部分主要功能是提供400V直流电供给电机,另外提供15V直流电给电机驱动芯片供电。采用反激式开关电源设计。 2.1.1总体方案

设计一款 100W驱动开关电源。给定电源具体参数如下: (1)输入电压:AC 85V~265V (2)输入频率:50Hz (3)工作温度:-20℃~+70℃ (4)输出电压/电流:400V/0.25A (5)转换效率:≧85% (6)功率因数:≧90% (7)输出电压精度:±5% 系统整体框架如下 如图所示为电源的整体架构框图,主要目的是在输入的85~265V、50Hz交流电下,输出稳定的恒压电机驱动直流电。由图可知,电源电路主要包括了前级保护电路模块、差模共模滤波模块、整流模块、功率因数校正模块、DC/DC模块。其中EMI滤波电路能够抑制自身和电源线产生的电磁污染,功率因数校正电路采用Boost有源功率因数

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

无刷直流电机(BLDC)双闭环调速解析

无刷直流电机(BLDC)双闭环调速系统 在无刷直流电机双闭环调速系统中,双闭环分别是指速度闭环和电流闭环。对于PWM 的无刷直流电机控制来说,无论是转速的变化还是由于负载的弯化引起的电枢电流的变化,可控量输出最终只有一个,那就是都必须通过改变PWM的占空比才能实现,因此其速度环和电流环必然为一个串级的系统,其中将速度环做为外环,电流环做为内环。调节过程如下所述:由给定速度减去反馈速度得到一个转速误差,此转速误差经过PID调节器,输出一个值给电流环做给定电流,再由给定电流减去反馈电流得到一个电流误差,此电流误差经过PID 调节器,输出一个值就是占空比。 在速度环和电流环的调节过程中,PID的输出是可以作为任意量纲(即无量纲,用标幺值来表示;标幺值:英文为per unit,简写为pu,是各物理量及参数的相对单位值,是不带量纲的数值)来输入给下一环节或者执行器的,因此无需去管PID输出的量纲,只要是这个输出值反映了给定值和反馈值的差值变化,能够使这个差值无限趋近于零即可,相当于将输出值模糊化,不用去搞的太清楚,如果你要是一直在这里纠结输出值具体是个什么东西时,那么你就会瞎在这里出不来了。假如你要控制一个参数,并且这个参数的大小和你给定量和反馈量有着直接的关系(线性关系或者一阶导数关系或者惯性关系等),那么就可以不做量纲变换。比如速度环的PID之后的输出就可以直接定义为转矩,因为速度过慢就要提高转矩,速度过快就要减小转矩,PID输出量的意义是调整了这个输出量,就可以直接改变你要最终控制的参数,并且这个输出量你是可以直接来控制的,这种情况下PID输出的含义是你可以自己定的,比如直流电机,速度环输出你可以直接定义为转矩,也可以定义为电流,然后适当的调节PID的各个参数,最终可以落到一个你能直接控制的量上,在这里最终的控制量就是占空比的值,当占空比从0%—100%时对应要写入到寄存器里面的值为0—3750时,那么0—3750就是最终的控制量的范围。 在调速控制中,既要满足正常负载时的速度调节,还要满足过负载时进行电流调节。如果单独采用一个调节器时,其调节器的动态参数无法保证两种调节过程同时具有良好的动态品质,因此采用两个调节器,分别调节主要被调量转速和辅助被调量电流,以转速调节器的输出作为电流调节器的输入,电流环是通过电流反馈控制使电机电枢电流线性受控,可达到电机输出力矩的线性控制,并使其动态范围响应快,最后再输出去控制占空比,从而改变MOSFET的导通时间,二者之间实行串级连接,它是直流电力传动最有效的控制方案。 在双闭环调速系统中,输入参数有三个,分别为给定速度和反馈速度以及反馈电流,其中给定速度由用户指定,一般指定为旋转速度(RPM 转/分钟)或直线速度(m/s 米/秒)。而反馈速度和反馈电流则需要由传感器来获取,下面来讲一下在无刷直流电机控制系统中,反馈速度和反馈电流的获取。 反馈速度:简单点的就由电机内用来检测转子位置的三个霍尔元件来得到,高端点的就加光电编码器,分别称为霍尔元件测速和编码脉冲测速。 霍尔元件测速:在电机磁极对数为1的情况下,转子旋转一周的时间内,霍尔传感器输出3路各180度信号,其中每两个传感器之间有60度的交叠信号,只要检测其中一路霍尔传感器的信号宽度就能计算出电机的速度。用输入捕捉(CAP)端口在上升沿捕捉一个时间标签,再在下降沿捕捉一个时间标签,根据两个时间标签的差值得出周期,由于霍尔传感器是在电机内固定不变的,因此每次在霍尔传感器的信号宽度下旋转的角度是一定的(即走过的距离是固定的),最后用此固定的距离除以周期即可得到速度,即T法测速,测量两个信号

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

无刷直流电机调速--C语言源程序

附录 1. C语言源程序: #include"stdio.h" #include"myapp.h" #include"ICETEK-VC5502-EDU.h" #include"scancode.h" #include"lcd.h" #define CTRSTATUS (*(unsigned int * )0x608000) //port8000 #define CTRLED (*(unsigned int * )0x608004) //port8004 #define MCTRKEY (*(unsigned int * )0x608005) //port8005 #define CTRCLKEY (*(unsigned int * )0x608006) //port8006 #define CTRMOTORBSPEED (*(unsigned int * )0x608003) void InitMcBSP(); void INTR_init( void ); void InitForMotorB( void ); void showparameters(); void LCDPutString(unsigned int * pData,int x,int y,unsigned int nCharNumber,unsigned color); void PIDControl(int rk,int yk); void PrintParameters(); //定时器分频参数 #define T100 99 // 100个时钟周期中断一次 #define T2Hz 20000 // 20000个时钟周期读取速度一次 //工作变量 usigned int uWork,uN,nCount,nCount1,nCount2,nCount3,nCount4; int nSSS,nJSSpeed,pwm1; int md,wc; unsigned int nScreenBuffer[30*128]; float a=0.6f,b=0.2f,c=0.1f,duk; int ek,ek1,ek2,tz;

直流电机控制系统

直流电机控制系统

摘要:本文利用MCS-51系列单片机产生PWM信号,采用了自己设计的电机驱动电路,实现对直流电机的转速和控制方向的控制,并着重对电机驱动电路的设计进行叙述。主要模块包括单片机控制模块、电机驱动模块、电机接口模块、电源模块、键盘控制模块。 关键词:PWM信号,直流电机,电机驱动,单片机

引言 随着科学技术的迅猛发展,电气设备发展日新月异.尤其以计算机,信息技术为代表的高新技术的发展,使制造技术的内涵和外延发生了革命性的变化,传统的电气设备设计,制造技术不断吸收信息控制,材料,能量及管理等领域的现代成果,综合应用于产品设计,制造,检测,生产管理和售后服务.在生产技术和生产模式等方面,许多新的思想和概念不断涌现,而且,不同科学之间相互渗透,交叉融合,迅速改变着传统电气设备制造业的面貌,从而使得产品频繁的更新换代,这就使得电机成为社会生产和生活中必不可少的工具.随着科学技术的不断发展,人类社会的不断进步,人们对生活产品的需求要不断趋向多样化,这就要求生产设备必须具有良好的动态性能,在不同的时候进行不同的操作,完成不同的任务.为了使系统具有良好的动态性能必须对系统进行设计.特别是大型的钢铁行业和材料生产行业,为达到很高的控制精度,速度的稳定性,调速范围等国产直流电机简介为了满足各行业按不同运行条件对电动机提出的要求,将直流电机制造成不同型号的系列.所谓系列就是指结构形状基本相似,而容量按一定比例递增的一系列电机.它们的电压,转速,机座型号和铁心长度都是一定的等级.现将我国目前生产的几个主要系列直流电机简要的介绍如下。Z2系列为普通用途的中,小型电机.它的容量从400W到200KW,电动机的额定电压有200V和110V两种,额定转速有3000,1500,1000,750及600r/min五个等级.Z2系列普通用

无刷直流电动机调速系统设计说明

目录 1绪论 (1) 1.1 直流无刷电动机发展状况 (1) 1.2直流无刷电机控制技术的发展 (1) 2 直流无刷电动机的工作原理 (2) 2.1 直流无刷电动机的结构与原理 (2) 2.2三相绕组直流无刷电动机控制主回路的基本类型 (4) 2.3直流无刷电动机控制系统中的PWM控制器 (5) 3 直流无刷电动机控制系统的数学模型 (6) 3. 1直流无刷电动机的基本方程 (7) 3. 2直流无刷电动机控制系统的动态数学模型 (10) 4 硬件电路 (12) 4.1 主电路 (12) 4.2换相电路 (14) 5 软件部分设计 (17) 5. 1软件总体构成 (17) 5. 2主程序的设计 (17) 5. 3中断子程序的设计 (19) 结论 (21) 参考文献 (22) 致谢 .............................................................. 错误!未定义书签。

1绪论 1.1 直流无刷电动机发展状况 电动机作为机电能量转换装置,其应用围已经遍及国民经济的各个领域,电动机主要类型有同步电动机、异步电动机与直流电动机三种。直流电动机具有运行效率高和调速性能好等诸多优点,因此被广泛应用于各种调速系统中。但传统的直流电动机均采用机械电刷的方式进行换向,存在相对的机械摩擦,和由此带来的噪声、火花、无线电干扰以及寿命短等致命弱点。因此,早在1917年,Bulgier就提出了用整流管代替有刷直流电机的机械电刷,从而诞生了无刷直流电机(BLDCM: Brushless Direct Current Motor)的基本思想。 1955年,美国D·Harrison等人首次申请了用晶体管换向线路代替有刷直流电机机械电刷的专利,标志着无刷直流电机的诞生。1978年,原联邦德国MANNESMANN公司的Indramat分部在汉诺威贸易展览会上正式推出其MAC永磁无刷直流电机及其驱动系统,标志着永磁无刷直流电机真正进入了实用阶段。二十世纪80年代国际上对无刷电机开展了深入的研究,先后研制成方波和正弦波无刷直流电机,在10多年的时间里,无刷直流电机在国际上己得到较为充分的发展。现代电力电子器件工艺日臻成熟,出现了功率晶体管(GTR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET),特别是绝缘栅双极晶体管(IGBT ), MOS可控晶闸管(IGCT)的开发成功,使无刷直流电机功率驱动电路的可靠性和稳定性得到保障。直流无刷电动机的发展也使得传统的电机学科同当代许多新技术的发展密切相关。随着大功率半导体器件、电力电子技术、微电子技术、数字信号处理技术、现代控制理论的发展以及高性能永磁材料的不断出现,如今的无刷直流电机系统己经成为集特种电动机、功率驱动器、检测元件、控制软件与硬件于一体的典型的机电一体化产品,体现了当今工程科学领域的许多最新成果。 1.2直流无刷电机控制技术的发展 常规控制器(PID控制)尽管控制精度较高,但它需要建立描述动态系统的精确的数学模型,对于未知动态变化的系统要建立精确的数学模型是比较困难的。比如干扰、参数漂移和噪声等不可能在很高的精度下进行模型化。

直流电动机无级调速毕业设计

毕业设计(论文)任务书 设计(论文)题目:直流电动机无级调速 1.设计(论文)的主要任务及目标 (1) 本次的设计任务就是直流电动机无级调速的设计,使其能更好的为我们的生产和生活服务。 (2) 本次的设计目的就是要求设计要使得电动机转速可以由零平滑调至额定转速,能实现高速起动,具有较高的调速精度。 2.设计(论文)的基本要求和内容 (1) 直流电动机的基本知识 (2) 直流电动机的运行原理 (3) 主电路以及控制电路的设计 3.主要参考文献 [1] 张家生.电机原理与拖动基础.北京邮电学院出版社,2006年 [2] 唐介.电机与拖动. 北京:高等教育出版社,2003年 [3] 陈世元.电机学.中国电力出版社,2004年 [4] 徐邦荃.直流调速系统与交流调速系统.华中科技大学出版社,2008年 [5] 赵影.电机与电力拖动. 北京:国防工业出版社,2006年 4.进度安排 设计(论文)各阶段名称起止日期 1 论文初稿2012年12月27日 2 第一次修改2012年12月30日 3 第二次修改2013年01月08日 4 第三次修改2013年02月17日 5 论文终稿2013年03月16日 I

直流电动机无极调速 摘要 本设计主要是运用调速系统对直流电动机进行调速,使其实现无级的效果。此调速系统由主电路和控制电路两部分组成:主电路是采用晶闸管可控整流装置进行调速;控制电路是采用双闭环速度电流调节方法进行反馈。系统采用调压调速的调速方法可以获得与电动机固有机械特性相互平行的人为机械特性,调速方向是基速以下,只要输出的电压是连续可调的,即可实现电动机的无级调速。双闭环速度电流调节这种方法虽然初次头次成本相对而言较高,但它保证了系统的性能,保证了对生产工艺要求的满足,它既兼顾了启动时的电流的动态过程,又保证稳态后速度的稳定性,在起动过程的主要阶段,只有电流负反馈,没有转速负反馈。达到稳态后,只要转速负反馈,不让电流负反馈发挥主要作用很好地满足了生产需要。 关键词:无级调速;双闭环;晶闸管 II

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

基于PWM控制的直流电机自动调速系统设计_毕业设计

基于PWM控制的直流电机自动调速系统设计 1 绪论 1.1 课题的研究背景和意义 直流电动机是最早出现的电动机,也是最早能实现调速的电动机。长期以来,直流电动机一直占据着调速控制的统治地位。由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(如交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。 近年来,直流电动机的结构和控制方式都发生了很大变化。随着计算机进入控制领域以及新型的电力电子功率元件的不断出现,使采用全控型的开关功率元件进行脉宽调制 (PulseWidthModulation,简称PWM)控制方式已成为绝对主流。这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。 五十多年来,直流电气传动经历了重大的变革。首先,实现了整流器件的 更新换代,从50年代的使用己久的直流发电机一电动机组(简称G-M系统)及水银整流装置,到60年代的晶闸管电动机调速系统(简称V-M系统),使得变流技术产生了根本的变革。再到脉宽调制 (PulsewidthModulation)变换器的产生,不仅在经济性和可靠性上有所提高,而且在技术性能上也显示了很大的优越性,使电气传动完成了一次大的飞跃。另外,集成运算放大器和众多的电子模块的出现,不断促进了控制系统结构的变化。随着计算机技术和通信技术的发展,数字信号处理器单片机应用于控制系统,控制电路己实现高集成化,小型化,高可靠性及低成本。以上技术的应用,使系统的性能指标大幅度提高,应用范围不断扩大。由于系统的调速精度高,调速范围广,所以,在对调速性能要求较高的场合,一般都采用直流电气传动。技术迅速发展,走向成熟化、完善化、系统化、标准化,在可逆、宽调速、高精度的电气传动领域中一直居于垄断地位[1]。 目前,国内各大专院校、科研单位和厂家也都在开发直流数字调速装置。姚勇涛等人提出直流电动机及系统的参数辨识的方法。该方法依据系统或环节的输入输出特性,应用最小二乘法,即可获得系统或环节的内部参数,所获的参数具

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

直流无刷电机转速控制

一、 直流无刷电机转速控制 1. 模拟PID 控制 1.1 模拟PID 控制原理 在模拟控制系统中,最常用的控制器就是模拟PID 控制器。以下图所示直流电机 控制系统为例,说明PID 控制器控制电机转速的原理。图中)(0t n 为转速设定值,)(t n 为转速反馈值,)()()(0t n t n t e -=为偏差信号,偏差信号通过PID 控制器后产生控制作用作用于直流电机从而控制电机转速到设定值。 常见的模拟PID 控制系统如下图所示。PID 控制器由比例、积分、微分的线性组合构成。控制规律如下: ]) ()(1)([)(0?++=t d i p dt t de T d e T t e K t u ττ * 其中: p K ——控制器的比例系数 i T ——控制器的积分系数 d T ——控制器的微分系数 1) 比例部分 比例部分的数学表达式:)(t e K p 。 比例部分的作用是对偏差信号做出快速反应,一旦控制器检测到偏差,比例部分就 能迅速产生控制作用,且偏差越大,控制作用越强。但仅存在比例控制的系统存在稳态偏差。比例系数越大,响应越快,过渡越快,稳态偏差也越小,但系统也越不稳定,因此比例系数必须选择恰当。 2) 积分部分 积分部分的数学表达式: ?t i p d e T K 0 )(ττ。

从积分部分表达式可以看出,只要系统输出与设定值存在偏差,积分作用就会不断增加,知道偏差为零,因此积分部分可以消除稳态偏差。但积分作用会降低系统的响应速度,增加系统的超调量。积分常数越小,积分作用越强,过渡过程容易产生震荡,但回复时间减小;积分常数越大,积分作用越弱,过渡过程不产生震荡,但回复时间增长。因此应根据具体情况选取积分常数。 3) 微分部分 微分部分的数学表达式: dt t de T K d p ) (。 微分作用能阻值偏差的变化。它根据偏差的变化趋势进行控制。偏差变化越快,微分作用越强,能在偏差变化之前就行控制。微分作用的引入有助于减小超调量,克服振荡;但微分作用对噪声很敏感,导致系统的错误响应,使系统不稳定。 为实现PID 控制器的软件实现,将式*进行适当离散化,即离散PID 。 2. 数字PID 控制 2.1 位置式PID 算法 离散化处理的方法是,以T 为采样周期,对模拟信号进行采样,以k 为采样序列号,进行以下近似: T e e dt t de e T d e kT t k k k j j t 1 )()(-=-≈≈≈∑?ττ 将上式带入式*,得到如下式所示的位置式离散PID 控制规律。 ][1 T e e T e T T e K u k k d k j j i k p k -=-++ =∑ ** 由于位置式PID 要对t 时刻之前的所有输出进行记录,工作量大,对计算机硬件要求高。增量式PID 可避免这些。 2.2 增量式PID 算法 由式**得到 ][2 11 11T e e T e T T e K u k k d k j j i k p k ---=---++ =∑ 将式**与上式相减,得到增量式PID 控制规律如下 211)21()1(---++-++ =-=?k d p k d p k d i p k k k e T T K e T T K e T T T T K u u u *** 一旦得出控制作用的增量,就可递推得出当前控制作用的输出。 2.3 控制器参数整定 1) 离线整定法 步骤 1:将控制器从“自动”模式切换至“手动”模式(此时控制器输出完全由人工控制),人为以阶跃方式增大或减少控制器输出,并记录控制器相关的输入输出动态响应数据。 步骤 2:由阶跃响应数据估计特性参数 K , T ,τ。

无刷永磁直流电机调速系统

毕业设计论文 题目永磁无刷直流电机调速系统设计 (院)系电气与信息工程系 专业电气工程及其自动化班级 0001 学号 0001120121 学生姓名万志雄 导师姓名谢卫才 完成日期 2004-6-15

湖南工程学院 毕业设计(论文)任务书 设计(论文)题目:无刷永磁直流电机调速系统 姓名万志雄系别电气与信息工程系专业电气工程及其自动化班级0001 学号 指导老师谢卫才教研室主任 一、基本任务及要求: 阐述无刷直流电机的发展过程,基本原理和结构。从无刷永磁直流电动机的基本原理和调速原理出发,设计出一个无刷永磁直流电机和系统。 二、进度安排及完成时间: 2月16日明确设计任务书和具体安排 2月20日下午设计任务书抽查 2月16日-3月6日查阅资料、撰写文献综述、撰写开题报告 3月6日抽查文献综述、开题报告撰写情况 3月7日-3月21日毕业实习、撰写实习报告 3月22日-5月29日毕业设计 4月底毕业设计中期检查 5月30日-6月15日撰写毕业设计说明书(论文) 6月16日毕业设计说明书抽查(论文) 6月16日-6月20日修改、装订毕业设计说明书、指导教师评阅 6月18日-6月26日毕业设计答辩(公开答辩、分组答辩)

前言 永磁无刷直流电动机由于没有换向火花,没有无线电干扰,既具有交流电动机的结构简单,运行可靠,维护方便等一系列优点,又具有直流电动机的运行效率高,无励磁损耗以及调速性能好等诸多特点,因此被广泛用于国民经济的各个领域,并且日益普及。所以,对于永磁无刷直流电动机的研究将是具有非常重要的意义.本文针对永磁无刷直流电动机所具有的各种优点 本课题对永磁无刷直流电动机的研究基于以下几个方面:无刷直流电机本体的研究, 气隙磁场和电磁转矩的研究, 电磁转矩的研究, 电气损耗的研究, 系统仿真的研究, 换向逻辑的问题的研究, 位置传感器的设计的研究. 但是,由于许多原因,无刷永磁直流电机还存在缺陷,并没有完全适应国民经济的发展,且电机的需求量在随着国民经济的迅猛增长而不断增大。由此可以看出,研究新型无刷直流电机是当务之急。 本课题主要从无刷永磁直流电动机的基本原理出发,阐述无刷永磁直流电动机的基本结构、控制和具体的应用,并且设计一台无刷永磁直流电动机。 本课题主要解决以下几个方面的问题:永磁无刷直流电动机的结构原理,电磁设计和具体应用.

对直流无刷电机的pid控制

PID闭环速度调节器采用比例积分微分控制 闭环速度调节器采用比例积分微分控制(简称PID控制),其输出是输入的比例、积分和微分的函数。PID调节器控制结构简单,参数容易整定,不必求出被控对象的数学模型,因此PID 调节器得到了广泛的应用。 PID调节器虽然易于使用,但在设计、调试无刷直流电机控制器的过程中应注意:PID调节器易受干扰、采样精度的影响,且受数字量上下限的影响易产生上下限积分饱和而失去调节作用。所以,在不影响控制精度的前提下对PID控制算法加以改进,关系到整个无刷直流电机控制器设计的成败。 2速度设定值和电机转速的获取 为在单片机中实现PID调节,需要得到电机速度设定值(通过A/D变换器)和电机的实际转速,这需要通过精心的设计才能完成。 无刷直流电机的实际转速可通过测量转子位置传感器(通常是霍尔传感器)信号得到,在电机转动过程中,通过霍尔传感器可以得到如图2所示的周期信号。 由图2可知,电机每转一圈,每一相霍尔传感器产生2个周期的方波,且其周期与电机转速成反比,因此可以利用霍尔传感器信号得到电机的实际转速。为尽可能缩短一次速度采样的时间,可测得任意一相霍尔传感器的一个正脉冲的宽度,则电机的实际转速为:但由于利用霍尔传感器信号测速,所以测量电机转速时的采样周期是变化的,低速时采样周期要长些,这影响了PID 调节器的输出,导致电机低速时的动态特性变差。解决的办法是将三相霍尔传感器信号相“与”,产生3倍于一相霍尔传感器信号频率的倍频信号,这样可缩短一次速度采样的时间,但得增加额外的硬件开销。直接利用霍尔传感器信号测速虽然方便易行,但这种测速方法对霍尔传感器在电机定子圆周上的定位有较严格的要求,当霍尔传感器在电机定子圆周上定位有误差时,相邻2个正脉冲的宽度不一致,会导致较大的测速误差,影响PID调节器的调节性能。若对测速精度要求较高时,可采用增量式光电码盘,但同样会增加了电路的复杂性和硬件的开销。 电机速度设定值可以通过一定范围内的电压来表示。系统中采用了串行A/D(如ADS7818)来实现速度设定值的采样。但在电机调速的过程中,电机控制器的功率输出部分会对A/D模拟输入电压产生干扰,进行抗干扰处理。 3非线性变速积分的PID算法 (1)PID算法的数字实现 离散形式的PID表达式为: 其中:KP,KI,KD分别为调节器的比例、积分和微分系数;E(k),E(k-1)分别为第k 次和k-1次时的期望偏差值;P(k)为第k次时调节器的输出。 比例环节的作用是对信号的偏差瞬间做出反应,KP越大,控制作用越强,但过大的KP会导致系统振荡,破坏系统的稳定性。积分环节的作用虽然可以消除静态误差,但也会降低系统的响应速度,增加系统的超调量,甚至使系统出现等幅振荡,减小KI可以降低系统的超调量,但会减慢系统的响应过程。微分环节的作用是阻止偏差的变化,有助于减小超调量,克服振荡,使系统趋于稳定,但其对干扰敏感,不利于系统的鲁棒性。 (2)经典PID算法的积分饱和现象 当电机转速的设定值突然改变,或电机的转速发生突变时,会引起偏差的阶跃,使|E(k)|增大,PID的输出P(k)将急剧增加或减小,以至于超过控制量的上下限Pmax,此时的实际控制量只能限制在Pmax,电机的转速M(k)虽然不断上升,但由于控制量受到限制,其增长的速度减慢,偏差E(k)将比正常情况下持续更长的时间保持在较大的偏差值,从而使得PID 算式中的积分项不断地得到累积。当电机转速超过设定值后,开始出现负的偏差,但由于积分项已有相当大的累积值,还要经过相当一段时间后控制量才能脱离饱和区,这就是正向积分饱和,反向积分饱和与此类似。解决的办法:一是缩短PID的采样周期(这一点单片机往往达不到),

无刷直流电机结构

无刷直流电机结构、类型和基本原理 一、概述 直流电动机的主要长处是调速和启动特性好,堵转转矩大,被广泛应用于各种驱动装置和伺服系统中。但是,直流电动机都有电刷和换向器,其间形成的滑动机械接触严峻地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机。 随着电子技术的迅速发展,各种大功率电子器件的广泛采用,这种愿望已被逐步实现。本章要介绍的无刷直流电动机利用电子开关线路和位置传感器来代替电刷和换向器,使这种电动机既具有直流电动机的特性。又具有交流电动机结构简朴、运行可靠、维护方便等优点;它的转速不再受机械换向的限制,若采用高速轴承,还可以在高达每分钟几十万转的转要中运行。 元刷直流电动机用途非常广泛,可作为一般直流电动机、伺服电动机和力矩电动机等使用,尤其适用于高级电子设备、机器人、航空航天技术、数控装置、医疗化工等高新技术领域。无刷直流电动机将电子线路与电机融为一体,把先进的电子技术应用于电机领域,这将促使电机技术更新、更快地发展。 二、无刷直流电动机的基本结构和类型 (一)基本结构 无刷直流电动机是一种自控变频的永磁同步电动机,就其基本组成结构而言.可以认为是由电动机本体、转子位置传感器和电子开关电路三部分组成的“电动机系统”。其基本结构如图5一20所示。 电动机本体在结构上是一台普通的凸极式同步电动机.它包括主定子和主转子两部分,主定子上放置空间互差120。的三相对称电枢绕组Ax、BY、cz,接成星形或三角形,主转子是用永久磁钢制成

相关主题
文本预览
相关文档 最新文档