当前位置:文档之家› 第17章习题 非线性电路

第17章习题 非线性电路

第17章习题 非线性电路
第17章习题 非线性电路

第十七章 非线性电路简介

17.1 学习要点

含有非线性元件的电路称为非线性电路。本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。 17.2 内容提要 17.2.1 非线性电阻

1.定义

含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。线性电阻元件的伏安关系满足欧姆定律

Ri u =,在i u -平面上是一条通过原点的直线。非线性电阻元件的伏安特性不满足欧姆定律,在i u -平面上不是直线。非线性电阻元件的图形符号如图17.1(a )所示。

(1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为

)(i f u = (17-1)

它的典型伏安特性如图17.1(b )所示。

(2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为

)(u g i = (17-2)

它的典型伏安特性如图17.1(c )所示。

2.动态电阻

非线性电阻元件在某一工作状况下(如图17.2中P 点)的动态电阻为该点的电

(c)

(a)

(b)

i

图17.1

u

i

u 0

压对电流的导数,即

di

du R d =

图17.2中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。 3.静态工作点

如图17.3(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。设非线性电阻的伏安特性如图17.3(b )所示,并可表示为式(17.2)。

根据KVL 和KCL ,对此电路列方程有 u i R U +=00

或 i R U u 00-= (17-3) 是虚线方框一侧的伏安特性,如图17.3(b )中直线AB 所示。

直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2),

所以有:

Q Q U I R U +=00 )(Q Q U g I =

交点Q (U Q ,I Q )称为电路的静态工作点。由上述分析可知:Q 点可通过图解法(作直线AB 与伏安特性)(u g i =或)(i f u =的交点)或解析法(联立求解i R U u 00-=及非线性电阻的伏安特性式)求出。

+ (b)

1'

B i - (U Q ,I Q )

R U A 1 i =g (u )

-

R 0

Q

+ O

(a) u

U 0 R

u i

U 0 图17.3

u

α i β

O P

图17.2

17.2.2 小信号分析法

1.适用范围

求解非线性电路有多种方法,如小信号分析法、分段线性化法等。如果电路中有作为偏置电压的直流电源U 0作用,同时还有时变输入电压)(t u S 作用,如图17.3(a ),

并且在任何时刻有)(0t u U S 》

,则把)(t u S 称为小信号电压,分析此类电路即可用小信号分析法。

2.解题步骤

(1)求静态工作点;

(2)求动态电阻)(或动态电导d d

G R ; (3)画出小信号等效电路并由此求出微小偏差量; (4)求出电路的全解(静态工作点的值加微小偏差量)。 17.3 例 题

例17.1 如图17.4 (a),已知:A 10=S I ,A cos t i S ω=,Ω=10R , 非线性电阻的伏安特性为 )0( 22>=u u i ,试用小信号分析法求电压u 。

解:(1)求静态工作点 在图17.1(a )中,0=S i 时,

Q Q S u I I R +=

又因为22 (0)Q Q Q I u u =>,联立二式并代入已知值得

01022=-+Q Q U U ,

解得 V 2=Q U A 4=Q I (2)求d G 动态电导

s 8222=?==

==Q U u d u du

di

G +

-

u (b)

R d

-

i s + R 0 (a)

i I s

i s

u 1 i 1 R 0 图17.4

或 Ω=8

1

d R

(3)画出小信号等效电路如图17.4(b )

(4)由小信号等效电路可得微小偏差量

V cos 9

1

) //R (R d 01t i u S ω=?=

电路的解为11

2cos 9

Q u U u t ω=+=+()

V 例17.2 如图17.5(a),已知:V 250=U ,V sin t u S =,Ω=20R , 非线性电阻的伏安特性为 i i u 25

13

-=

(0>i ),试用小信号分析法求电流i 。

解:(1) 求静态工作点 在图17.5(a )中,0=S u 时,

00U U I R Q Q =+ 即 252=+Q Q U I

又因为 Q Q Q I I U 25

13

-= , 联立二式解得

A 5=Q I (V 15=Q U )

(2) 求d R 动态电阻

Ω=-==

= 1325

352

i d i di du R (3) 画出小信号等效电路如图17.5(b ) (4) 由小信号等效电路可得微小偏差量

A sin 15

1

) R (R /d 01t u i S =

+= + - u (b)

R d

-

i s + R 0 (a)

i I s

i s

u 1 i 1 R 0 图17.4

+ R d -

(a)

图17.5

u 1 + u s R 0

-

(b)

i 1 -

u + u s

U 0

+ i

R

电路的解为11

5sin 15

Q i I i t =+=+()

A 17.4 习题选解

17.1 如果通过非线性电阻的电流为A cos )(t ω,要使该电阻两端的电压中含有

4ω角频率的电压分量,试求该电阻的伏安特性,写出其解析表达式。

解: 由题意知,非线性电阻中的电流为

A cos )(t i ω=

而 22

2cos

4 2cos (2)12[2cos 1]1t t t ωωω=-=--()() )(cos 8)(8cos -1 42t t ωω+=

因此若非线性电阻的伏安关系为

42881i i u +-=

则该电阻两端的电压的角频率为 4ω。

该题表明非线性电阻元件在电路中具有倍频作用。

例题: 设有一非线性电阻,其伏安关系为

32)(i i i f u +==

(1)、分别求出mA 10A 1021==i i 、时对应的电压21u u 、的值; (2)、设)(2112i i f u +=,问12u 是否等于)(21u u +? 解: (1)A 101=i 时

V 1020

10 10231=+?=u mA 102=i 时

0.020001V )10( 1023-222=+?=-u

从上述结果看出V 10201=u 远大于20V ,0.020001V 2=u 与0.02V 很接近,这表明如果把这个电阻作为2Ω线性电阻,当电流较小时,引起的误差不大。

(2)假设)(2112i i f u += 则

)

3 )

322))221212121213

223113212112i i i i u u i i i i i i i i i i i i u +++=+++++=+++=((((

不等于)(21u u +。这表明非线性电阻元件不满足叠加定理。

17.2 写出图示电路的结点电压方程,假设电路中各非线性电阻的伏安特性为

2

/333222311,,u i u i u i ===。

解:由KCL 对结点a ,b 列出方程

(2)

4(1) 123221=+-=+i i i i

将各支路电流用结点电压表示

2/32/33322

223

311)(b

b a a

u u i u u u i u u i ==-====。 将上述各支路电流代入到方程式(1)和(2)中,得

322

3/2

()12

()4

a a

b a b b

u u u u u u

+-=--+=

可见,电路的方程为一组非线性的代数方程。

+ 4A

- u 3 + 12A

b - u 1 - 题17.2图

a + i 1

i 2

i 3

u 2

17.10 如题17.10图(a)所示,已知:V 50=U ,cos V S u t ω=(t )(),Ω=20R , 非线性电阻的伏安特性为:32i i u += (0>i ),现已知当 0=)(t u S 时,回路中的电流为1A 。如果) ( cos t t u S ω=)

(V ,试用小信号分析法求回路中的电流i 。

解:(1) 由已知电路的静态工作点为 1=Q I A

(2) 工作点的d R 动态电阻为

Ω=+==

==5321

2

i I i d i di

du R Q

(3) 画出小信号等效电路如题17.10图(b ) (4) 由小信号等效电路可得微小偏差量

10d

1

/(R R )cos( )A 7

S i u t ω=+=(t ) 所以原电路中的总电流为

11

[1cos( )]7

Q i I i t ω=+=+ A

R d

(a)

题17.10图 + u s R 0

-

(b)

i 1 -

u + u s

- + u 0

i

R

17.11 如题17.10图(a)所示,已知:V 90=U , Ω=20R , 非线性电阻的伏安特性为

31

2 V 3

u i i =-+,

如果t t u S cos =)

(V ,试求电流i 。

解:(1) 求电路的静态工作点

令0=)

(t u S ,由KVL 得 00U u i R =+

再将非线性电阻的伏安特性31

2 3

u i i =-+,代入到上式中,得

9 3

1

223=+-i i i

解得

A 3=Q I , V 3=Q U

(2) 工作点的动态电阻为

Ω=-==

== 7232i I i d i di

du R Q

(3) 画出小信号等效电路如题17.10图(b ) (4) 由小信号等效电路可得微小偏差量

10d

1

/(R R )cos A 9

S i u t =-+=-(t ) 所以原电路中的总电流为

11

cos 9

Q i I i t =+=-(3) A

R d

(a)

题17.10图 + u s R 0

-

(b)

i 1 -

u + u s

- + u 0

i

R 0

组合逻辑电路习题解答

自我检测题 1.组合逻辑电路任何时刻的输出信号,与该时刻的输入信号 有关 ,与以前的输入信号 无关 。 2.在组合逻辑电路中,当输入信号改变状态时,输出端可能出现瞬间干扰窄脉冲的现象称为 竞争冒险 。 3.8线—3线优先编码器74LS148的优先编码顺序是7I 、6I 、5I 、…、0I ,输出为 2Y 1Y 0Y 。输入输出均为低电平有效。当输入7I 6I 5I …0I 为时,输出2Y 1Y 0Y 为 010 。 4.3线—8线译码器74HC138处于译码状态时,当输入A 2A 1A 0=001时,输出07Y ~Y = 。 5.实现将公共数据上的数字信号按要求分配到不同电路中去的电路叫 数据分配器 。 6.根据需要选择一路信号送到公共数据线上的电路叫 数据选择器 。 7.一位数值比较器,输入信号为两个要比较的一位二进制数,用A 、B 表示,输出信号为比较结果:Y (A >B ) 、Y (A =B )和Y (A <B ),则Y (A >B )的逻辑表达式为B A 。 8.能完成两个一位二进制数相加,并考虑到低位进位的器件称为 全加器 。 9.多位加法器采用超前进位的目的是简化电路结构 × 。 (√,× ) 10.组合逻辑电路中的冒险是由于 引起的。 A .电路未达到最简 B .电路有多个输出 C .电路中的时延 D .逻辑门类型不同 11.用取样法消除两级与非门电路中可能出现的冒险,以下说法哪一种是正确并优先考虑的 A .在输出级加正取样脉冲 B .在输入级加正取样脉冲 C .在输出级加负取样脉冲 D .在输入级加负取样脉冲 12.当二输入与非门输入为 变化时,输出可能有竞争冒险。 A .01→10 B .00→10 C .10→11 D .11→01 13.译码器74HC138的使能端321E E E 取值为 时,处于允许译码状态。 A .011 B .100 C .101 D .010 14.数据分配器和 有着相同的基本电路结构形式。 A .加法器 B .编码器 C .数据选择器 D .译码器 15.在二进制译码器中,若输入有4位代码,则输出有 个信号。 A .2 B .4 C .8 D .16 16.比较两位二进制数A=A 1A 0和B=B 1B 0,当A >B 时输出F =1,则F 表达式是 。 A . B A F = B .0101B B A A F ++= .0011B A B A F ++=

第17章习题 非线性电路

第十七章非线性电路简介 学习要点 含有非线性元件的电路称为非线性电路。本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。 内容提要 非线性电阻 1.定义 含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。线性电阻元件的伏安关系满足欧姆定律Ri u=,在i u-平面上是一条通过原点的直线。非线性电阻元件的伏安特性不满足欧姆定律,在i u-平面上不是直线。非线性电阻元件的图形符号如图(a)所示。 (1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为 )(i f u=(17-1)它的典型伏安特性如图(b)所示。 } (2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为 ) (u g i=(17-2)它的典型伏安特性如图(c)所示。 2.动态电阻 (c) (a)(b) 图 u

非线性电阻元件在某一工作状况下(如图中P 点)的动态电阻为该点的电压对电流的导数,即 di du R d = 图中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。 3.静态工作点 如图(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。设非线性电阻的伏安特性如图(b )所示,并可表示为式()。 根据KVL 和KCL ,对此电路列方程有 u i R U +=00 \ 或 i R U u 00-= (17-3) 是虚线方框一侧的伏安特性,如图(b )中直线AB 所示。 直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2), 所以有: Q Q U I R U +=00 | )(Q Q U g I = 交点Q (U Q ,I Q )称为电路的静态工作点。由上述分析可知:Q 点可通过图解法(作直线AB 与伏安特性)(u g i =或)(i f u =的交点)或解析法(联立求解i R U u 00-= (b) g (u ) ( (a) 图 图

西安交通大学 非线性电路实验报告

Duffing 方程及其在信号检测中的应用 李禹锋 (西安交通大学电力设备电气绝缘国家重点实验室,陕西西安710049) 摘要:在工程领域中,在噪声环境下对信号进行检测一直都是研究的重点课题。混沌理论表明一类混沌系统在一定条件下对小信号具有参数敏感性,同时对噪声具有免疫力,因此使得它在信号检测中非常具有发展潜力。为此,本文分析了Duffing 方程的动力学特性,研究了利用Duffing 方程来进行微弱信号检测的原理和过程,并在Matlab 平台下进行了仿真实验。结果表明,可以利用Duffing 方程在噪声背景下进行信号的检测。 关键词:混沌理论;信号检测; Duffing 方程;仿真研究 1 引言 在噪声背景中检测微弱的有用信号是工程应用中的一个重要内容,前人已经开展了大量的研究工作。传统的基于线性理论的信号检测方法由于对噪声背景下的输出信噪比难以提高而存在一定局限性,尤其在对强噪声背景下的微弱信号检测更是受到了限制。然而很多研究证明,利用“混沌振子对周期小信号具有敏感依赖性,而对噪声具有免疫性”的特点,从噪声背景中提取微弱的周期信号是一种行之有效的方法,引起了人们极大的兴趣[1]。 在众多的信号检测中,正弦或余弦信号的检测占有极其重要的地位,在许多领域中有着极其广泛的应用。本文采用余弦小信号作为检测对象,在Matlab 平台下,对Duffing 方程及其在信号检测中的应用进行了初步探讨。 2 基于Duffing 方程的信号检测 2.1 Duffing 方程的数学模型及分析 Duffing 方程已被证明是混沌系统,大量学者对其进行过许多研究,研究它的动力学行为可以揭示系统的各种性质。Duffing 系统所描述的非线性动力学系统表现出丰富的非线性动力学特性,目前已成为研究混沌现象的常用模型[2]。 霍尔姆斯型Duffing 方程为: 232()()cos()d x dx k x t x t t dt dt γω+-+=(1) 式中,cos()t γ为周期策动力;k 为阻尼比;-x (t )+x 3(t )为非线性恢复力[3]。其状态方程为: dx y dt =(2) 3cos()dy ky x x t dt γω=-+-+(3) 在k 固定的情况下,系统状态随γ的变化出现变化,具体分析如下: (1)当策动力γ为0时,计算得到相平面中结点为(0,0)和鞍点为(±1,0)。系统

组合逻辑电路习题答案

第3章 组合逻辑电路 试分析图所示组合逻辑电路的逻辑功能,写出逻辑函数式,列出真值表,说明电路完成的逻辑功能。 (b) (c) (a)A B C D L =1 =1 =1 C 2 L 1L 2L 3 图 题图 解:由逻辑电路图写出逻辑函数表达式: 图a :D C B A L ⊕⊕⊕= 图b :)()(21B A C AB B A C AB L C B A L ⊕+=⊕=⊕⊕= 图c :B A B A L B A A B B A B A L B A B A L =+=+=+++==+=321 由逻辑函数表达式列写真值表: A B C D L 0 0 0 0 00 0 0 1 10 0 1 0 10 0 1 1 00 1 0 0 10 1 0 1 00 1 1 0 00 1 1 1 11 0 0 0 11 0 0 1 01 0 1 0 01 0 1 1 11 1 0 0 01 1 0 1 11 1 1 0 11 1 1 1 0 A B C L 1L 2 0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1 A B L 1L 20 0 0 1 0L 3 0 1 0 0 11 0 1 0 01 1 0 1 0 由真值表可知:图a 为判奇电路,输入奇数个1时输出为1;图b 为全加器L 1为和,L 2为进位;图c 为比较器L 1为1表示A>B ,L 2为1表示A=B, L 3为1表示A

非线性电阻的伏安特性曲线实验

线性电阻和非线性电阻的伏安特性曲线 【教学目的】 1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。 2、了解晶体二极管的单向导电特性。 【教学重点】 1、测绘电阻的伏安特性曲线; 2、了解二极管的单向导电特性。 【教学难点】 非线性电阻的导电性质。 【课程讲授】 提问:1.如何测绘伏安特性曲线? 2.二极管导电有何特点? 一、实验原理 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。下面对它的结构和电学性能作一简单介绍。 图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。 晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。p-n结具有单向导电的特性,常用图2(b)所示的符号表示。

关于p-n结的形成和导电性能可作如下解释。 图3 p-n结的形成和单向导电特性 如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。随着扩散的进行,p区空穴减少,出现 了一层带负电的粒子区(以?表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表 示)。结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。 如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。这样,载流子就能顺利地通过p-n结,形成比较大的电流。所以,p-n结在正向导电时电阻很小。 如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。所以p-n结的反向电阻很大。 晶体二极管的正、反向特性曲线如图12-4所示。从图上看出,电流和电压不是线性关系,各点的电阻都不相同。凡具有这种性质的电阻,就称为非线性电阻。 图4晶体二极管的伏安特性图5测电阻伏安特性的电路 二、实验仪器 直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用九孔插件方板。

组合逻辑电路练习题和答案

第2章习题 一、单选题 1.若在编码器中有50个编码对象,则输出二进制代码位数至少需要( B )位。 A)5 B)6 C)10 D)50 2.一个16选1的数据选择器,其选择控制(地址)输入端有( C )个,数据输入端有( D )个,输出端有( A )个。 A)1 B)2 C)4 D)16 3.一个8选1的数据选择器,当选择控制端S2S1S0的值分别为101时,输出端输出( D )的值。 A)1 B)0 C)D4D)D5 4.一个译码器若有100个译码输出端,则译码输入端至少有( C )个。 A)5 B)6 C)7 D)8 5.能实现并-串转换的是( C )。 A)数值比较器B)译码器C)数据选择器D)数据分配器 6.能实现1位二进制带进位加法运算的是( B )。 A)半加器B)全加器C)加法器D)运算器 7.欲设计一个3位无符号数乘法器(即3×3),需要()位输入及( D )位输出信号。A)3,6 B)6,3 C)3,3 D)6,6 8.欲设计一个8位数值比较器,需要()位数据输入及( B )位输出信号。 A)8,3 B)16,3 C)8,8 D)16,16 9. 4位输入的二进制译码器,其输出应有( A )位。 A)16 B)8 C)4 D)1 二、判断题 1. 在二——十进制译码器中,未使用的输入编码应做约束项处理。() 2. 编码器在任何时刻只能对一个输入信号进行编码。()

3. 优先编码器的输入信号是相互排斥的,不容许多个编码信号同时有效。( ) 4. 编码和译码是互逆的过程。( ) 5. 共阴发光二极管数码显示器需选用有效输出为高电平的七段显示译码器来驱动。( ) 6. 3位二进制编码器是3位输入、8位输出。( ) 7. 组合逻辑电路的特点是:任何时刻电路的稳定输出,仅仅取决于该时刻各个输入变量的取值,与电路原来的状态无关。( ) 8. 半加器与全加器的区别在于半加器无进位输出,而全加器有进位输出。( ) 9. 串行进位加法器的优点是电路简单、连接方便,而且运算速度快。( ) 10. 二进制译码器的每一个输出信号就是输入变量的一个最小项。( ) 11. 竞争冒险是指组合电路中,当输入信号改变时,输出端可能出现的虚假信号。( ) 三、综合题 1.如图所示逻辑电路是一个什么电路,当A 3~A 0输入0110,B 3~B 0输入1011,Cin 输入1时,Cout 及S 3~S 0分别输出什么 +A 3B 3C in 3C out +++A 2B 2A 1B 1A 0B 0210 答:图中所示电路是4位串行进位全加器电路 C out =1,S 3S 2S 1S 0=0001 2.使用门电路设计一个4选1的数据选择 器,画出逻辑图。 解:4选1数据选择器有4个数据输入 端(D 0D 1D 2D 3),2个选择输入端(S 1S 0),1个 数据输出端(Y )。真值表如下: D S 1 S 0 Y

二阶非线性动态电路

二阶非线性动态电路分析 题目: 二阶非线性电路如图1,R=10Ω,i=?+32.0?,C=0.25×210-F,C U (-0)=2V.求C U (t)(t>0),并画出t>0时?-C U 的相图。 图1.二阶非线性电路 理论分析: 解:取?与C U 为状态变量,t>0时: 32.0-??-=-==i i dt du C C c => 380-400??-=dt du c 32.0???R R U Ri U u dt d C C L --=-== => 3210???--=C U dt d Matlab 求解: 此非线性动态电路难求解析解,因此利用Matlab 做数值求解,得到响应在离散时刻的近似值,再根据此离散值做出响应相关图像。 Matlab 求解的原理是利用ode45函数解微分方程组。ode45表示采用四阶,五阶runge-kutta 单步算法。ode45函数语法为[T,Y] = ode45(odefun, tspan,y0),这里tspan 选择0到2.5s ,初值C U =2,?=0。 首先写一个函数M 文件列出待求解方程组如下: function dy=rlc(t,y) dy=zeros(2,1) dy(1)=-400*y(2)-80*y(2)^3 dy(2)=y(1)-10*y(2)-2*y(2)^3 end 在命令行输入[t,y]=ode45(@rlc,[0 2.5],[2 0]),可求出响应C U (t )、?(t )数值解。 在命令行输入: plot(t,y(:,1)) grid on 数值解

title('Uc-t曲线') xlabel('t') ylabel('Uc') 可得到Uc(t)曲线。可以更直观的观查Uc随时间的变化。 图2 Uc响应曲线同理可得到?(t)图像如图3所示: 图3 ψ-t曲线 同理可得到?-Uc相图如图4所示。 图4 ?-Uc相图

第17章习题 非线性电路

第十七章 非线性电路简介 17.1 学习要点 含有非线性元件的电路称为非线性电路。本章简要介绍非线性电阻元件及含有非线性电阻电路的分析方法。要求理解非线性电阻元件的特性,掌握非线性电路的分析方法—小信号分析法。 17.2 内容提要 17.2.1 非线性电阻 1.定义 含有非线性元件的电路称为非线性电路,实际元件都是非线性的,而当其非线性程度比较薄弱时,即可作为线性元件来处理。线性电阻元件的伏安关系满足欧姆定律 Ri u =,在i u -平面上是一条通过原点的直线。非线性电阻元件的伏安特性不满足欧姆定律,在i u -平面上不是直线。非线性电阻元件的图形符号如图17.1(a )所示。 (1)若电阻元件两端的电压是其电流的单值函数,这种电阻称为电流控制型的非线性电阻,其伏安关系可表示为 )(i f u = (17-1) 它的典型伏安特性如图17.1(b )所示。 (2)如果通过电阻的电流是其两端电压的单值函数,这种电阻称为电压控制型的非线性电阻,其伏安关系可表示为 )(u g i = (17-2) 它的典型伏安特性如图17.1(c )所示。 2.动态电阻 非线性电阻元件在某一工作状况下(如图17.2中P 点)的动态电阻为该点的电 (c) (a) (b) i 图17.1 u i u 0

压对电流的导数,即 di du R d = 图17.2中P 点的动态电阻正比于tan β(区别于其静态电阻R ,R 正比于tan α)。 3.静态工作点 如图17.3(a )所示电路由线性电阻R 0和直流电压源U 0及一个非线性电阻R 组成(其虚线框也可由复杂网络等效而得)。设非线性电阻的伏安特性如图17.3(b )所示,并可表示为式(17.2)。 根据KVL 和KCL ,对此电路列方程有 u i R U +=00 或 i R U u 00-= (17-3) 是虚线方框一侧的伏安特性,如图17.3(b )中直线AB 所示。 直线AB 与伏安特性)(u g i =的交点(U Q ,I Q ),同时满足式(17-3)和式(17-2), 所以有: Q Q U I R U +=00 )(Q Q U g I = 交点Q (U Q ,I Q )称为电路的静态工作点。由上述分析可知:Q 点可通过图解法(作直线AB 与伏安特性)(u g i =或)(i f u =的交点)或解析法(联立求解i R U u 00-=及非线性电阻的伏安特性式)求出。 + (b) 1' B i - (U Q ,I Q ) R U A 1 i =g (u ) - R 0 Q + O (a) u U 0 R u i U 0 图17.3 u α i β O P 图17.2

实验一组合逻辑电路设计

实验一 组合逻辑电路的设计 一、实验目的: 1、 掌握组合逻辑电路的设计方法。 2、 掌握组合逻辑电路的静态测试方法。 3、 加深FPGA 设计的过程,并比较原理图输入和文本输入的优劣。 4、 理解“毛刺”产生的原因及如何消除其影响。 5、 理解组合逻辑电路的特点。 二、实验的硬件要求: 1、 EDA/SOPC 实验箱。 2、 计算机。 三、实验原理 1、组合逻辑电路的定义 数字逻辑电路可分为两类:组合逻辑电路和时序逻辑电路。组合逻辑电路中不包含记忆单元(触发器、锁存器等),主要由逻辑门电路构成,电路在任何时刻的输出只和当前时刻的输入有关,而与以前的输入无关。时序电路则是指包含了记忆单元的逻辑电路,其输出不仅跟当前电路的输入有关,还和输入信号作用前电路的状态有关。 通常组合逻辑电路可以用图1.1所示结构来描述。其中,X0、X1、…、Xn 为输入信号, L0、L1、…、Lm 为输出信号。输入和输出之间的逻辑函数关系可用式1.1表示: 2、组合逻辑电路的设计方法 组合逻辑电路的设计任务是根据给定的逻辑功能,求出可实现该逻辑功能的最合理组 合电路。理解组合逻辑电路的设计概念应该分两个层次:(1)设计的电路在功能上是完整的,能够满足所有设计要求;(2)考虑到成本和设计复杂度,设计的电路应该是最简单的,设计最优化是设计人员必须努力达到的目标。 在设计组合逻辑电路时,首先需要对实际问题进行逻辑抽象,列出真值表,建立起逻辑模型;然后利用代数法或卡诺图法简化逻辑函数,找到最简或最合理的函数表达式;根据简化的逻辑函数画出逻辑图,并验证电路的功能完整性。设计过程中还应该考虑到一些实际的工程问题,如被选门电路的驱动能力、扇出系数是否足够,信号传递延时是否合乎要求等。组合电路的基本设计步骤可用图1.2来表示。 3、组合逻辑电路的特点及设计时的注意事项 ①组合逻辑电路的输出具有立即性,即输入发生变化时,输出立即变化。(实际电路中 图 1.1 组合逻辑电路框图 L0=F0(X0,X1,···Xn) · · · Lm=F0(X0,X1,···Xn) (1.1) 图 1.2 组合电路设计步骤示意图图

非线性电路中的混沌现象实验报告doc

非线性电路中的混沌现象实验报告 篇一:非线性电路混沌实验报告 近代物理实验报告 指导教师:得分: 实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节 实验者:班级材料0705学号 XX67025 姓名童凌炜 同组者:班级材料0705学号 XX67007 姓名车宏龙 实验地点:综合楼 404 实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌 实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括: 1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结 1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系 1.3, 100kHz正弦波振荡波作为参考信号 2. 低频信号发生器 用以输出正弦波信号,提供给约结作为交流 信号 3. 数字示波器 用以测量结电压、超流、混沌特性和参考信号等各个

物理量的波形 实验目的: 1. 了解混沌的产生和特点 2. 掌握吸引子。倍周期和分岔等概念 3. 观察非线性电路的混沌现象 实验原理简述: 混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。混沌的最本质特征是对初始条件极为敏感。 1. 非线性 线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。除此之外,非线性关系还具有某些不同于线性关系的共性: 1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移 1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因 2. 倍周期,分岔,吸引子,混沌 借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。 虫口方程如下:xn?1???xn(1?xn)

组合逻辑电路例题终版.doc

【例题1】设计一个投票表决器,三个投票人分别为A 、B 、C ,按规定只要二人以上同意才能通过。 解:设投同意票为“1”表示,不同意票为“0”;输出为“1”表示通过,为“0”表示不通过。 第一步:由逻辑关系列出真值表 第二步:由真值表写出逻辑函数表达式 第三步:化简逻辑函数表达式 ◆用卡诺图化简 ◆用代数法化简如下 第四步 由化简后的逻辑表达式画出逻辑电路图 7 653111*********m m m m ABC C AB C B A BC A F +++=真值表 ∑= ) 7,6,5,3(m F AB BC AC AB BC AC AB BC AC F ??=++=++=AB BC AC AB BC AC AB BC AC A C C B AC C AB B A C B A B A A C AB A B B C C AB C B A BC C AB C B A A A BC ABC C AB C B A BC A F ??=++=++=++=++=+=+++=++=+++=+++=)()()()()(

F高电平时,三极管导通,灯亮;低电平时三极管截止,灯灭。 【例题2】某汽车驾驶员培训班进行结业考试。有三名评判员,其中A为主评判员,B、C 为副评判员。评判时按少数服从多数原则,但若主评判认为合格,也可通过。试用与非门构成逻辑电路实现评判的规定。 解:(1)根据逻辑设计要求,设定三个输入变量A、B、C,并规定如下:主评判A意见:A=1认为合格;A=0认为不合格 副评判B意见:B=1认为合格;B=0认为不合格 副评判C意见:C=1认为合格;C=0认为不合格 设输出变量Y:Y=1认为通过;Y=0认为不通过 (2)列真值表 (3)根据真值表写出逻辑表达式 (4)用卡诺图化简 (5)画出逻辑电路图 【例题3】有一火灾报警系统,设有烟感、温感、紫外光感三种不同类型的火灾探测器。为了防止误报警,只有当其中有两种或两种以上类型的探测器发出火灾探测信号时,报警系统才产生报警控制信号,试设计产生报警控制信号的电路。 [解](1)根据逻辑要求设置逻辑输入、输出变量。 用A、B、C分别代表烟感、温感、紫外光感三种探测器的探测输出信号,作为报警控制电路的输入变量,以“1”表示高电平,“0”表示低电平,高电平表示有火灾报警,低电平表示无火灾报警; F为报警控制电路的输出,以“1”表示高电平,“0”表示低电平,同样高电平表示有火灾报警,低电平表示无火灾报警。 真值表 ∑ = + + + + = + + + + = )7,6,5,4,3( 7 6 5 4 3 m m m m m m ABC C AB C B A C B A BC A Y A BC A BC A BC Y ? = + = + =

组合逻辑电路设计实验报告

组合逻辑电路设计实验报告 1.实验题目 组合电路逻辑设计一: ①用卡诺图设计8421码转换为格雷码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③记录输入输出所有信号的波形。 组合电路逻辑设计二: ①用卡诺图设计BCD码转换为显示七段码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③把转换后的七段码送入共阴极数码管,记录显示的效果。 2.实验目的 (1)学习熟练运用卡诺图由真值表化简得出表达式 (2)熟悉了解74LS197元件的性质及其使用 3.程序设计 格雷码转化: 真值表如下:

卡诺图: 1 010100D D D D D D G ⊕=+= 2 121211D D D D D D G ⊕=+=

3232322D D D D D D G ⊕=+= 33D G = 电路原理图如下: 七段码显示: 真值表如下: 卡诺图:

2031020231a D D D D D D D D D D S ⊕++=+++= 10210102b D D D D D D D D S ⊕+=++= 201c D D D S ++= 2020101213d D D D D D D D D D D S ++++= 2001e D D D D S +=

2021013f D D D D D D D S +++= 2101213g D D D D D D D S +++= 01213g D D D D D S +⊕+= 电路原理图如下:

4.程序运行与测试 格雷码转化: 逻辑分析仪显示波形:

非线性混沌电路实验报告

非线性电路混沌及其同步控制 【摘要】 本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。 【关键词】 混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数 一.【引言】 1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。通过本实

验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。 二.【实验原理】 1.有源非线性负阻 一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v呈线性变化,所谓正阻,即I-U是正相关,i-v曲线的 斜率 u i ? ? 为正。相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两 端的电压增大时,电流减小,并且不是线性变化。负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。 一般实现负阻是用正阻和运算放大器构成负阻抗变换器电路。因为放大运算器工作需要一定的工作电压,因此这种富足成为有源负阻。本实验才有如图1所示的负阻抗变换器电路,有两个运算放大器和六个配置电阻来实现。 图1 有源非线性负阻内部结构 用电路图3以测试有源非线性负阻的i-v特性曲线,如图4示为测试结果曲线,分为5段折现表明,加在非线性元件上的电压与通过它的电流就行是相反的,

数电实验报告 实验二 组合逻辑电路的设计

实验二组合逻辑电路的设计 一、实验目的 1.掌握组合逻辑电路的设计方法及功能测试方法。 2.熟悉组合电路的特点。 二、实验仪器及材料 a) TDS-4数电实验箱、双踪示波器、数字万用表。 b) 参考元件:74LS86、74LS00。 三、预习要求及思考题 1.预习要求: 1)所用中规模集成组件的功能、外部引线排列及使用方法。 2) 组合逻辑电路的功能特点和结构特点. 3) 中规模集成组件一般分析及设计方法. 4)用multisim软件对实验进行仿真并分析实验是否成功。 2.思考题 在进行组合逻辑电路设计时,什么是最佳设计方案? 四、实验原理 1.本实验所用到的集成电路的引脚功能图见附录 2.用集成电路进行组合逻辑电路设计的一般步骤是: 1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表; 2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式; 3)画出逻辑图; 4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。 五、实验内容 1.用四2输入异或门(74LS86)和四2输入与非门(74LS00)设计一个一位全加器。 1)列出真值表,如下表2-1。其中A i、B i、C i分别为一个加数、另一个加数、低位向本位的进位;S i、C i+1分别为本位和、本位向高位的进位。 2)由表2-1全加器真值表写出函数表达式。

3)将上面两逻辑表达式转换为能用四2输入异或门(74LS86)和四2输入与非门(74LS00)实现的表达式。 4)画出逻辑电路图如图2-1,并在图中标明芯片引脚号。按图选择需要的集成块及门电路连线,将A i、B i、C i接逻辑开关,输出Si、Ci+1接发光二极管。改变输入信 号的状态验证真值表。 2.在一个射击游戏中,每人可打三枪,一枪打鸟(A),一枪打鸡(B),一枪打兔子(C)。 规则是:打中两枪并且其中有一枪必须是打中鸟者得奖(Z)。试用与非门设计判断得奖的电路。(请按照设计步骤独立完成之) 五、实验报告要求: 1.画出实验电路连线示意图,整理实验数据,分析实验结果与理论值是否相等。 2.设计判断得奖电路时需写出真值表及得到相应输出表达式以及逻辑电路图。 3.总结中规模集成电路的使用方法及功能。

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验 长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。 【实验目的】 1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。 2.学会测量非线性器件伏安特性的方法。 【实验仪器】 非线性电路混沌实验仪 【实验原理】 图1 非线性电路 图2 三段伏安特性曲线 1.非线性电路与非线性动力学: 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。较理想的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。图1 电路的非线性动力学方程为: 11211Vc g )Vc Vc (G dt dVc C ?--?=L 2122 i )Vc Vc (G dt dVc C +-?=

组合逻辑电路的设计题目

1、在一旅游胜地,有两辆缆车可供游客上下山,请设计一个控制缆车正常运行的逻辑电路。要求:缆车A和B在同一时刻只能允许一上一下的行驶,并且必须同时把缆车的门关好后才能行使。设输入为A、B、C,输出为Y。(设缆车上行为“1”,门关上为“1”,允许行驶为“1”)(1) 列真值表;(4分) (2)写出逻辑函数式;(3分) (3)用基本门画出实现上述逻辑功能的逻辑电路图。(5分) 解:(1)列真值表:(3)逻辑电路图: (2)逻辑函数式: 2、某同学参加三类课程考试,规定如下:文化课程(A)及格得2分,不及格得0分;专业理论课程(B)及格得3分,不及格得0分;专业技能课程(C)及格得5分,不及格得0分。若总分大于6分则可顺利过关(Y),试根据上述内容完成: (1)列出真值表; (2)写出逻辑函数表达式,并化简成最简式; (3)用与非门画出实现上述功能的逻辑电路。 (3)逻辑电路图 (2)逻辑函数表达式3、中等职业学校规定机电专业的学生,至少取得钳工(A)、车工(B)、电工(C)中级技能证书的任意两种,才允许毕业(Y)。试根据上述要求:(1)列出真值表;(2)写出逻辑表达式,并化成最简的与非—与非形式;(3)用与非门画出完成上述功能的逻辑电路。 解:(1 (3)逻辑电路: (2)逻辑表达式: 最简的与非—与非形式: 4、人的血型有A、B、AB和O型四种,假定输血规则是:相同血型者之间可输出,AB血型者可接受其他任意血型,任意血型者可接受O型血。图1是一个输血判断电路框图,其中A1A0表示供血者血型,B1B0表示受血者型,现分别用00、01、10和 11表示A、B、AB和O四种血型。Y为判断结果,Y=1表示可以输血,Y=0表示不允许输血。请写出该判断电路的真值表、最简与—或表达式,并画出用与非门组成的逻辑图。 输血判断电路框图: 解:(1)真值表:(3)逻辑图:

实验二--组合逻辑电路的设计与测试

实验二组合逻辑电路的设计与测试 一、实验目的 1、掌握组合逻辑电路的分析与设计方法。 2、加深对基本门电路使用的理解。 二、实验原理 1、组合电路是最常用的逻辑电路,可以用一些常用的门电路来组合完成具有其他 功能的门电路。例如,根据与门的逻辑表达式Z= AB =得知,可以用两 个非门和一个或非门组合成一个与门,还可以组合成更复杂的逻辑关系。 2、分析组合逻辑电路的一般步骤是: 1)由逻辑图写出各输出端的逻辑表达式; 2)化简和变换各逻辑表达式; 3)列出真值表; 4) 根据真值表和逻辑表达式对逻辑电路进行分析,最后确定其功能。 3、设计组合逻辑电路的一般步骤与上面相反,是: 1)根据任务的要求,列出真值表; 2)用卡诺图或代数化简法求出最简的逻辑表达式; 3)根据表达式,画出逻辑电路图,用标准器件构成电路; 4)最后,用实验来验证设计的正确性。 4、组合逻辑电路的设计举例 1)用“与非门”设计一个表决电路。当四个输入端中有三个或四个“1”时, 输出端才为“1”。 设计步骤: 根据题意,列出真值表如表2-1所示,再添入卡诺图表2-2中。 表2-1 表决电路的真值表 表2-2 表决电路的卡诺图 然后,由卡诺图得出逻辑表达式,并演化成“与非”的形式: ABD CDA BCD ABC Z+ + + = B A+

? = ? ABC? ACD BCD ABC 最后,画出用“与非门”构成的逻辑电路如图2-1所示: 图2-1 表决电路原理图 输入端接至逻辑开关(拨位开关)输出插口,输出端接逻辑电平显示端口,自拟真值表,逐次改变输入变量,验证逻辑功能。 三、实验设备与器材 1.数字逻辑电路实验箱。 2.数字逻辑电路实验箱扩展板。 3.数字万用表。 4.芯片74LS00、74LS02、74LS04、74LS10、74LS20。 四、实验内容实验步骤 1、完成组合逻辑电路的设计中的两个例子。 2、设计一个四人无弃权表决电路(多数赞成则提议通过),要求用四2输入与非门 来实现。 3、用与非门74LS00和异或门74LS86设计一可逆的4位码变换器。 要求: 1)当控制信号C=1时,它将8421码转换成为格雷码;当控制信号C=0时,它 将格雷码转换成为8421码; 2)写出设计步骤,列出码变换关系真值表并画出逻辑电路图; 3)安装电路并测试逻辑电路的功能。 五、实验预习要求 1、复习各种基本门电路的使用方法。 2、实验前,画好实验用的电路图和表格。 3、自己参考有关资料画出实验内容2、3、4中的原理图,找出实验将要使用的芯 片,以备实验时用。 六、实验报告要求 1、将实验结果填入自制的表格中,验证设计是否正确。 2、总结组合逻辑电路的分析与设计方法。

数字电路组合逻辑电路设计实验报告

实验三组合逻辑电路设计(含门电路功能测试)

一、实验目的 1.掌握常用门电路的逻辑功能 2.掌握小规模集成电路设计组合逻辑电路的方法 3.掌握组合逻辑电路的功能测试方法 二、实验设备与器材 Multisim 、74LS00 四输入2与非门、示波器、导线 三、实验原理 TTL集成逻辑电路种类繁多,使用时应对选用的器件做简单逻辑功能检查,保证实验的顺利进行。 测试门电路逻辑功能有静态测试和动态测试两种方法。静态测试时,门电路输入端加固定的高(H)、低电平,用示波器、万用表、或发光二极管(LED)测出门电路的输出响应。动

态测试时,门电路的输入端加脉冲信号,用示波器观测输入波形与输出波形的同步关系。 下面以74LS00为例,简述集成逻辑门功能测试的方法。74LS00为四输入2与非门,电路图如3-1所示。74LS00是将四个二输入与非门封装在一个集成电路芯片中,共有14条外引线。使用时必须保证在第14脚上加+5V电压,第7脚与底线接好。 整个测试过程包括静态、动态和主要参数测试三部分。 表3-1 74LS00与非门真值表 1.门电路的静态逻辑功能测试 静态逻辑功能测试用来检查门电路的真值表,确认门电路的逻辑功能正确与否。实验时,可将74LS00中的一个与非门的输入端A、B分别作为输入逻辑变量,加高、低电平,观测输出电平是否符合74LS00的真值表(表3-1)描述功能。 测试电路如图3-2所示。试验中A、B输入高、低电平,由数字电路实验箱中逻辑电平产生电路产生,输入F可直接插至逻辑电平只是电路的某一路进行显示。

仿真示意 2.门电路的动态逻辑功能测试 动态测试用于数字系统运行中逻辑功能的检查,测试时,电路输入串行数字信号,用示波器比较输入与输出信号波形,以此来确定电路的功能。实验时,与非门输入端A加一频率为

实验六 非线性电路中混沌现象的实验研究

实验六非线性电路中混沌现象的实验研究非线性是自然界中普遍存在的现象,正是非线性才构成了变化莫测的世界。长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。但是自然界在相当多的情况下,非线性现象却起着很大的作用。1963 年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。于是,1975 年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学迅速发展,并成为有丰富内容的研究领域。该学科涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是由非线性系统产生的。本实验将引导学生自已建立一个非线性电路。该电路包括有源非线性负阻,LC 振荡器和移相器三部分。采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象,测量非线性单元电路的电流——电压特性,从而对非线性电路及混沌现象有一深刻了解,学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。 【实验目的】 1.学习测量非线性单元电路的伏安特性。 2.学习用示波器观察观测LC振荡器产生的波形与经RC 移相后的波形及其相图。3.通过观察LC振荡器产生的波形周期分岔及混沌现象,对非线性有一初步的认识。 【实验原理】 1.非线性电路与非线性动力学 实验电路如图1 所示,图1 中只有一个非线性元件R,它是一个有源非线性负阻器件。电感器L 和电容器C2 组成一个损耗可以忽略的振荡回路;可变电阻RVl+RV2 和电容器C1串联将振荡器产生的正弦信号移相后输出。较理想的非线性元件R 是一个三段分段线性元件。图2 所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。

相关主题
文本预览
相关文档 最新文档