当前位置:文档之家› rfc3843.RObust Header Compression (ROHC) A Compression Profile for IP

rfc3843.RObust Header Compression (ROHC) A Compression Profile for IP

rfc3843.RObust Header Compression (ROHC) A Compression Profile for IP
rfc3843.RObust Header Compression (ROHC) A Compression Profile for IP

Network Working Group L-E. Jonsson Request for Comments: 3843 G. Pelletier Category: Standards Track Ericsson June 2004 RObust Header Compression (ROHC): A Compression Profile for IP

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for

improvements. Please refer to the current edition of the "Internet

Official Protocol Standards" (STD 1) for the standardization state

and status of this protocol. Distribution of this memo is unlimited. Copyright Notice

Copyright (C) The Internet Society (2004).

Abstract

The original RObust Header Compression (ROHC) RFC (RFC 3095) defines a framework for header compression, along with compression protocols (profiles) for IP/UDP/RTP, IP/ESP (Encapsulating Security Payload),

IP/UDP, and also a profile for uncompressed packet streams. However, no profile was defined for compression of IP only, which has been

identified as a missing piece in RFC 3095. This document defines a

ROHC compression profile for IP, similar to the IP/UDP profile

defined by RFC 3095, but simplified to exclude UDP, and enhanced to

compress IP header chains of arbitrary length.

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . 2

3. ROHC IP Compression (Profile 0x0004) . . . . . . . . . . . . . 3 3.1. Static Chain Termination . . . . . . . . . . . . . . . . 3 3.2. Handling Multiple Levels of IP Headers . . . . . . . . . 3 3.3. Constant IP-ID . . . . . . . . . . . . . . . . . . . . . 4 3.

4. Additional Mode Transition Logic . . . . . . . . . . . . 6 3.

5. Initialization . . . . . . . . . . . . . . . . . . . . . 8 3.

6. Packet Types . . . . . . . . . . . . . . . . . . . . . . 8

3.7. The CONTEXT_MEMORY Feedback Option . . . . . . . . . . . 10

4. Security Considerations. . . . . . . . . . . . . . . . . . . . 10

5. IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 10

6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 10

7. Normative References . . . . . . . . . . . . . . . . . . . . . 11 Jonsson & Pelletier Standards Track [Page 1]

Appendix A. Detailed Procedures for Canceling Mode Transitions. . 12 A.1. Transition from Optimistic to Reliable Mode. . . . . . . 12 A.2. Transition from Unidirectional to Reliable Mode. . . . . 13 A.3. Transition from Reliable to Optimistic Mode. . . . . . . 13 A.4. Transition Back to Unidirectional Mode . . . . . . . . . 14 Authors’ Addresses . . . . . . . . . . . . . . . . . . . . . . . . 15 Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 16 1. Introduction

The original RObust Header Compression (ROHC) RFC [RFC-3095] defines a framework for header compression, along with compression protocols (profiles) for IP/UDP/RTP, IP/ESP (Encapsulating Security Payload),

IP/UDP, and also a profile for uncompressed packet streams. The

profile for uncompressed data was defined to provide a means to

encapsulate all traffic over a link within ROHC packets. Through

this profile, the lower layers do not have to provide multiplexing

for different packet types, but instead ROHC can handle any packet

stream, even if compression profiles for all kinds of packet streams have not yet been defined or implemented over the link.

Although the profile without compression is simple and can tunnel

arbitrary packets, it has of course a major weakness in that it does not compress the headers at all. When considering that normally all packets are expected to be IP [RFC-791, RFC-2460] packets, and that

the IP header often represents a major part of the total header, a

useful alternative to no compression would for most packets be

compression of the IP header only. Unfortunately, such a profile was not defined in [RFC-3095], and this has thus been identified as an

important missing piece in the ROHC toolbox.

This document addresses this missing compression support and defines a ROHC compression profile for IP [RFC-791, RFC-2460] only, similar

to the IP/UDP profile defined by [RFC-3095], but simplified to

exclude UDP. Due to the similarities with the IP/UDP profile, the IP compression profile is described based on the IP/UDP profile, mainly covering differences. The most important differences are a different way of terminating the static header chain, and the capability of

compressing IP header chains of arbitrary length.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC-2119].

Jonsson & Pelletier Standards Track [Page 2]

ROHC UDP

"ROHC UDP" in this document refers to the IP/UDP profile (Profile 0x0002) as defined in [RFC-3095].

3. ROHC IP Compression (Profile 0x0004)

In general, there are no major differences between the ROHC UDP

profile and the IP profile (ROHC IP) defined in this document, since the removal of UDP has no impact on the compression mechanisms in

principle. As for ROHC UDP, the compressor generates a 16-bit

sequence number which increases by one for each packet compressed in the packet stream, simply called SN below. The most important

difference between this profile and ROHC UDP is about static chain

termination and the handling of multiple IP headers. Unless stated

explicitly below, mechanisms and formats are the same as for ROHC

UDP.

3.1. Static Chain Termination

One difference for IP-only compression, compared to IP/UDP

compression, is related to the termination of the static chain in IR headers. For the UDP profile, the chain always ends with a UDP

header part, which per definition provides the boundaries for the

chain. The UDP header is also the last header in the uncompressed

packet (except for a potential application header). For the IP-only profile, there is no single last header that per profile definition

terminates the chain. Instead, the static chain is terminated if the "Next Header / Protocol" field of a static IP header part indicates

anything but IP (IPinIP or IPv6). Alternatively, the compressor can choose to end the static chain at any IP header, and indicate this by setting the MSB of the IP version field to 1 (0xC for IPv4 or 0xE for IPv6). The decompressor must store this indication in the context

for correct decompression of subsequent headers. Note that the IP

version field in decompressed headers must be restored to its

original value.

3.2. Handling Multiple Levels of IP Headers

The ROHC IR and IR-DYN packets defined in [RFC-3095] are used to

communicate static and/or dynamic parts of a context. For each of

the compression profiles defined in [RFC-3095], there is a single

last header in the header chain that clearly marks the termination of the static chain. The length of the dynamic chain is then inferred

from the static chain in the IR header itself, or from the static

chain in the context for the IR-DYN header. The length of both

static and dynamic chains may thus be of arbitrary length and may, in theory, initialize a context with an arbitrary number of IP levels. Jonsson & Pelletier Standards Track [Page 3]

However, the general compressed header formats defined in [RFC-3095, section 5.7.] specifies that at most two levels of IP headers (the

’Inner’ and the ’Outer’ level of IP headers) may be included in a

compressed header. Specifically, the format defined for Extension 3 [RFC-3095, section 5.7.5.] can only carry one single ’Outer’ IP

header. In addition, while list compression may be used to compress other types of headers, it cannot be used to compress additional IP

headers, as IP headers may not be part of an extension header chain

in compressed headers [RFC-3095, section 5.8.].

For the compression profiles defined in [RFC-3095], the consequence

is that at most two levels of IP headers can be compressed. In other words, the presence of additional IP headers at best partially

disables header compression, as the compressor will only be allowed

to send IR and IR-DYN packets in such cases.

For the compression of IP headers only, the additional IP headers

would however not have to cause header compression to be disabled

because there is no single packet type that ends the compressed

chain. The excess IP headers could simply be left uncompressed by

implicitly terminating the static and dynamic chains after at most

two levels of IP headers.

The IP-only profile defined in this document goes one step further

and supports compression of an arbitrary number of IP levels. This

is achieved by adding a dynamic chain to the general format of

compressed headers, to include the header part of each IP level in

excess of the first two.

As explained above, the static chain within IR packets can be of

arbitrary length, and the chain is terminated by the presence of a

non-IP header (not IPinIP nor IPv6). Alternatively, the chain may be explicitly terminated with a special code value in the IP version

field, as described in section 3.1. The dynamic chain is structured analogously.

For compressed headers, the information related to the initial two IP headers is carried as for the IP/UDP profile, and a chain of dynamic header information is added to the end of the compressed header for

each and every additional IP header. Thus, this additional data

structure is exactly the same as the one used in IR and IR-DYN

packets. The length of the chain is inferred from the chain of

static parameters in the context. While a dynamic chain carries

dynamically changing parameters using an uncompressed representation, this ensures that flows with arbitrary levels of IP headers will not impair compression efficiency.

Jonsson & Pelletier Standards Track [Page 4]

3.3. Constant IP-ID

Most IPv4 stacks assign an IP-ID according to the value of a counter, increasing by one for each outgoing packet. ROHC UDP compresses the IP-ID field using offset IP-ID encoding based on the UDP SN [RFC-

3095]. For stacks generating IP-ID values using a pseudo-random

number generator, the field is not compressed and is sent as-is in

its entirety as additional octets after the compressed header.

Cases have also been found where an IPv4 stack uses a constant value for the IP Identifier. When the IP-ID field is constant, it cannot

be compressed using offset IP-ID encoding and the field must be sent in its entirety. This overhead can be avoided with the addition of a flag within the dynamic part of the chain used to initialize the IPv4 header, as follow:

Dynamic part:

+---+---+---+---+---+---+---+---+

| Type of Service |

+---+---+---+---+---+---+---+---+

| Time to Live |

+---+---+---+---+---+---+---+---+

/ Identification / 2 octets

+---+---+---+---+---+---+---+---+

| DF|RND|NBO|SID| 0 |

+---+---+---+---+---+---+---+---+

/ Generic extension header list / variable length

+---+---+---+---+---+---+---+---+

SID: Static IP Identifier.

For IR and IR-DYN packets, the logic is the same as for ROHC UDP

with the addition that field(SID) must be kept in the context.

For compressed headers other than IR and IR-DYN:

If value(RND) = 0 and context(SID) = 0, hdr(IP-ID) is

compressed using Offset IP-ID encoding (see [RFC-3095 section

4.5.5]) using p = 0 and default-slope(IP-ID offset) = 0.

If value(RND) = 0 and context(SID) = 1, hdr(IP-ID) is constant and compressed away; hdr(IP-ID) is the value of context(IP-ID). If value(RND) = 1, IP-ID is the uncompressed hdr(IP-ID). IP-ID is then passed as additional octets at the end of the

compressed header, after any extensions.

Jonsson & Pelletier Standards Track [Page 5]

Note: Only IR and IR-DYN packets can update context(SID).

Note: All other fields are the same as for ROHC UDP [RFC-3095].

3.4. Additional Mode Transition Logic

The profiles defined in [RFC-3095] operate using different modes of

compression. A mode transition can be requested once a packet has

reached the decompressor by sending feedback indicating the desired

mode. As per the specifications found in [RFC-3095], the compressor is compelled to honor such requests.

For the IP profile defined in this document, the Mode parameter for

the value mode = 0 (packet types UOR-2, IR and IR-DYN) is redefined

to allow the compressor to decline a mode transition requested by the decompressor:

Mode: Compression mode. 0 = (C)ancel Mode Transition

Upon receiving the Mode parameter set to ’0’, the decompressor MUST

stay in its current mode of operation and SHOULD refrain from sending further mode transition requests for the declined mode for a certain amount of time.

More specifically, with reference to the parameters C_TRANS, C_MODE, D_TRANS, and D_MODE defined in [RFC-3095, section 5.6.1.], the

following modifications apply when the compressor cancels a mode

transition:

Parameters for the compressor side:

- C_MODE:

This value must not be changed when sending mode information

within packets if the mode parameter is set to ’0’ (as a

response to a mode transition request from the decompressor).

- C_TRANS:

C_TRANS is (P)ending when receiving a mode transition request

from the decompressor. C_TRANS is set to (D)one when the

compressor receives an ACK for a UOR-2, IR-DYN, or IR packet

sent with the mode parameter set to the mode in use at the time the mode transition request was initiated.

Jonsson & Pelletier Standards Track [Page 6]

Parameters for the decompressor side:

- D_MODE:

D_MODE MUST remain unchanged when receiving a UOR-2, an IR-DYN, or an IR packet sent with the mode parameter set to ’0’.

- D_TRANS:

D_TRANS is (P)ending when a UOR-2, IR-DYN, or IR packet sent

with the mode parameter set to ’0’ is received. It is set to

(D)one when a packet of type 1 or 0 corresponding to the

unchanged mode is received.

The resulting mode transition procedure is described below:

Compressor Decompressor

----------------------------------------------

C_MODE = X | | D_MODE = X

| Mode Request(Y) +-<-<-<-| D_TRANS = I

| +-<-<-<-<-<-<-<-+ |

C_TRANS = P |-<-<-<-+ |

C_MODE = X | |

|->->->-+ IR/IR-DYN/UOR-2(SN,C) |

| +->->->->->->->-+ |

|->-.. +->->->-| D_TRANS = P

|->-.. | D_MODE = X

| ACK(SN,X) +-<-<-<-|

| +-<-<-<-<-<-<-<-+ |

C_TRANS = D |-<-<-<-+ |

| |

|->->->-+ X-0, X-1* |

| +->->->->->->->-+ |

| +->->->-| D_TRANS = D

| |

where X: mode in use before the mode transition was initiated Y: mode requested by the decompressor

C: (C)ancel mode transition

Jonsson & Pelletier Standards Track [Page 7]

3.5. Initialization

The static context for ROHC IP compression can be initialized in

either of two ways:

1) By using an IR packet as in ROHC UDP, where the profile is 0x0004, and the static chain ends with the static part of an IP header,

where the Next Header/Protocol field has any value but IPinIP (4) or IPv6 (41) [PROTOCOL], or where the IP version field indicates

termination (see section 3.1). At the compressor, SN is

initialized to a random value when the first IR packet is sent.

2) By reusing an existing context. This is done with an IR-DYN

packet, identifying profile 0x0004, where the dynamic chain

corresponds to the prefix of the existing static chain, ending

with an IP header where the Next Header/Protocol field has any

value but IPinIP (4) or IPv6 (41) [PROTOCOL], or where the IP

version field indicates termination (see section 3.1). At the

compressor, SN is initialized to a random value when the first

IR-DYN packet is sent.

For ROHC IP, the dynamic part of an IR or IR-DYN packet is similar to the one for ROHC UDP, with a two-octet field containing the SN

present at the end of the dynamic chain in IR and IR-DYN packets. It should be noted that the static and dynamic chains have an arbitrary length, and the SN is added only once, at the end of the dynamic

chain in IR and IR-DYN packets.

3.6. Packet Types

Except for one new feedback option (see section 3.7), the only packet format that differs from ROHC UDP is the general format for

compressed packets, which has no UDP checksum in the end. Instead,

it ends with a list of dynamic header portions, one for each IP

header above the initial two (if any, as indicated by the presence of corresponding header portions in the static chain).

Jonsson & Pelletier Standards Track [Page 8]

The general format for a compressed header is thus as follows:

0 1 2 3 4 5 6 7

--- --- --- --- --- --- --- ---

: Add-CID octet : |

+---+---+---+---+---+---+---+---+ |

| first octet of base header | |

+---+---+---+---+---+---+---+---+ |

: : |

/ 0, 1, or 2 octets of CID / |

: : |

+---+---+---+---+---+---+---+---+ |

/ remainder of base header / |

+---+---+---+---+---+---+---+---+ |

: : |

/ Extension / |

: : |

--- --- --- --- --- --- --- --- |

: : |

+ IP-ID of outer IPv4 header +

: : (see section 5.7 of [RFC-3095]) --- --- --- --- --- --- --- ---

/ AH data for outer list / |

--- --- --- --- --- --- --- --- |

: : |

+ GRE checksum + |

: : |

--- --- --- --- --- --- --- --- |

: : |

+ IP-ID of inner IPv4 header + |

: : |

--- --- --- --- --- --- --- --- |

/ AH data for inner list / |

--- --- --- --- --- --- --- --- |

: : |

+ GRE checksum + |

: : |

--- --- --- --- --- --- --- ---

: List of :

/ Dynamic chains / variable, given by static chain : for additional IP headers : (includes no SN)

--- --- --- --- --- --- --- ---

Note that the list of dynamic chains for the additional IP headers in compressed packets do not have a sequence number at the end of the

chain, as SN is present within compressed base headers.

Jonsson & Pelletier Standards Track [Page 9]

3.7. The CONTEXT_MEMORY Feedback Option

The CONTEXT_MEMORY option informs the compressor that the

decompressor does not have sufficient memory resources to handle the context of the packet stream, as the stream is currently compressed.

0 1 2 3 4 5 6 7

+---+---+---+---+---+---+---+---+

| Opt Type = 9 | Opt Len = 0 |

+---+---+---+---+---+---+---+---+

When receiving a CONTEXT_MEMORY option, the compressor SHOULD take

actions to compress the packet stream in a way that requires less

decompressor memory resources, or stop compressing the packet stream.

4. Security Considerations

The security considerations of [RFC-3095] apply equally to this

document, without exceptions or additions.

5. IANA Considerations

ROHC profile identifier 0x0004 has been reserved by the IANA for the profile defined in this document.

6. Acknowledgements

The authors would like to thank Carsten Bormann, Fredrik Lindstrom,

Tommy Lundemo, and especially the committed document reviewers

Kristofer Sandlund and Mark West, for valuable input and review. Jonsson & Pelletier Standards Track [Page 10]

7. Normative References

[RFC-791] Postel, J., "Internet Protocol", RFC 791, September 1981. [RFC-2119] Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC-2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.

[RFC-3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima,

H., Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T.,

Le, K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro,

K., Wiebke, T., Yoshimura, T. and H. Zheng, "Robust

Header Compression (ROHC)", RFC 3095, July 2001.

[PROTOCOL] "Assigned Internet Protocol Numbers", IANA registry at:

https://www.doczj.com/doc/259860674.html,/assignments/protocol-numbers

Jonsson & Pelletier Standards Track [Page 11]

Appendix A. Detailed Procedures for Canceling Mode Transitions

The profiles defined in [RFC-3095] operate using different modes of

compression: Unidirectional (U-Mode), Bi-directional Optimistic

(O-Mode), and Bi-directional Reliable (R-Mode). Compression always

starts in the U-Mode, and mode transitions can only be initiated by

the decompressor [RFC-3095, section 5.6.]. A mode transition can be requested once a packet has reached the decompressor by sending

feedback indicating the desired mode.

With reference to the parameters C_TRANS, C_MODE, D_TRANS, and D_MODE defined in [RFC-3095, section 5.6.1.], the following sub-sections

describe the resulting procedures when a compressor declines a mode

transition request from the decompressor as described in section 3.4.

A.1. Transition from Optimistic to Reliable Mode

When the decompressor initiates a mode transition from Optimistic to Reliable mode, the cancellation of the transition procedure is as

follows:

Compressor Decompressor

----------------------------------------------

| |

| ACK(R)/NACK(R) +-<-<-<-| D_TRANS = I

| +-<-<-<-<-<-<-<-+ |

C_TRANS = P |-<-<-<-+ |

C_MODE = O | |

|->->->-+ IR/IR-DYN/UOR-2(SN,C) |

| +->->->->->->->-+ |

|->-.. +->->->-| D_TRANS = P

|->-.. | D_MODE = O

| ACK(SN,O) +-<-<-<-|

| +-<-<-<-<-<-<-<-+ |

C_TRANS = D |-<-<-<-+ |

| |

|->->->-+ UO-0, UO-1* |

| +->->->->->->->-+ |

| +->->->-| D_TRANS = D

The compressor must not send packet types 1 or 0 when C_TRANS is P,

i.e., not until it has received an ACK for a UOR-2, IR-DYN, or IR

packet sent with the mode transition parameter set to C. When the

decompressor receives a UOR-2, IR-DYN, or IR packet sent with the

mode transition parameter set to C, it must keep the value D_MODE as O and set D_TRANS to P. When the decompressor receives packet types 0 or 1, after having ACKed a UOR-2, IR-DYN, or IR packet, it sets

D_TRANS to D.

Jonsson & Pelletier Standards Track [Page 12]

A.2. Transition from Unidirectional to Reliable Mode

The cancellation of a transition from Unidirectional to Reliable mode follows the same procedure as defined in section 4.2 above.

A.3. Transition from Reliable to Optimistic Mode

When the decompressor initiates a mode transition from Reliable to

Optimistic mode, the cancellation of the transition procedure is

described as follows:

Compressor Decompressor

----------------------------------------------

| |

| ACK(O)/NACK(O) +-<-<-<-| D_TRANS = I

| +-<-<-<-<-<-<-<-+ |

C_TRANS = P |-<-<-<-+ |

C_MODE = R | |

|->->->-+ IR/IR-DYN/UOR-2(SN,C) |

| +->->->->->->->-+ |

|->-.. +->->->-| D_MODE = R

|->-.. |

| ACK(SN,R) +-<-<-<-|

| +-<-<-<-<-<-<-<-+ |

C_TRANS = D |-<-<-<-+ |

| |

|->->->-+ R-0, R-1* |

| +->->->->->->->-+ |

| +->->->-| D_TRANS = D

| |

The compressor must not send packet types 1 or 0 when C_TRANS is P,

i.e., not until it has received an ACK for a UOR-2, IR-DYN, or IR

packet sent with the mode transition parameter set to C. When the

decompressor receives a UOR-2, IR-DYN, or IR packet sent with the

mode transition parameter set to C, it must keep the value D_MODE as R. When the decompressor receives packet types 0 or 1, after having ACKed a UOR-2, IR-DYN, or IR packet, it sets D_TRANS to D.

Jonsson & Pelletier Standards Track [Page 13]

A.4. Transition Back to Unidirectional Mode

When the decompressor initiates a mode transition from Reliable or

Optimistic mode back to Unidirectional mode, the cancellation of the transition procedure is as follows:

Compressor Decompressor

----------------------------------------------

| |

| ACK(U)/NACK(U) +-<-<-<-| D_TRANS = I

| +-<-<-<-<-<-<-<-+ |

C_TRANS = P |-<-<-<-+ |

C_MODE = O/R| |

|->->->-+ IR/IR-DYN/UOR-2(SN,C) |

| +->->->->->->->-+ |

|->-.. +->->->-|

|->-.. |

| ACK(SN,O/R) +-<-<-<-|

| +-<-<-<-<-<-<-<-+ |

C_TRANS = D |-<-<-<-+ |

| R-0, R-1* or |

|->->->-+ UO-0, UO-1* |

| +->->->->->->->-+ |

| +->->->-| D_TRANS = D

D_MODE = O/R

When the decompressor receives a UOR-2, IR-DYN, or IR packet sent

with the mode transition parameter set to C, it must keep the value

D_MODE to the bi-directional mode already in use (either O- or R-

mode). After ACKing the first UOR-2(C), IR-DYN(C), or IR(C), the

decompressor MUST continue to send feedback with the Mode parameter

set to the bi-directional mode in use (either O- or R-mode) until it receives packet types 0 or 1. When the decompressor receives packet types 0 or 1, after having ACKed a UOR-2, IR-DYN, or IR packet, it

sets D_TRANS to D.

Jonsson & Pelletier Standards Track [Page 14]

Authors’ Addresses

Lars-Erik Jonsson

Ericsson AB

Box 920

SE-971 28 Lulea, Sweden

Phone: +46 8 404 29 61

Fax: +46 920 996 21

EMail: lars-erik.jonsson@https://www.doczj.com/doc/259860674.html,

Ghyslain Pelletier

Ericsson AB

Box 920

SE-971 28 Lulea, Sweden

Phone: +46 8 404 29 43

Fax: +46 920 996 21

EMail: ghyslain.pelletier@https://www.doczj.com/doc/259860674.html,

Jonsson & Pelletier Standards Track [Page 15]

Full Copyright Statement

Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and

except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET

ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property

The IETF takes no position regarding the validity or scope of any

Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in

this document or the extent to which any license under such rights

might or might not be available; nor does it represent that it has

made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be

found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any

assurances of licenses to be made available, or the result of an

attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this

specification can be obtained from the IETF on-line IPR repository at https://www.doczj.com/doc/259860674.html,/ipr.

The IETF invites any interested party to bring to its attention any

copyrights, patents or patent applications, or other proprietary

rights that may cover technology that may be required to implement

this standard. Please address the information to the IETF at ietf-

ipr@https://www.doczj.com/doc/259860674.html,.

Acknowledgement

Funding for the RFC Editor function is currently provided by the

Internet Society.

Jonsson & Pelletier Standards Track [Page 16]

印刷尺寸大小 纸张大小

常用尺寸印刷尺寸印刷大小纸张大小 1.印刷尺寸及版式设计基础 2.印刷纸张规格 所谓开数就切成几份的意思,例如8开的纸就是全开的1/8大(对切三次)。设计前要先选定纸张尺寸,因为印刷的机器只能使用少数几种纸张(通常是全开、菊全开),一次印完后再用机器切成所需大小,所以没事不要用下表以外的特殊规格,以免纸张印不满而浪费版面。 由于机器要抓纸、走纸的缘故,所以纸张的边缘是不能印刷的,因此纸张的原尺寸会比实际规格要来得大,等到印完再把边缘空白的部分切掉,所以才会有全尺寸跟裁切后尺寸的差别。如果海报故意要留下白边的话也可以选择不切。开数规格全尺寸(mm)裁切后尺寸(mm)常用纸张 全开B11091X7871042X751墙报纸 对开(半开)B2787X545751X521海报 3开787X363751X345 4开B3545X393521X375 5开454X318424X303 8开B4393X272375X260

16开B5272X196260X18726孔活页记事本32开B6196X136187X130 64开B7136X98130X93 菊全开A1872X621842X594海报 菊对开A2621X436594X421 菊3开621X290594X280 菊4开A3436X310421X297 菊8开A4310X218297X210影印纸 菊16开A5218X155210X148手册 菊32开A6155X109148X105 菊64开A7109X77105X74印刷尺寸 什么正度16开,大度16开是多大? 正度16开(185x260) 大度16开(210x285) “开”又是什么单位?

国内印刷物常用标准尺寸

国内常用标准尺寸: 以789mmX1092mm规格的纸作为标准规范用纸,所开切的不同开本的书籍成品净尺如下寸: 4开本:381mmX533mm 6开本:356mmX381mm 8开本:267mmX381mm 12开本:251mmX260mm 16开本:191mmX263mm 18开本:175mmX251mm 20开本:186mmX210mm 方20开本:185mmX207mm 长20开本:149mmX260mm 23开本:152mmX225mm 24开本:175mmX186mm 横24开本:185mmX175mm 长24开本:124mmX260mm 25开本:152mmX210mm 28开本:151mmX186mm 32开本:130mmX184mm 36开本:125mmX173mm 40开本:132mmX151mm

42开本:106mmX173mm 48开本:94mmX173mm 50开本:103mmX149mm 64开本:92mmX129mm 大标准纸张尺寸: 以大规格纸张850mmX1168mm的幅面纸作为常用开本,标准规格净尺寸为: 16开本:206mmX283mm 大16开本:210mmX285mm 大32开本:141mmX203mm 大64开本:102mmX138mm 常用开本 (1)A 度纸(印刷成品、复印纸和打印纸的尺寸):

2)RA度纸(一般印刷用纸,裁边后,可得A 度印刷成品尺寸):

(3)SRA度纸(用于出血印刷品的纸,其特点是幅面较宽) (4)B度纸(介于A度之间的纸,多用于较大成品尺寸的印刷品,如挂图、海报):

印刷尺寸表

印刷尺寸表对开大度875×580 正度775×530 四开大度430×575 正度520×370 八开大度420×285 正度370×260 十六开大度210×285 正度260×185 三十二开大度140×203 正度130×185 国内信封标准 代号长(mm)宽(mm)备注 B6号176 125 与现行3号信封一致 DL号220 110 与现行5号信封一致 ZL号230 120 与现行6号信封一致 C5号229 162 与现行7号信封一致 C4号324 229 与现行9号信封一致 国际信封标准 代号长(mm)宽(mm)备注 C6号162 114 新增加国际规格 B6号176 125 与现行3号信封一致 DL号220 110 与现行5号信封一致 ZL号230 120 与现行6号信封一致 C5号229 162 与现行7号信封一致 C4号324 229 与现行9号信封一致 三折页广告 标准尺寸: (A4)210mm x 285mm 一般宣传册 标准尺寸: (A4)210mm x 285mm

文件封套 标准尺寸:220mm x 305mm 招贴画: 标准尺寸:540mm x 380mm 挂旗 标准尺寸:8开376mm x 265mm 4开540mm x 380mm 手提袋: 标准尺寸:400mm x 285mm x 80mm 信纸便条: 标准尺寸:185mm x 260mm 210mm x 285mm 正度纸张:787×1092mm 开数(正度) 尺寸单位(mm) 全开781×1086 2开530×760 3开362×781 4开390×543 6开362×390 8开271×390 16开195×271 注:成品尺寸=纸张尺寸-修边尺寸 大度纸张:850*1168mm 开数(正度) 尺寸单位(mm)

印刷常用纸张尺寸和字号

印刷常用纸张尺寸和字号、磅与毫米关系 印刷常用纸张尺寸 正度纸张:787×1092mm 开数(正度) 尺寸单位(mm) 全开:781×1086 2开:530×760 3开:362×781 4开:390×543 6开:362×390 8开:271×390 16开:195×271 成品尺寸=纸张尺寸-修边尺寸 大度纸张:850*1168mm 开数(正度) 尺寸单位(mm) 全开:844×1162 2开:581×844 3开:387×844 4开:422×581 6开:387×422 8开:290×422 成品尺寸=纸张尺寸-修边尺寸 常见开本尺寸:787 x 1092 (单位:mm) 对开:736 x 520 4开:520 x 368 8开:368 x 260 16开:260 x 184 32开:184 x 130 常见开本尺寸(大度):850 x 1168(单位:mm) 对开:570 x 840 4开:420 x 570 8开:285 x 420 16开:210 x 285 32开:203 x 140 名片 横版:90*55mm<方角> 85*54mm<圆角> 竖版:50*90mm<方角> 54*85mm<圆角> 方版:90*90mm 90*95mm IC 卡 85x54MM 三折页广告标准尺寸: (A4)210mm x 285mm 普通宣传册标准尺寸: (A4)210mm x 285mm 文件封套标准尺寸:220mm x 305mm 招贴画:标准尺寸:540mm x 380mm 挂旗标准尺寸: 8开 376mm x 265mm / 4开 540mm x 380mm 手提袋:标准尺寸:400mm x 285mm x 80mm 信纸便条:标准尺寸:185mm x 260mm / 210mm x 285mm 国际标准 A 组: 提供一般印刷用途,包括文件及书刊等尺寸(mm) 2A - 1189×1682

印刷设计海报或者宣传册标准尺寸

印刷设计海报或者宣传册标准尺寸: DM单尺寸: 标准尺寸: (A4)210mm x 285mm 宣传画册尺寸、画册规格 标准尺寸: (A4)210mm x 285mm 封套尺寸: 标准尺寸:220mm x 305mm 海报尺寸: 海报的标准尺寸: 13cm×18cm、 19cm×25cm、 30cm×42cm、 42cm×57cm、 50cm×70cm、 60cm×90cm、 70cm×100cm 常见尺寸是 42cm×57cm、

50cm×70cm、 国际标准尺寸是70*100cm 吊旗、挂旗尺寸: 标准尺寸:8开376mm x 265mm 4开540mm x 380mm 手提袋尺寸: 标准尺寸:400mm x 285mm x 80mm 信纸、便条: 标准尺寸:185mm x 260mm 210mm x 285mm 正度纸张:787×1092mm 开数(正度) 尺寸单位(mm) 全开781×1086 2开530×760 3开362×781 4开390×543 6开362×390 8开271×390

16开195×271 注:成品尺寸=纸张尺寸-修边尺寸大度纸张:850*1168mm 开数(正度) 尺寸单位(mm) 全开844×1162 2开581×844 3开387×844 4开422×581 6开387×422 8开290×422 注:成品尺寸=纸张尺寸-修边尺寸常见开本尺寸(单位:mm) 开本尺寸:787 x 1092 对开:736 x 520 4开:520 x 368 8开:368 x 260 16开:260 x 184 32开:184 x 130 开本尺寸(大度):850 x 1168 对开:570 x 840 4开:420 x 570

印刷常规尺寸表

印刷常规尺寸表 16开尺寸 标准型: 大度16开:210*285mm(成品尺 寸) 214*289mm(加出血尺寸) 正度16开:185*260mm(成品尺 寸) 189*264mm(加出血尺寸) 长型: 大度16开:420*140mm(成品尺 寸) 424*144mm(加出血尺寸) 正度16开:370*125mm(成品尺 寸) 374*129mm(加出血尺寸) 8开宣尺寸 标准型: 大度8开:420*285mm(成品尺 寸) 424*289mm(加出血尺寸) 正度8开:370*260mm(成品尺 寸) 374*264mm(加出血尺寸) 长型: 大度8开:570*205mm(成品尺 寸) 574*209mm(加出血尺寸) 正度8开:520*180mm(成品尺 寸) 524*184mm(加出血尺寸) 4开宣尺寸 标准型: 大度4开:420*570mm(成品尺 寸) 424*574mm(加出血尺寸)

正度4开:370*520mm(成品尺 寸) 374*524mm(加出血尺寸) 长型: 大度4开:840*280mm(成品尺 寸) 844*284mm(加出血尺寸) 正度4开:740*255mm(成品尺 寸) 744*259mm(加出血尺寸) 32开宣尺寸 标准型: 大度32开:210*140mm(成品尺 寸) 214*144mm(加出血尺寸) 正度32开:185*125mm(成品尺 寸) 191*131mm(加出血尺寸) 长型: 大度32开:285*100mm(成品尺 寸) 289*104mm(加出血尺寸) 正度32开:255*90mm(成品尺 寸) 259*94mm(加出血尺寸) 名片尺寸 标准尺寸成品尺寸90*54 加出血92 * 56mm 吊旗尺寸 大度6开:420*370mm(成品尺寸) 424*374mm(加出血尺寸) 正度6开:340*370mm(成品尺寸) 344*374mm(加出血尺寸) 长大度6开:270*570mm(成品尺寸) 274*574mm(加出血尺寸) 长正度6开:240*520mm(成品尺寸) 244*524mm(加出血尺寸)

宣传单页的实际尺寸及印刷

宣传单页的实际尺寸及印刷 一、标准彩页制作尺寸: 彩页制作尺寸291×216mm(四边各含3mm出血位); 宣传单页尺寸:通常16开的尺寸为210×285mm,8开的尺寸为420×285mm,非标准的尺寸可能会造成纸张的浪费,所以在选用时需格外小心。 常见宣传单页的设计尺寸常见如下: 标准的16k宣传单页尺寸是206mm*285mm 用于印刷,裁切需要每边增加2mm,有出血的卡片尺寸是210mm*289mm 。 标准的16K三折页尺寸是206mm*283mm 用于印刷、裁切需要每边增加2mm出血,有出血的16k宣传单尺寸是210mm*287mm 。 标准的8K宣传单页尺寸是420mm*285mm 用于印刷、裁切需要每边增加2mm出血,有出血的8k宣传单页尺寸是424mm*289mm 。下表列出了印刷的标准宣传单页和样本,有出血和无出血的尺寸: 尺寸表:无出血带出血 标准16k宣传单页 206*285mm 210*289mm 标准8k宣传单页 420*285mm 424*289mm 标准16k样本 420*285mm 424*289mm 16k三折页宣传单页 206*283mm 210*287mm 宣传单页的设计有以下几类: 1、单片式 单片式是一种简易的印刷宣传品,单片为32开、16开较多,因为此尺寸携带方便,也经济实惠。单片的保存期不长,适应于快速和短期性的广告宣传。 2、书刊式 书刊式是对商品做直接介绍的一种宣传印刷品,一般是通过产品拍成照片直接向消费者展示,产品内容介绍可详尽。通常以多页形式装订成册,与已知编排形式相似,但比已知形式更具有特色和个性。大部分采用四色印刷,设计规格一般为16开。 3、手风琴式 通常以折页形式为较多,大部分采用四色印刷,设计规格一般为6开6折、8开2折或4折、16开2折或3折,中间内容视产品特点而定。设计要尽量精致美观,展示的产品应选择最挂角度,力求逼真和清晰,字体清秀,色调与内容和谐,以增加客户购买力为最终目的。 4、插袋式 为了放置多种产品样张而设计成内袋式的一种样本,便于查阅和携带。 宣传单页印刷中的注意事项有以下几点: ①单页跨页印刷时,必须要求规格统一,色调一致;跨两页以上的,以中间一页色调为印刷基准。 ②贴数多,按顺序印刷。 ③在同页面印刷时,如不能保持全色调统一时,可考虑局部印刷。 ④宣传单页印刷时,尽量避免用辅助材料,以保证印刷质量。 纸张:常用可选择的纸张还有80g 、105g、128g、157g、200g、250g等。纸张的类型除铜版纸外尚可选择双胶纸及艺术纸印刷。 后道加工:宣传单页页可选择表面过油、覆膜等后道加工工艺来提高亮度或强度等,但通常情况下,一般不太选用。 二、标准彩页成品大小: 大16K彩页成品大小285×210mm; 三、彩页排版方法: 彩页排版时,请将文字等内容放置于裁切线内5mm,彩页裁切后才更美观;

照片和印刷纸张常用尺寸规格

尺寸名厘米数英寸数 一寸 2.5 x 3.6 cm 5x8寸 二寸 3.4 x 5.2 cm 5x9寸 三寸 5.5 x 8.4 cm 5x10寸 五寸 3.5 x 5 5x12寸 六寸 4 x 6 6x9寸 七寸 5 x 7 6x10寸 八寸 6 x 8 6x12寸 十寸8 x 10 6x14寸 十二寸10 x 12 8.5x12寸 十四寸10 x 14 10x14.5寸 十六寸12 x 16 12x17寸 十八寸12 x 18 12x17.5寸 十八寸以内按英寸数为准,二十寸以上按厘米数为准。备注:1英寸=2.54厘米二十寸40 x 50 cm 标准二十四寸50 x 60 cm 二十四寸44 x 60 cm 二十四寸挂照42 x 60 cm 三十寸60 x 75 cm 三十二寸60 x 80 cm 三十六寸60 x 90 cm 四十寸70 x 100 cm

四十八寸90 x 120 cm 五十八寸100 x 115 cm 六十八寸112 x 170 cm 我们拍摄好的数码照片一般都不是标准的照片尺寸,用数码相机所拍出的图像一般是按计算机屏幕的分辨率来设定的,所以基本上都是4∶3的比例,而标准照片尺寸的比例不同,如5寸照片的比例为10∶7,6寸照片的尺寸为3∶2,如不裁剪,在冲印的过程中,往往会在照片旁留下白边或者照片不完全。因此我们必须用软件对照片迚行裁剪加工。表一:常见的标准照片规格表二:数码照片冲印质量对照表胶卷质量:能保持原照片的最佳效果。优秀:细看能看出像素不够对照片的轻微影响,但幵不影响照片质量,可得到比较理想的打印效果。好:像素对照片的影响较明显,但冲印效果仍较满意。一般:像素不足对照片的影响明显,但照片仍可使用。[/font][/size][/color] 偶查了一下:1英寸=2.54厘米我们说照片尺寸通常是讲英寸的,照片尺寸的常规标准在10寸内的规格是相差2,比如5寸照片就是5X3,7寸=7X5 8寸=8X6。如果照片尺寸大于10寸的就相差4,12寸=12X8 14寸=14X10 18寸=18X14 崛起的小龙 [文曲星] 铜版纸 铜版纸又称涂布印刷纸,在香港等地区称为粉纸。它是以原纸涂布白色涂料制成的高级印刷纸。主要用于印刷高级书刊的封面和插图、彩色画片、各种精美的商

超硬磨料微粉的粒子尺寸及尺寸分布

超硬磨料微粉的粒子尺寸及尺寸分布 此文是描述当今超硬磨料工业生产中关于金刚石微粉及CBN粉末的粒子尺寸和尺寸分布的技术和标准。颗粒粒度的表征 粉末系统的粒子尺寸及尺寸分布的测量是大部分工业生产中的主要要求。粒子尺寸及尺寸分布对最终产品的大块性质(机械性能,导电性能,导热性能)有决定性的影响。大多数粉末生产商提供粒子尺寸及尺寸分布标准,但是这些标准对质量控制的实际结果还需要讨论。一个合适的质量控制体系,可以防止或避免高斥力导致的最终产品的生产损失。市面上有很多粒子尺寸及尺寸分布的测量设备,不同的设备测量方法不同,必定导致不同的测量结果。此外,即使使用相同的测量方法,测量中的技术差异和计算方法差异,也会导致粒子尺寸及尺寸分布测量结果有很大差异。而且,粒子的形状对粒子尺寸及尺寸分布也有很大影响。所以不同测量方法下数据的对比应当特别重视,需要采用合理的测量规程。一般研究中的粉末特征是极为相似的,所以这些规程甚至会需要对设备的校准都有很严格的标准。当把粒子尺寸及尺寸分布作为一种生产过程控制标准时,粒子尺寸及尺寸分布数据的使用就非常重要。生产过程的变化表现在检测数据变化的趋势和幅度,这种变化直接影响到产品质量。在很多情况下,粒度大小和粒度分布需要规定一个可以接受的波动范围。只有在长度和重量两个主要的参数有国际标准作为参考时,才能获得相对准确的粒度分析。以长度或重量作为参数的测量技术称为“初级测量”或直接测量,包括:显微图象分析、筛选分析、电子区域检测、重力沉降和离心沉降等。根据二阶效应如衍射图象、布郎运动、浊度等来测量粒子尺寸表征的方法称为“二级测量”或间接测量,它通过电脑建模(伴随若干假设的数学算法)来研究实验数据,最常用的有激光衍射法、动态光散射法、光子相关谱法。当使用显微分析技术时,大部分测量数据有一定的可靠程度。在这类技术中,测量的粒子能直观的被检测。通常,测量结果的可靠程度受到次测量粒子数,粒子代表性的分析,粒子形状,弥散分布和相关试样制备技术影响。此外,为了只用一个尺寸(如直径)来描述粒子尺寸,分析中一般把粒子看成球状的。综上所述,通常粒子尺寸及尺寸分布的测量中,某次(种)测量的结果可以和其它的测量结果互相对比和联系,不同的设备在相似的条件下,可能获得同样的结果。所以,测量的精确性比准确性更加重要。在尺寸测量工作规程的制定中,粉末生产商和购买者之间的高效率交流至关重要。共同讨论合适的审计方法,可以获得良好的跟踪性能,就生产规程和产品要求达成共识。图1推荐了一般情况下分析粒子尺寸及尺寸分布的检测过程。附录1介绍了一些粒子尺寸及尺寸分布界定的定义和计算方法。附录2介绍了塞网尺寸、微米级尺寸、一克拉中近似粒子数三者之间的联系。 粗粒金刚石和CBN粉末的筛分以及标准筛分粒度表 一般情况下,筛分是指将自由流动干粉末样品振动通过一系列从大到小的筛子。筛孔最大的筛子放在最上面,最小的放在最下面。通过保留在筛孔之上或累积在给定尺寸筛孔上的部分来反映粒度分布。以下的类似ASTM和ISO标准对孔径的细节提出了要求,包括丝径、眶径和维护清洁筛子的方法:ASTM E11-95对象为金属丝制筛,ASTM E163-96对象为电成型薄版实验筛。ISO 3310-1 技术要求和检测/Part1-金属丝制筛;ISO 3310-3 技术要求和检测/Part3-电成型薄版实验筛。 筛子的校准 筛子的校准大都通过筛选已知的物料,对比测定粒度分布和已知粒度分布。国际学会规定了一种标准的材料,(SRM),筛子的检测标准和技术(NISI)。这些材料用电光学的显微方法确定了尺寸,而且适用与筛子的校准。这些恰当的筛子校准条件(SRM&NISI)在附录三-Part1列出。其他建议的筛子校准技术包括通过筛子的光学检查来测量某个筛子的孔径分布。 实用标准 这些标准意图为金刚石和CBN粉末的检测建立一个普遍的基础,用于工业生产各种各种超磨性产品。此标准意图为超磨性粉末的生产商、供应商、使用商提供这类产品的基本知识。以下的一系列标准应用于粗粒金刚石和CBN粉末:美国标准2002\7\12(American Standard ANSI B74.16/July 12,2002)-金刚石和CBN(立方氮化硼)的尺寸;磨粒国际标准2005\5\16(Abrasive Grains International Standard)ISO 6106/May 16,2005-磨料产品-超磨料的颗粒尺寸。 金刚石和CBN粗磨料粒子尺寸的标准

设计印刷常用尺寸-印刷常用纸张开法

设计印刷常用尺寸,印刷常用纸张开法一、设计印刷常用尺寸 宣传页、彩页标准尺寸:(A4) 210mm × 285mm 三折页广告标准尺寸:(A4) 210mm × 285mm 宣传画册尺寸、画册规格:(A4) 210mm × 285mm 一般画册的尺寸(单位:mm) 16开大度:210×285 正度:185×260 8开大度:285×420 正度:260×370 4开大度:420×570 正度:370×540 2开大度:570×840 正度:540×740 全开大:889×1194 小:787×1092 封套标准尺寸:220mm × 305mm 招贴画标准尺寸:540mm × 380mm 海报的标准尺寸: 13cm × 18cm 19cm × 25cm 42cm × 57cm 50cm × 70cm 60cm × 90cm

70cm × 100cm 最常见的海报尺寸 42cm × 57cm 50cm × 70cm 特别常见的是50cm × 70cm 吊旗、挂旗标准尺寸: 8开 376mm x 265mm 4开 540mm x 380mm 手提袋尺寸: 标准尺寸:400mm x 285mm x 80mm 信纸、便条: 标准尺寸:185mm x 260mm 210mm x 285mm 信封 小号:220×110mm 中号:230×158mm 大号:320×228mm D1:220×110mm C6:114×162mm 桌旗:210×140mm (与桌面成75度夹角) 竖旗: 750×1500mm 大企业司旗:1440×960mm 960×640mm (中小型) 胸牌 大号:110×80mm 小号:20×20(滴朔徽章) 名片: 横版:90mm×54mm (最常用)

印刷纸张标准尺寸表介绍

全张纸的规格有以下几种: 787×1092mm、850×1168mm 880×1230mm、889×1194mm等 其中787号纸为正度纸张,做出的书刊除去修边以后的成品为正度开本,常见尺寸为8开:368x260;16开:260x184;32开:184x130 850号为大度纸张,成品就为大度开本,如大度16开、大度32开等,常见尺寸为8开:285x420;16开:210x285;32开:203x140 其中八开尺寸如果用做报纸印刷的话一般是不修边的,所以要比上面给出的尺寸稍大。 880号和889号纸张,主要用于异形开本和国际开本。 印刷书刊用纸的大小取决于出版社要求出书的成品尺寸,以及排版、印刷技术。 1.纸张有哪几种规格? 常用纸张有大度和正度两种规格。 2.什么叫大度纸? 规格889*1194(mm)为大度纸。 3.什么是正度纸? 规格787*1092(mm)为正度纸。 4.如何计算纸张的开数? 将全纸张对折为对开,对开纸再对折为四开 纸张的计量 1.什么是纸张的计量单位? 令或卷。 2.什么叫卷筒纸? 将整条纸卷成一个筒。 3.多少张纸为一令? 一令为500张纸。(有些国家一令为1000张纸) 4.卷与令是如何换算? 通常一卷约相当于10令。 5.纸张厚薄以什么衡量? 克重。(克数多,纸张就厚) 6.克重表示什么? 克重表示一张纸每平方米的重量。 各常规尺寸 名片 横版:90*55mm<方角>85*54mm<圆角> 竖版:50*90mm<方角>54*85mm<圆角> 方版:90*90mm90*95mm IC卡85x54MM 三折页广告 标准尺寸:(A4)210mmx285mm 普通宣传册 标准尺寸:(A4)210mmx285mm 文件封套 标准尺寸:220mmx305mm 招贴画: 标准尺寸:540mmx380mm 挂旗 标准尺寸:8开376mmx265mm 4开540mmx380mm 手提袋: 标准尺寸:400mmx285mmx80mm 信纸便条: 标准尺寸:185mmx260mm210mmx285mm 正度纸张:787×1092mm 开数(正度)尺寸单位(mm) 全开781×1086 2开530×7603开362×781 4开390×5436开362×390 8开271×390 16开195×271 注:成品尺寸=纸张尺寸-修边尺寸 大度纸张:850*1168mm 开数(正度)尺寸单位(mm) 全开844×1162 2开581×8443开387×844 4开422×5816开387×422 8开290×422 注:成品尺寸=纸张尺寸-修边尺寸 常见开本尺寸(单位:mm) 开本尺寸:787x1092 对开:736x520 4开:520x368 8开:368x260 16开:260x184 32开:184x130 开本尺寸(大度):850x1168 对开:570x840 4开:420x570 8开:285x420 16开:210x285 32开:203x140 正度纸张:787×1092mm 开数(正度)尺寸单位(mm) 全开781×1086 2开530×760 3开362×781 4开390×543 6开362×390 8开271×390 16开195×271 注:成品尺寸=纸张尺寸-修边尺寸 大度纸张:850*1168mm 开数(正度)尺寸单位(mm) 全开844×1162 2开581×844 3开387×844 4开422×581 6开387×422 8开290×422 注:成品尺寸=纸张尺寸-修边尺寸 16开 大度:210×285 正度:185×260 8开 大度:285×420 正度:260×370 4开 大度:420×570 正度:370×540 2开 大度:570×840 正度:540×740 全开 大:889×1194 小:787×1092 把一张全张纸对折一次,得到的大小就是对开, 再对折就是四开,再对折就是八开,再对折就 是十六开。如:A3纸(297mm×420mm)是 A4(210mm×297mm)的两倍,16K是32K的两 倍,8K是16K的两倍,4K是8K的两倍。 报纸一般是四开为多,对折以后为八开。小学 生的作业本是三十二开,一般的杂志大小是十 六开。 书籍的开数一般为三十二开,杂志一般为十六 开,但是同样也有十六开的书籍跟三十二开的 杂志。 A4并不等于16K 16K也有很多种格,依全开纸各种规格而变化: 16开纸一般分2种:1、大度16开的尺寸是: 210*285mm 2、正度16开的尺寸是:185*260mm 787×1092标准16开本幅面尺寸: 185×260例如:知音、中外期刊言文萃等 850×116816开本幅面尺寸: 203×280例如:爱人杂志等 880×123016开本幅面尺寸: 212×294 889×119416开本幅面尺寸: 210×285 图书、杂志开本及其幅面尺寸 系列未裁切单张纸尺寸已裁切成开本开数代号 公称尺寸 A880×123016A4210×297 900×128016A4210×297 B1000×140032B5169×239 word里面16K纸的公称值是184×260; A4纸的公称值是:210×297; B5纸的公称值是:182×257;

常用印刷尺寸 印刷大小 纸张大小

常用印刷尺寸印刷大小纸张大小 所谓开数就切成几份的意思,例如8开的纸就是全开的1/8大(对切三次)。设计前要先选定纸张尺寸,因为印刷的机器只能使用少数几种纸张(通常是全开、菊全开),一次印完后再用机器切成所需大小,所以没事不要用下表以外的特殊规格,以免纸张印不满而浪费版面。 由于机器要抓纸、走纸的缘故,所以纸张的边缘是不能印刷的,因此纸张的原尺寸会比实际规格要来得大,等到印完再把边缘空白的部分切掉,所以才会有全尺寸跟裁切后尺寸的差别。如果海报故意要留下白边的话也可以选择不切。开数规格全尺寸(mm)裁切后尺寸(mm)常用纸张 全开B1 1091 X 787 1042 X 751墙报纸 对开(半开) B2 787 X 545 751 X 521海报 3开787 X 363 751 X 345 4开B3 545 X 393 521 X 375 5开454 X 318 424 X 303 8开B4 393 X 272 375 X 260 16开B5 272 X 196 260 X 187 26孔活页记事本 32开B6 196 X 136 187 X 130 64开B7 136 X 98 130 X 93 菊全开A1 872 X 621 842 X 594海报 菊对开A2 621 X 436 594 X 421 菊3开621 X 290 594 X 280 菊4开A3 436 X 310 421 X 297 菊8开A4 310 X 218 297 X 210影印纸

菊16开A5 218 X 155 210 X 148手册 菊32开A6 155 X 109 148 X 105 菊64开A7 109 X 77 105 X 74印刷尺寸 什么正度16开,大度16开是多大? 正度16开(185x260) 大度16开(210x285) “开”又是什么单位? 全开的纸能开出来多少张,就是多少开。 例如:16K的就是全开开出16张,对开就是开出两张。 一开是多大? 全开正度:780 x1080 大度:880 x1180有关于书籍装帧设计方面的知识 付图:1 书籍版式设计的基本常识一.版式设计的目的:方便读者,给读者美的享受二.版式设计的定义:版面的编排设计。在一定的开本上,把书籍原稿的体裁、结构、层次、插图等方面作艺术而又合理的处理。三.现在常用的一些版式规格:a)诗集:通常用比较狭长的小开本b)理论书籍:大32开比较常用c)儿童读物:接近方形的开度d)小字典:42开以下的尺寸,106/173mm e)科技技术书:需要较大较宽的开本f)画册:接近于正方形的比较多玖.书籍装帧和书籍生产评审标准一.装帧:设计方案是否符合出书意图二.版面设计:a)书籍的开本、版心和图片尺寸是否协调;设计风格是否贯穿全书始终,包括扉页和附录版面是否易读,是否和书籍内容相适应(具体到字号、行距、行长之间的关系,左右两边整齐或者只有左边整齐等)b)字体是否适应书籍的内容和风格?c)设计方案的执行情况如何(文字与图片的关系、注释和脚注等是否便于查找)d)版面的字安排是否一目了然、合适和符合目的(文字的醒目、不同字体

油中颗粒数及尺寸分布测量方法

中华人民共和国能源部标准 SD313—89 油中颗粒数及尺寸分布测量方法 (自动颗粒计数仪法) 中华人民共和国能源部1989-03-27批准 1989-10-01实施 本方法采用自动颗粒计数仪测定每100mL油中所含颗粒数量及尺寸分布,测量颗粒尺寸范围5~150μm(更换传感器可以扩大量程)。适合于测定变压器油、汽轮机油等油品的颗粒污染度。 1仪器及材料 1.1自动颗粒计数仪根据遮光原理工作,需定期校准。 1.2传感器与自动颗粒计数仪配套使用,能测定粒径约150μm的颗粒。 1.3超声波清洗器最小功率50W。 1.4秒表或计时器精确度为0.1s。 1.5真空泵真空度不小于86kPa。 1.6过滤装置供过滤清洁液使用。 1.7微孔滤膜孔径为0.8μm、0.45μm和0.15μm。 1.8取样瓶250mL玻璃瓶(医用输液瓶),具塞和塑料薄膜衬垫。 1.9AC粉尘校准液AC粉尘为非球形颗粒,校准液一般由仪器生产厂提供,也可按国际标准ISO4402方法配制。 1.10标准胶球校准液一般由仪器生产厂提供,也可按美国宇航标准ARP1192A方法配制。 1.11异丙醇化学纯。 1.12石油醚化学纯,沸程60~90℃。 1.13甲苯(或二甲苯)化学纯。 1.14去离子水或蒸馏水。 2清洁液的制备 异丙醇、石油醚、甲苯和蒸馏水等可依次经过不同孔径的滤膜过滤制得。供清洗仪器及稀释样品使用的清洁液,每100mL中粒径大于5μm的颗粒不多于100粒;供检验取样瓶用的清洁液,每100mL中粒径大于5μm的颗粒不多于50粒。 3取样 3.1取样瓶的清洗及检验 3.1.1取样瓶经过自来水和蒸馏水清洗后,再用清洁水清洗,瓶盖和薄膜衬垫也要用清洁液清洗。 3.1.2检验清洗干净后,向瓶中注入总容积为45%~55%的清洁液,垫上薄膜,盖上瓶盖后充分摇动。用自动颗粒计数仪测定每100mL液体中粒径大于5μm的颗粒数应不多于100

Image J分析粒径尺寸及分布

Morphological study: focal contacts formation For quantification of vinculin positive contacts areas, we used the freeware image analysis ImageJ (NIH, https://www.doczj.com/doc/259860674.html,/ij/). We opened the raw image, converted it to an 8-bit file, and used the unsharp mask feature (settings 1:0.2) before removing the image background (rolling ball radius 10). After smoothing, the resulting image, which appears similar to the original photomicrograph but with minimal background, was then converted to a binary image by setting a threshold. Threshold values were determined empirically by selecting a setting, which gave the most accurate binary image for a subset of randomly selected photomicrographs with varying peptides densities. The cell area was determined by manual delineation on raw fluorescent images, total contact area and mean contact area per cell were calculated by ‘‘analyse particules’’ in Image J, contacts smaller than 3 pixels were not taken into account. 首先用工具栏里的直线工具,沿SEM、TEM的标尺(bar)拉出一条等长的直线,在菜单栏里找到measure点击,得到标尺对应的长度数据(弹出的数据栏);接着用同样的步骤测量你的particles;最后导出你的数据,放到excel、origin里处理就行了~ 测量的值是相对值,要利用bar的相对值和实际值进行换算~乘下除下就行了~ 首先要在measur 里面选择spatial calibration,将这里面标尺与自己图片里面的标尺对应,最后选择measurements,features里面选择直线。自己在图片里面画线,用长度除以晶粒数就ok了

印刷纸张尺寸对比表

常用印刷纸张的开法 虽然ISO的标准是将纸张划分为A、B、C三种开本,但是目前国内基本上还是采用787mm×1092mm的老规格(正度纸张)。由于要除去印刷机咬口,所以实际的可印刷幅面是780mm×1080mm左右。 常用印刷纸张的开法和可印刷面积表:

是每次将纸张一折为二,所以开数也是以二的次幂数增加的。三开法相对比较复杂一些,第一刀是将纸张一分为三来进行裁切的,所以开数是以3的倍数增加的。除此之外,还有一些根据特殊需要的特殊开法。 2开法 3开法 特殊开法 印刷纸张尺寸大全 正度纸张:

开数(正度) 尺寸单位(mm) 全开 781×1086 2开 530×760 3开 362×781 4开 390×543 6开 362×390 8开 271×390 16开 195×271 注:成品尺寸=纸张尺寸-修边尺寸大度纸张: 开数(正度) 尺寸单位(mm) 全开 844×1162 2开 581×844 3开 387×844 4开 422×581 6开 387×422 8开 290×422 注:成品尺寸=纸张尺寸-修边尺寸常见开本尺寸: 开数尺寸单位(mm) 对开:736 x 520 4开:520 x 368 8开:368 x 260 16开:260 x 184 32开:184 x 130 开本尺寸(大度): 开数尺寸单位(mm) 对开:570 x 840 4开:420 x 570 8开:285 x 420 16开:210 x 285 32开:203 x 140 正度纸张: 开数尺寸单位(mm) 全开 781×1086 2开 530×760 3开 362×781

油中颗粒数及尺寸分布测量方法

油中颗粒数及尺寸分布测量方法 (自动颗粒计数仪法) 本方法采用自动颗粒计数仪测定每100mL油中所含颗粒数量及尺寸分布,测量颗粒尺寸范围5~150μm(更换传感器可以扩大量程)。适合于测定变压器油、汽轮机油等油品的颗粒污染度。 1仪器及材料 1.1自动颗粒计数仪根据遮光原理工作,需定期校准。 1.2传感器与自动颗粒计数仪配套使用,能测定粒径约150μm的颗粒。 1.3超声波清洗器最小功率50W。 1.4秒表或计时器精确度为0.1s。 1.5真空泵真空度不小于86kPa。 1.6过滤装置供过滤清洁液使用。 1.7微孔滤膜孔径为0.8μm、0.45μm和0.15μm。 1.8取样瓶250mL玻璃瓶(医用输液瓶),具塞和塑料薄膜衬垫。 1.9AC粉尘校准液AC粉尘为非球形颗粒,校准液一般由仪器生产厂提供,也可按国际标准ISO4402方法配制。 1.10标准胶球校准液一般由仪器生产厂提供,也可按美国宇航标准ARP1192A方法配制。 1.11异丙醇化学纯。 1.12石油醚化学纯,沸程60~90℃。 1.13甲苯(或二甲苯)化学纯。 1.14去离子水或蒸馏水。 2清洁液的制备 异丙醇、石油醚、甲苯和蒸馏水等可依次经过不同孔径的滤膜过滤制得。供清洗仪器及稀释样品使用的清洁液,每100mL中粒径大于5μm的颗粒不多于100粒;供检验取样瓶用的清洁液,每100mL中粒径大于5μm的颗粒不多于50粒。 3取样 3.1取样瓶的清洗及检验 3.1.1取样瓶经过自来水和蒸馏水清洗后,再用清洁水清洗,瓶盖和薄膜衬垫也要用清洁液清洗。 3.1.2检验清洗干净后,向瓶中注入总容积为45%~55%的清洁液,垫上薄膜,盖上瓶盖后充分摇动。用自动颗粒计数仪测定每100mL液体中粒径大于5μm的颗粒数应不多于100粒。将颗粒数乘以注入瓶内清洁液体积与瓶总容积之比值,并将结果记录在取样瓶的标签上,作为该取样瓶的清洁级(即每100mL容积中所含粒径大于5μm颗粒数量),取样瓶的清洁级最小应比被取油样的颗粒浓度低两个数量级。 注:检验取样瓶用的清洁液,应根据瓶的干燥程度选用。若瓶中有水存在时,选用异丙醇;若瓶内干燥,选用石油醚。

印刷成品标准尺寸

印刷成品标准尺寸.txt19“明”可理解成两个月亮坐在天空,相互关怀,相互照亮,缺一不可,那源源不断的光芒是连接彼此的纽带和桥梁!人间的长旅充满了多少凄冷孤苦,没有朋友的人是生活的黑暗中的人,没有朋友的人是真正的孤儿。 大度全开 1193×889mm 1092×787mm 正度对开 863×584mm 760×520mm 3开 863×384mm 760×358mm 丁三开 443×745mm 390×700mm 4开 584×430mm 520×380mm 6开 430×380mm 380×350mm 8开 430×285mm 380×260mm 12开 290×275mm 260×250mm 16开 285×210mm 260×185mm 24开 180×205cm 170×180mm 32开 210×136mm 184×127mm 36开 130×180mm 115×170mm 48开 95×180mm 85×260mm 64开 136×98mm 85×125mm 根据需要有17、25、40、52、60、70、 80、100、105、128、157、180、200、 220、250克等。250克以上的叫纸板。 印画册通常用的有105、128、157、180、 200、250、300克,最好的搭配为封面300, 内页157克。 纸张的度量 纸张的规格 1.纸张有哪几种规格? 常用纸张有大度和正度两种规格。 2.什么叫大度纸? 规格889*1193 (mm)为大度纸。 3.什么是正度纸? 规格787*1092 (mm)为正度纸。 4.如何计算纸张的开数? 将全纸张对折为对开,对开纸再对折为四开 纸张的计量 1.什么是纸张的计量单位? 令或卷。 2.什么叫卷筒纸? 将整条纸卷成一个筒。 3.多少张纸为一令? 一令为500张纸。(有些国家一令为1000张纸) 4.卷与令是如何换算?

粉体学基础知识一粒径和粒度分布

粉体学基础知识一:粒径和粒度分布 粉体学(micromeritics)是研究无数个固体粒子集合体的基本性质及其应用的科学。通常<100μm的粒子叫“粉”,容易产生粒子间的相互作用而流动性较差;>100μm的粒子叫“粒”,较难产生粒子间的相互作用而流动性较好。单体粒子叫一级粒子(primary particles);团聚粒子叫二级粒子(second particle)。 粉体的物态特征: ①具有与液体相类似的流动性; ②具有与气体相类似的压缩性; ③具有固体的抗变形能力。 粉体粒子的物理性质主要有:粒子与粒度分布、粒子形态、比表面积等。 粒子径与粒度分布 粉体的粒子大小也称粒度,含有粒子大小和粒子分布双重含义,是粉体的基础性质。 对于一个不规则粒子,其粒子径的测定方法不同,其物理意义不同,测定值也不同。 粒径的表示方法有以下两种: 1、几何学粒子径:根据几何学尺寸定义的粒子径,一般用图像法测定。 三轴径:在粒子的平面投影图上测定长径l与短径b,在投影平面的垂直方向测定粒子的厚度h。反映粒子的实际尺寸。

定向径(投影径):Feret径(或Green径) :定方向接线径,即一定方向的平行线将粒子的投影面外接时平行线间的距离。 Krummbein径:定方向最大径,即在一定方向上分割粒子投影面的最大长度。 Martin径:定方向等分径,即一定方向的线将粒子投影面积等份分割时的长度。 2、等效粒径 等效粒径的定义:当一个不规则体粒子的某种物理行为或者物理参量与材质相同的某球体相同或者近似时,我们把该球体的直径称为为此不规则粒子的某种等效粒径。当参考的物理行为或者物理参量不同时,测量同一个不规则体粒子可能会得到多个等效粒径值。 常见的等效方法有以下几种: 光散射等效:光波在传导过程中遇到障碍物颗粒会发生偏转,光波偏转的角度跟颗粒的粒径成反比关系。当某颗粒引起的光波偏转量等于某同质球体的偏转量时,我们认为该球直径即为该颗粒的光散射等效粒径。 Heywood径:投影面积圆相当径,即与粒子的投影面积相同圆的直径,常用DH表示。 体积等价径(equivalent volume diameter):与粒子的体积相同的球体直径,也叫球相当径。用库尔特计数器测得。 沉降速度等效粒径:粒径相当于在液相中具有相同沉降速度的球形颗粒的直径。该粒经根据Stocks方程计算所得,因此有叫Stocks 径,记作DStk.

相关主题
文本预览
相关文档 最新文档