当前位置:文档之家› 数值分析--线性方程组的数值解法

数值分析--线性方程组的数值解法

数值分析--线性方程组的数值解法
数值分析--线性方程组的数值解法

题目1 线性方程组的数值解法

1.1 题目的主要研究内容及预期达到的目标

(1)实现雅可比迭代算法

(2)求得给定线性方程组的解

1.2 题目研究的工作基础或实验条件

(1)笔记本

(2)C-Free 5应用开发平台

1.3 设计思想

将线性方程组的系数矩阵A分成三部分D、L和U,其中满足A=D-L-U(具体关系参考教材P188)。由Ax=b和雅可比迭代法思想可以推导得出最终的计算公式,然后根据公式和算法思想即可编写程序实现。

1.4 流程图

1.5 主要程序代码(要求必须有注释)

#include

#include

using namespace std;

void JacobiIteration(){

int n,k;

cout<<"输入你将输入的系数矩阵阶数n=";

cin>>n;

double e,w[n];

double Matrix[n][n],b[n];

ZeroMemory(Matrix,sizeof(Matrix));//初始化系数矩阵,元素置零

cout<<"输入系数矩阵(类似:\na1 a2 a3\nb1 b2 b3\nc1 c2 c3):"<

for(int i=0;i

for(int j=0;j

cin>>Matrix[i][j];

cout<<"依次输入"<

for(int i=0;i

cin>>b[i];

double x[n];

for(int i=0;i

x[i]=0;

cout<<'\n'<<"输入迭代次数k=";

cin>>k;

for(int i=0;i

{

for(int m=0;m

w[m]=0;//清零,以便记录累加和

for(int m=0;m

{

for(int l=0;l

{

if(l!=m)

w[m]+=Matrix[m][l]*x[l];

}

}

for(int j=0;j

{

x[j]=(b[j]-w[j])/Matrix[j][j];

}

}

cout<<"该线性方程组经雅可比迭代法求解得:"<

for(int i=0;i

{

cout<<"x"<

}

}

int main()

{

JacobiIteration();

}

1.6 运行结果及分析

所用测试范例为教材P180的例1,最终求得结果同教材所给结果相同。

1.7 心得体会

通过本次实验,我加深了对雅可比迭代法的理解。通过将数学模型简化成一系列算术和逻辑运算并上机实现其数值求解的过程中,在增强了编程能力的同时,我还进一步掌握了利用计算机实现求解方程组的思想。

第二章 线性方程组的数值解法

第二章 线性方程组的数值解法 在科技、工程技术、社会经济等各个领域中很多问题常常归结到求解线性方程组。例如电学中的网络问题,样条函数问题,构造求解微分方程的差分格式和工程力学中用有限元方法解连续介质力学问题,以及经济学中求解投入产出模型等都导致求解线性方程组。 n 阶线性方程组的一般形式为 ?? ???? ?=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L K K K K L L 22112 222212********* (1.1) 其矩阵形式为 b Ax = (1.2) 其中 ????? ???????=??? ?????????=? ? ????? ?????= n n nn n n n n b b b b x x x x a a a a a a a a a A M M L K K K K L L 2121212222111211 ),,2,1,(n j i a ij L =,),,2,1(n i b i L =均为实数,i b 不全为0,且A 为非奇异。 关于线性方程组的数值解法一般分为两类: 1.直接法 就是不考虑计算机过程中的舍入误差时,经有限次的四则运算得到方程组准确解的方法。 而实际中由于计算机字长的限制,舍入误差的存在和影响,这种算法也只能求得线性方程组的近似解。本章将阐述这类算法中最基本的消去法及其某些变形。这些方法主要用于求解低阶稠密系数矩阵方程组。 2.迭代法 从某个解的近似值出发,通过构造一个无穷序列,用某种极限过程去逐步逼近线性方程组的精确解的方法。本章主要介绍迭代法与迭代法。迭代法是解大型稀疏矩阵(矩阵阶数高而且零元素较多)的线性方程组的重要方法。 §1 高斯)(Gauss 消去法 1.1 Gauss 消去法 Gauss 消去法是将线性方程组化成等价的三角形方程组求解。首先举例说明Gauss

数值分析第1章习题

(A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解..14159.3==*πx ,1103142.0?=a 时,1=m ,3102 1...00041.0)(-*?≤ =-=a x a E m-n= -3,所以n=4,即有4位有效数字。当1103141.0?=a 时,1=m , 2102 1005.0...00059.0)(-*?=≤=-=a x a E ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式19992001-时,应该改为 199920012+计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于2001和1999相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算123460.60.612345++- B.计算 25612520000450?- C.计算10.99994- D.计算11x x +- 解:A 会有大数吃掉小数的情况C 中两个相近的数相减,D 中两个相近的数相减也会增大误差 (D)4.若误差限为5105.0-?,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:51021)(-?= a E 即m-n= -5,2103400.0-?=a ,m= -2,所以n=3,即有3位有效数字 (A)5.设*x 的近似数为40.32710a =?,如果a 具有3位有效数字,则a 的相对误差限为 ()(有效数字与相对误差的关系) A . 35103-g B. 33105-g C. 53105-g D. 5103 g -2 解:因为40.32710a =?所以31=a ,因为a 有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a 的相对误差限为 31103510.5--?== n r a δ

数值分析思考题1

% 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 答:(1)绝对误差(限)与有效数字:将x 的近似值x * 表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若绝对误差,那么x *至少有n 个有效数字,即a 1,a 2,…,a n 为有效数字,而a n+1,…,a k ,…不一定是有效数字。因此,从有效数字可以算出近似数的绝对误差限;有效数字位数越多,其绝对误差限也越小。 (2)相对误差(限)与有效数字:将x 的近似值x * 表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若a k 是有效数字,那么相对误差不超过 ;反之,如果已知相对误差r ,且有 ,那么a k 必为有效数字。 2、相对误差在什么情况下可以用下式代替 ' 答:在实际计算时,由于真值常常是未知的,当较小时, r e x x e x x *****-==

通常用代替。 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 答:(1)病态问题:对于数学问题本身,如果输入数据有微小变化,就会引起输出数据(即问题真解)的很大变化,这就是病态问题。 (2)不同点:数值稳定性是相对于算法而言的,算法的不同直接影响结果的不同;而病态性是数学问题本身性质所决定的,与算法无关,也就是说对病态问题,用任何算法(或方法)直接计算都将产生不稳定性。 4、 取 ,计算 ,下列方法中哪种最好为什么 (1)(3322-,(2)(2752-,(3)()31 322+,(4)()61 21,(5) 99702-答:(1)( 332-==; (2)(2752-==; , (3) ()31322+=; (4)()6121=; (5)99702-=; 由上面的计算可以看出,方法(3)最好,因为计算的误差最小。 2141.≈)6 21

线性方程组的数值解法实验

线性方程组的数值解法 实验 题目 用Gauss消元法和Seidel迭代法求线性方程组的解。 实验目的 通过本次实验了解Gauss消元法和Seidel迭代法的基本原理,掌握其算法,学会用Matlab编程进行计算,并能用这些方法解决实际问题。 Gauss 顺序消元法的基本原理算法: (1)输入:,. A b (2)对1,2,,1 k n =???-做 1)if0 kk a=then输出算法失败信息,停机; 2)对1,, i k n =+???做 1/; ik ik ik kk a l a a ←= 2; i i ik k b b l b =- 3对1,, j k n =+???做; ij ij ik kj a a l a =- (3)if0 nn a=then输出算法失败信息,并停机else做 1)/; n n n nn b x b a ←= 2)对1,,2,1 i n =-???做 1 ()/; n i i i ij j ii j i b x b a x a =+ ←=-∑ (4)输出方程组的解.X

流程图见附页 Seidel 迭代法的基本原理算法: (1)输入:,; A b (2)输入:初始解向量 ;x (3)对1,2,, i n =???做 1) 1 ()/; n i i ij j ii j j i y b a x a = ≠ =-∑ 2); i i i e y x =- 3); i i x y = (4)if 1 {||} max i i n eε ≤≤ 时方程组无解,当RB RA n ==时方程组有唯一解,当RB RA n =<时,方程组有无穷多解; ②根据公式 (1)()() (1)()() (,1,,) (1,,) k k k ij ij ik kj k k k i i ik k a a l a i j k n b b l b i k n + + =-=+??? =-=+??? 将增广矩阵[,] B A b =化为上三角形矩阵; (2)建立. backsub m文件; (3)调用. backsub m文件,在Matlab命令窗口输入,A b矩阵,再输入[,,,](,) RA RB n X gaus A b =,进行Matlab实现得出方程的解。

《数值分析》第一章答案

习题1 1. 以下各表示的近似数,问具有几位有效数字?并将它舍入成有效数。 (1)*1x =451.023, 1x =451.01; (2)* 2x =-0.045 113, 2x =-0.045 18; (3)* 3x =23.421 3, 3x =23.460 4; (4)* 4x =3 1 , 4x =0.333 3; (5)* 5x =23.496, 5x =23.494; (6)* 6x =96×510, 6x =96.1×510; (7)*7x =0.000 96, 7x =0.96×310-; (8)*8x =-8 700, 8x =-8 700.3。 解:(1) =* 1x 451.023 =1x 451.01 =-1*1x x 0.0131 10 2 1-?≤ ,1x 具有4位有效数字。→1x 451.0 (2) -=*2x 0.045 113 -=2x 0.045 18 =-

=-4* 4x x 4 10 2 1000033.0-?< ,4x 具有4位有效数字,=4x 0.3333 (5) =* 5x 23.496,= 5 x 23.494 =-5 *5 x x =-494.23496.232 10 21002.0-?< 5x 具有4位有效数字, → 5x 23.50 (不能写为23.49) (6) = * 6x 5 1096?7 10 96.0?= =6x 5 10 1.96?7 10 961.0?= =-6*6 x x 7 10 001.0-?7 2 10 102 1--??≤ 6x 具有2位有效数字,57610961096.0?=?=x (7) =*7x 0.00096 3 71096.0-?=x 3 *710 96.0-?=x =-7* 7x x 0 7x 精确 (8) 8700* 8-=x 8x 3.8700-= 8*8 x x -0 10 2 13.0?≤ = 8x 具有4位有效数字,8x 8700-=精确 2.以下各数均为有效数字: (1) 0.1062 + 0.947; (3)2.747?6.83; (2)23.46―12.753; (4)1.473 / 0.064 。 问经过上述运算后,准确结果所在的最小区间分别是什么? 解:(1) 1x =0.1062,2x =0.947,1x +2x =1.0532 )(1x e 4 10 2 1-?≤ ,)(2x e 3 10 2 1-?≤ )()()(2121x e x e x x e +≈+≤ +≤)()(21x e x e 3 4 10 2 110 21--?+ ? =0.00055

数值分析-第一章-学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分内容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 方法的构造 研究对象 求解过程的理论分析 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 2.2误差知识与算法知识 2.2.1误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差:

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5105.0-?,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-?=x ,325*102 1102 1---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需 41*102 1 -?≤-ππ,3*3102 1102 1--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +, b a ?有几位有效数字(有效数字的计算) 解:3*1021 -?≤-a a ,2*102 1-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤ -+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤ -+-≤-b b a a a b b a ab

故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算) 解:已知δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=, 已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差 限与相对误差限。(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 πππ252.051.02052)5,20(),(2=??+????≤-v r h v 相对误差限为 %420 1 20525) 5,20() 5,20(),(2 ==??≤ -ππv v r h v 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 解:%* *a x x x =-, )%(* **** *na x x x n x x x y y y n n n =-≤-= - 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大(函数误差的计算)

数值分析第一章思考题

《数值分析》第一章思考题 1.算法这一概念,数学上是如何描述的? 答:算法的概念:算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。 算法在数学上的主要描述方式有:自然语言、结构化流程图、伪代码和PAD图 2.数值分析中计算误差有哪些?举列说明截断误差来源。 答:在数值分析中的计算误差主要有: (1)模型误差(2)观测误差(3)截断误差(4)舍入误差 求解数学模型所用的数值方法通常是一种近似方法,因近似方法产生的误差称为截断误差或者方法误差。例如在函数的泰勒展开式,我们在实际的计算时只能截取有限项代数和计算。 3.浮点数由哪两部分组成?指出各部分重点。 答:浮点数主要由:尾数+阶数两部分组成的。 在机器中表示一个浮点数时,一是要给出尾数,用定点小数形式表示,尾数部分给出有效数字的位数,决定了浮点数的表示精度。二是要给出阶码,用整数形式表示,阶码指明小数点在数据中的位置,决定了浮点数的表示范围。 4.有效数字的概念是如何抽象而来的,简单给予叙述。 答:有效数字是一个数据在保证最小误差的情况下,取的一个能够在计算中发挥其有效作用的近似值。有效数字的作用在于,最大精度地去发挥这个数值在计算中的作用,而又不会对计算结果造成太大影响,使计算过程简化。 5.何谓秦九韶算法,秦九韶算法有何优点? 答:秦九韶算法是一种多项式简化算法,将一元n次多项式的求值问题转化为n 个一次式的算法,大大简化了计算过程,对于一个n次多项式,至多做n次乘法和n次加法。。 6.在数值计算中,会发生大数吃小数现象,试对这一现象做解释 答:一个绝对值很大的数和一个绝对值很小的数直接相加时,很可能发生所谓“大数吃小数”的现象,从而影响计算结果的可靠性,这主要是计算机表示的数的位数是有限的这一客观事实引起的。 例如在12位浮点数计算机中进行浮点数相加,系统只保留前12位作为有效数字,小的那个数化成浮点数中的有效数字被舍去,出现大数吃小数的现象,对计算结果造成了影响。

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

《数值分析》杨大地-标准答案(第八章)

数值分析第8章 数值积分与数值微分 8.1 填空题 (1)n+1个点的插值型数值积分公式∫f(x)dx b a ≈∑A j n j=0f(x j )的代数精度至少是 n ,最高不超过 2n+1 。【注:第1空,见定理8.1】 (2)梯形公式有 1 次代数精度,Simpson 公司有 3 次代数精度。【注:分别见定理8.1,8.3】 (3)求积公式∫f(x)dx h 0≈h 2[f (0)+f (h )]+ah 2[f ′(0)?f ′(h)]中的参数a= 1/12 时,才能保证该求积公式的代数精度达到最高,最高代数精度为 3 。 解:令f(x)=1,x,x 2带入有, { h 2[1+1]+ah 2[0?0]=h h 2[0+h ]+ah 2[1?1]=12 (h 2)h 2[0+h 2]+ah 2[0?2h ]=13 (h 3) //注:x 的导数=1 解之得,a=1/12,此时求积公式至少具有2次代数精度。 ∴ 积分公式为:∫f(x)dx h 0≈h 2[f (0)+f (h )]+h 2 12[f ′(0)?f ′(h)] 令 f(x)= x 3带入求积公式有:h 2 [0 +h 3]+ h 212 [0?3h 2]=14 (h 4),与f(x)= x 4的定积分计算值1 4 (h 4)相等, 所以,此求积公式至少具有3次代数精度。 令f(x)= x 4带入求积公式有,h 2[0+h 4]+h 2 12[0?4h 3]=1 6(h 5),与f(x)= x 5的定积分计算值1 5(h 5)不相等,所以,此求积公式的最高代数精度为3次代数精度。 8.2 确定下列求积公式的求积系数和求积节点,使其代数精度尽量高,并指出其最高代数精度。 解题思路:按照P149 中8.3式进行求解,根据求积公式中未知量n 的数量决定代入多少f(x),当积分公式代入求积节点x n 的计算结果与定积分的计算结果一致,继续代入求积节点X n+1,,若计算结果与对应的定积分计算结果不一致时,求积公式拥有最高n 次的代数精度。 (1)∫f(x)dx 2h 0≈A 0f (0)+A 1f (h )+A 2f(2h) 解:令f(x)=1,x,x 2代入有,【注:本例中需求解A 0、A 1、A 2共3个未知量,故需3个相异求积节点f(x)】 {A 0+A 1+A 2=2h A 1h +A 22h =1 2(2h )2A 1h 2+A 2(2h )2=1 3(2h )3 求解得A 0=13h ,A 1=43h ,A 2=1 3h , ∴求积公式为:∫f(x)dx 2h 0≈13hf (0)+43hf (h )+1 3 hf(2h) ∵该求积公式对3个相异节点1,x,x 2均有余项E (f )=0, //注:参见P149定理8.1 ∴该求积公式至少具有2次代数精度。 令f(x)= x 3,代入求积公式有:4 3hh 3+1 3h (2h )3=4h 4 ∵函数f(x) = x 3的定积分结果为:∫x 3dx 2h 0=1 4(2h )4=4h 4 ,与求积公式计算值相等, ∴该求积公式具有3次代数精度。

数值分析第一章作业

西安邮电大学2018级工硕学位课 数值分析第一章作业 1.数值计算方法设计的基本手段是( ). (A) 近似 (B) 插值 (C) 拟合 (D) 迭代 2.为了在有限时间内得到结果,用有限过程取代无限过程所产生的近似解与精确解之间的误差称为( ). (A) 舍入误差 (B) 截断误差 (C) 测量误差 (D) 绝对误差 3.由于计算机的字长有限,原始数据在机器内的表示以及进行算术运算所产生的误差统称为( ). (A) 舍入误差 (B) 截断误差 (C) 相对误差 (D) 绝对误差 4.数值计算方法研究的核心问题可以概括为( )对计算结果的影响. (A) 算法的稳定性 (B) 算法的收敛性 (C) 算法的复杂性 (D) 近似 5.当N 充分大时,利用下列各式计算121N N dx I x +=+?,等式( )得到的结果最好. (A) arctan(1)arctan()I N N =+- (B) 2arctan(1)I N N =++ (C) 21arctan()1I N N =++ (D) 211I N =+ 6. 计算61), 1.4≈,利用下列哪个公式得到的结果最好?为什么? (B) 3(3- (D) 99-7.计算圆柱体的体积,已知底面半径r 及圆柱高h 的相对误差限均不超过5110-?,则计算所得体积的相对误差限如何估计?. 8.已知近似值0.500x *=的误差限*4()510x ε-≤?,32()21f x x x x =---. ①用秦九韶算法计算()f x *. ②求(())f x ε*,并说明x *及()f x *各有几位有效数字. 9. 分析算法011111,,32,1,2,,k k k y y y y y k +-?==???=-=? 的数值稳定性.

第一章复习与思考题

第一章复习与思考题 1. 什么是数值分析?它与数学科学和计算机的关系如何? 答:数值分析也称计算数学,是数学科学的一个分支,主要研究的是用计算机求解各种数学问题的数值计算方法及其理论与软件实现. 数值分析以数学问题为研究对象,但它并不像纯数学那样只研究数学本身的理论,而是把理论与计算紧密结合,着重研究数学问题的数值方法及其理论. 2. 何谓算法?如何判断数值算法的优劣? 答:一个数值问题的算法是指按规定顺序执行一个或多个完整的进程,通过算法将输入元变换成输出元. 一个面向计算机,有可靠理论分析且计算复杂性好的算法就是一个好算法. 因此判断一个算法的优劣应从算法的可靠性、准确性、时间复杂性和空间复杂性几个方面考虑. 3. 列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别. 答:用计算机解决实际问题首先要建立数学模型,它是对被描述的实际问题进行抽象、简化而得到的,因而是近似的,数学模型与实际问题之间出现的误差叫做模型误差. 在数学模型中往往还有一些根据观测得到的物理量,如温度、长度等,这些参量显然也包含误差,这种由观测产生的误差称为观测误差. 当数学模型不能得到精确解时,通常要用数值方法求它的近似解,其近似解和精确解之间的误差称为截断误差或方法误差.

有了求解数学问题的计算公式以后,用计算机做数值计算时,由于计算机字长有限,原始数据在计算机上表示时会产生误差,计算过程又可能产生新的误差,这种误差称为舍入误差. 截断误差和舍入误差是两个不同的概念,截断误差是由所采用的数值方法而产生的,因而也称方法误差,舍入误差是由数值计算而产生的. 4. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系? 答:设 为准确值, 为 的一个近似值,称 为近似值 的绝对误差,简称误差. 近似值的误差 与准确值 的比值 称为近似值 的相对误差,记作 . 通常我们无法知道误差的准确值,只能根据测量工具或计算情况估计出误差绝对值的一个上界 ,

数值分析第四版习题和答案解析

第四版 数值分析习题 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝ 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大这个计算过程 稳定吗 12.计算,取,利用下列等式计算,哪一个得到的结果最好 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式 计算,求对数时误差有多大 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 . 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3.

4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误 差做比较. 2.求证: (a)当时,. (b)当时,. 3.在次数不超过6的多项式中,求在的最佳一致逼近多项式.

数值分析第一章思考题

第一章思考题 (2012级本科学生作品) 1、什么样的算法被称为不稳定算法?试列举一个例子进行说明。 在算法执行过程中,舍入算法对计算结果影响大的一类算法被称为数值不稳定的一种算法。例如,假设初始数据有一点微小误差,就会对一个算法的数据结构产生很大的影响,造成误差扩散。用计算公式ln 1ln n n =-,构造出的递推算法是一个数值不稳定的算法;而另一公式ln 1(1ln)/n -=-则可以构造出一个数值稳定的算法。 2、我们都知道秦九韶算法能够减少运算次数,高中也学过他的具体过程,请举出一个例子并用秦九韶算法计算。 答;一般的,一元n 次多项式的求值需要经过(1)/2n n +次乘法和n 次加法,而秦九韶算法只需要n 次乘法和n 次加法。具体的不太会了。。 3、为什么要设立相对误差的概念? 答:相对误差是近似值误差与精确值的比值,用来衡量近似值的近似程度。x=10±1,y=1000±5。虽然x 的误差比y 的误差小,但y 的近似程度比x 更好。这单用误差无法表现出来,而相对误差可以解决这个问题。 4、误差在生活中有什么作用? 答:误差的作用不仅仅体现在数学课题研究中,在生活中误差的作用也非常大,比如在建筑行业中,设计图纸时必须要达到一定的精确度才行。 5、有效数字以及计算规则 答:有效数字是指实际上能测量到的数值,在该数值中只有最后一位是可疑数字,其余的均为可靠数字。它的实际意义在于有效数字能反映出测量时的准确程度。例如,用最小刻度为0.1cm 的直尺量出某物体的长度为11.23cm ,显然这个数值的前3位数是准确的,而最后一位数字就不是那么可靠,医|学教育网搜集整理因为它是测试者估计出来的,这个物体的长度可能是11.24cm ,亦可能是11.22cm ,测量的结果有±0.01cm 的误差。我们把这个数值的前面3位可靠数字和最后一位可疑数字称为有效数字。这个数值就是四位有效数字。 在确定有效数字位数时,特别需要指出的是数字“0”来表示实际测量结果时,它便是

数值分析思考题答案

: 数值分析课程思考题 1.叙述拉格朗日插值法的设计思想。 Lagrange插值是把函数y=f(x)用代数多项式pn(x)代替,构造出一组n次差值基函数;将待求得n次多项式插值函数pn(x)改写成另一种表示方式,再利用插值条件确定其中的待定函数,从而求出插值多项式。 2.函数插值问题的提出以及插值法发展的脉络。 问题的提出:实际问题中常遇到这样的函数y=f(x),其在某个区间[a,b]上是存在的。但是,通过观察或测量或试验只能得到在[a,b]区间上有限个离散点x0,x1,…,xn上的函数值y=f(xi),(i=0,…,n)或者f(x)函数表达式是已知的,但却很复杂而不便于计算希望用一个简单的函数描述它。 发展脉络:在工程中用的多的是多项式插值和分段多项式插值。在多项式插值中,首先谈到的是Lagrange插值,其成功地用构造插值基函数的方法解决了求n次多项式插值函数的问题,但是其高次插值基函数计算复杂,且次数增加后,插值多项式需要重新计算,所以在此基础上提出Newton插值,它是另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点。如果对插值函数,不仅要求他在节点处与函数同值,还要求它与函数有相同的一阶,二阶甚至更高阶的导数值,这就提出了Hermite插值,它是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的。为了提高精度,加密节点时把节点分成若干段,分段用低次多项式近似函数,由此提出了分段多项式插值。最后,由于许多工程中对插值函数的光滑性有较高的要求,就产生了样条插值。 3.描述数值积分算法发展和完善的脉络。 数值积分主要采用插值多项式来代替函数构造插值型求积公式。通常采用Lagrange插值。如果取等距节点,则得到Newton-Cotes公式,其中,当n=1时,得到梯形公式;当n=2时,得到Simpson公式;当n=4时,得到Cotes公式。由于高次Newton-Cotes公式的求积系数有正有负,将产生很大的计算误差,引起计算不稳定,所以受分段插值的启发,对数值积分也采用分段求积,导出复化求积公式; 其中,在小区间上用梯形公式求和的称为复化梯形公式,用Simpson公式求和的成为复化Simpson公式,用Cotes公式求和的称为Cotes公式。但由于步长的选取是个问题,所以,导出逐次分半法来计算。而由于有些函数在x=0的值无法求出,为

线性方程组数值解法总结

好久没来论坛,刚刚发现以前的帖子现在那么火很欣慰,谢谢大家支持! 今天趁着不想做其他事情,把线性方程组的数值解法总结下,有不足的地方希望大神指教!数学建模中也会用到线性方程组的解法,你会发现上10个的方程手动解得话把你累个半死,而且不一定有结果,直接用matlab的函数,可以,关键是你不理解用着你安心吗?你怎么知道解得对不对? 我打算开个长久帖子,直到讲完为止!这是第一讲,如有纰漏请多多直接,大家一起交流!线性方程组解法有两大类:直接法和迭代法 直接法是解精确解,这里主要讲一下Gauss消去法,目前求解中小型线性方程组(阶数不超过1000),它是常用的方法,一般用于系数矩阵稠密,而有没有特殊结构的线性方程组。 首先,有三角形方程组的解法引入Gauss消去法,下三角方程组用前代法求解, 这个很简单,就是通过第一个解第二个,然后一直这样直到解出最后一个未知数,代码如下:前代法: function [b]= qiandai_method(L,b) n=size(L,1); %n 矩阵L的行数 for j=1:n-1 %前代法求解结果存放在b中 b(j)=b(j)/L(j,j); b(j+1:n)=b(j+1:n)-b(j)*L(j+1:n,j); end b(n)=b(n)/L(n,n); 上三角方程组用回代法,和前面一样就是从下面开始解x,代码: 后代法: function [y]=houdai_method(U,y) n=size(U,1); %n 矩阵L的行数 for j=n:-1:2 %后代法求解结果存放在y中 y(j)=y(j)/U(j,j); y(1:j-1)=y(1:j-1)-y(j)*U(1:j-1,j); end y(1)=y(1)/U(1,1); Gauss消去的前提就是这两个算法: 具体思想是把任何一个线性方程组的系数矩阵A,分解为一个上三角和一个下三角的乘积,即A=LU,其中L为下三角,U为上三角。 那么具体怎么做呢? 有高斯变换,什么是高斯变换?由于时间有限我不可能去输入公式,所以我用最平白的话把它描述出来。 你先想一下怎么把一个矩阵的某一列的从第j个分量后全部变0? 高斯变换就是通过每次一个矩阵Li把A的第i列对角线元素以下的都变为0,最后把这么多Li一次左乘起来就是一个矩阵L’=L(n-1)L(n-2)…L2L1,而L’A=U, 那么L=L’的转置,这样就得到了A得分解。 我们要求Ax=b A=LU

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

相关主题
文本预览
相关文档 最新文档