当前位置:文档之家› 51单片机多任务的原理和实现

51单片机多任务的原理和实现

51单片机多任务的原理和实现
51单片机多任务的原理和实现

51单片机多任务操作系统的原理与实现

51单片机多任务操作系统的原理与实现

-- 一个超轻量级的操作系统

前言

想了很久,要不要写这篇文章?最后觉得对操作系统感兴趣的人还是很多,写吧.

我不一定能造出玉,但我可以抛出砖.

包括我在的很多人都对51使用操作系统呈悲观态度,因为51的片上资源太少.

但对于很多要求不高的系统来说,使用操作系统可以使代码变得更直观,易于维护,所以在51上仍有操作系统的生存机会.

流行的uCos,Tiny51等,其实都不适合在2051这样的片子上用,占资源较多,唯有自已动手,以不变应万变,才能让51也有操作系统可用.这篇贴子的目的,是教会大家如何现场写一个OS,而不是给大家提供一个OS版本.提供的所有代码,也都

是示例代码,所以不要因为它没什么功能就说LAJI之类的话.如果把功能写全了,一来估计你也不想看了,二来也失去灵活性没有价值了.

下面的贴一个示例出来,可以清楚的看到,OS本身只有不到10行源代码,编译后

的目标代码60字节,任务切换消耗为20个机器周期.相比之下,KEIL嵌的TINY51目标代码为800字节,切换消耗100~700周期.唯一不足之处是,每个任务要占用掉十几字节的堆栈,所以任务数不能太多,用在128B存的51里有点难度,但对于52来说问题不大.这套代码在36M主频的STC12C4052上实测,切换任务仅需2uS. #include

#define MAX_TASKS 2 //任务槽个数.必须和实际任务数一至

#define MAX_TASK_DEP 12 //最大栈深.最低不得少于2个,保守值为12.

unsigned char idata task_stack[MAX_TASKS][MAX_TASK_DEP]; //任务堆栈.

unsigned char task_id; //当前活动任务号

//任务切换函数(任务调度器)

void task_switch(){

task_sp[task_id] = SP;

if(++task_id == MAX_TASKS)

task_id = 0;

SP = task_sp[task_id];

}

//任务装入函数.将指定的函数(参数1)装入指定(参数2)的任务槽中.如果该槽中原来就有任务,则原任务丢失,但系统本身不会发生错误.

void task_load(unsigned int fn, unsigned char tid)

{

task_sp[tid] = task_stack[tid] + 1;

task_stack[tid][0] = (unsigned int)fn & 0xff;

task_stack[tid][1] = (unsigned int)fn >> 8;

}

//从指定的任务开始运行任务调度.调用该宏后,将永不返回.

#define os_start(tid) {task_id = tid,SP = task_sp[tid];return;}

/*======================以下为测试代码======================*/

void task1()

{

static unsigned char i;

while(1){

i++;

task_switch(); //编译后在这里打上断点

}

}

void task2()

{

static unsigned char j;

while(1){

j+=2;

task_switch(); //编译后在这里打上断点

}

}

void main()

{

//这里装载了两个任务,因此在定义MAX_TASKS时也必须定义为2

task_load(task1, 0); //将task1函数装入0号槽

task_load(task2, 1); //将task2函数装入1号槽

os_start(0);

}

这样一个简单的多任务系统虽然不能称得上真正的操作系统,但只要你了解了它的原理,就能轻易地将它扩展得非常强大,想知道要如何做吗?

一.什么是操作系统?

人脑比较容易接受"类比"这种表达方式,我就用"公交系统"来类比"操作系统"

吧.

当我们要解决一个问题的时候,是用某种处理手段去完成它,这就是我们常说的"方法",计算机里叫"程序"(有时候也可以叫它"算法").

以出行为例,当我们要从A地走到B地的时候,可以走着去,也可以飞着去,可以走直线,也可以绕弯路,只要能从A地到B地,都叫作方法.这种从A地到B的需求,相当于计算机里的"任务",而实现从A地到B地的方法,叫作"任务处理流程" 很显然,这些走法中,并不是每种都合理,有些傻子都会采用的,有些是傻子都不采会用的.用计算机的话来说就是,有的任务处理流程好,有的任务处理流程好,有的处理流程差.

可以归纳出这么几种真正算得上方法的方法:

有些走法比较快速,适合于赶时间的人;有些走法比较省事,适合于懒人;有些走法比较便宜,适合于穷人.

用计算机的话说就是,有些省CPU,有些流程简单,有些对系统资源要求低.

现在我们可以看到一个问题:

如果全世界所有的资源给你一个人用(单任务独占全部资源),那最适合你需求的方法就是好方法.但事实上要外出的人很多,例如10个人(10个任务),却只有1辆车(1套资源),这叫作"资源争用".

如果每个人都要使用最适合他需求的方法,那司机就只好给他们一人跑一趟了,而在任一时刻里,车上只有一个乘客.这叫作"顺序执行",我们可以看到这种方法对系统资源的浪费是严重的.

如果我们没有法力将1台车变成10台车来送这10个人,就只好制定一些机制和约定,让1台车看起来像10台车,来解决这个问题的办法想必大家都知道,那就是制定公交线路.

最简单的办法是将所有旅客需要走的起点与终点串成一条线,车在这条线上开,乘客则自已决定上下车.这就是最简单的公交线路.它很差劲,但起码解决客人们对车争用.对应到计算机里,就是把所有任务的代码混在一起执行.

这样做既不优异雅,也没效率,于是司机想了个办法,把这些客户叫到一起商量,将所有客人出行的起点与终点罗列出来,统计这些线路的使用频度,然后制定出公交线路:有些路线可以合并起来成为一条线路,而那些不能合并的路线,则另行开辟行车车次,这叫作"任务定义".另外,对于人多路线,车次排多点,时间上也优先安排,这叫作"任务优先级".

经过这样的安排后,虽然仍只有一辆车,但运载能力却大多了.这套车次/路线的按排,就是一套"公交系统".哈,知道什么叫操作系统了吧?它也就是这么样的一种约定.

操作系统:

我们先回过头归纳一下:

汽车系统资源.主要指的是CPU,当然还有其它,比如存,定时器,中断源等.

客户出

任务

正在走的路

线

进程

一个一个的运送旅

顺序执行

同时运送所有旅

多任务并行

按不同的使用频度制定路线并优先跑较繁忙的路线任务优先级

计算机有各种资源,单从硬件上说,就有CPU,存,定时器,中断源,I/O端口等.而

且还会派生出来很多软件资源,例如消息池.

操作系统的存在,就是为了让这些资源能被合理地分配.

最后我们来总结一下,所谓操作系统,以我们目前权宜的理解就是:为"解决计算

机资源争用而制定出的一种约定".

二.51上的操作系统

对于一个操作系统来说,最重要的莫过于并行多任务.在这里要澄清一下,不要拿当年的DOS来说事,时代不同了.况且当年IBM和小比尔着急将PC搬上市,所以才抄袭PLM(好象是叫这个名吧?记不太清)搞了个今天看来很"粗制滥造"的DOS出来.看看当时真正的操作系统---UNIX,它还在纸上时就已经是多任务的了.

对于我们PC来说,要实现多任务并不是什么问题,但换到MCU却很头痛:

1.系统资源少

在PC上,CPU主频以G为单位,存以GB为单位,而MCU的主频通常只有十几M,存则是Byts.在这么少的资源上同时运行多个任务,就意味着操作系统必须尽可能的少占用硬件资源.

2.任务实时性要求高

PC并不需要太关心实时性,因为PC上几乎所有的实时任务都被专门的硬件所接管,例如所有的声卡网卡显示上都置有DSP以及大量的缓存.CPU只需坐在那里指手划脚告诉这些板卡如何应付实时信息就行了.

而MCU不同,实时信息是靠CPU来处理的,缓存也非常有限,甚至没有缓存.一旦信息到达,CPU必须在极短的时间响应,否则信息就会丢失.

就拿串口通信来举例,在标准的PC架构里,巨大的存允许将信息保存足够长的时间.而对于MCU来说存有限,例如51仅有128字节存,还要扣除掉寄存器组占用掉的8~32个字节,所以通常都仅用几个字节来缓冲.当然,你可以将数据的接收与

处理的过程合并,但对于一个操作系统来说,不推荐这么做.

假定以115200bps通信速率向MCU传数据,则每个字节的传送时间约为9uS,假定缓存为8字节,则串口处理任务必须在70uS响应.

这两个问题都指向了同一种解决思路:操作系统必须轻量轻量再轻量,最好是不

占资源(那当然是做梦啦).

可用于MCU的操作系统很多,但适合51(这里的51专指无扩展存的51)几乎没有.前阵子见过一个"圈圈操作系统",那是我所见过的操作系统里最轻量的,但仍有

改进的余地.

很多人认为,51根本不适合使用操作系统.其实我对这种说法并不完全接受,否

则也没有这篇文章了.

我的看法是,51不适合采用"通用操作系统".所谓通用操作系统就是,不论你是

什么样的应用需求,也不管你用什么芯片,只要你是51,通通用同一个操作系统. 这种想法对于PC来说没问题,对于嵌入式来说也不错,对AVR来说还凑合,而对于

51这种"贫穷型"的MCU来说,不行.

怎样行?量体裁衣,现场根据需求构建一个操作系统出来!

看到这里,估计很多人要翻白眼了,大体上两种:

1.操作系统那么复杂,说造就造,当自已是神了?

2.操作系统那么复杂,现场造一个会不会出BUG?

哈哈,看清楚了?问题出在"复杂"上面,如果操作系统不复杂,问题不就解决了? 事实上,很多人对操作系统的理解是片面的,操作系统不一定要做得很复杂很全面,就算仅个多任务并行管理能力,你也可以称它操作系统.

只要你对多任务并行的原理有所了解,就不难现场写一个出来,而一旦你做到了这一点,为各任务间安排通信约定,使之发展成一个为你的应用系统量身定做的操作系统也就不难了.

为了加深对操作系统的理解,可以看一看<<演变>>这份PPT,让你充分了解一个并行多任务是如何一步步从顺序流程演变过来的.里面还提到了很多人都在用的"状态机",你会发现操作系统跟状态机从原理上其实是多么相似.会用状态机写程序,都能写出操作系统.

三.我的第一个操作系统

直接进入主题,先贴一个操作系统的示出来.大家可以看到,原来操作系统可以做得么简单.

当然,这里要申明一下,这玩意儿其实算不上真正的操作系统,它除了并行多任务并行外根本没有别的功能.但凡事都从简单开始,搞懂了它,就能根据应用需求,将它扩展成一个真正的操作系统.

好了,代码来了.

将下面的代码直接放到KEIL里编译,在每个task?()函数的"task_switch();"那里打上断点,就可以看到它们的确是"同时"在执行的.

#include

#define MAX_TASKS 2 //任务槽个数.必须和实际任务数一至

#define MAX_TASK_DEP 12 //最大栈深.最低不得少于2个,保守值为12.

unsigned char idata task_stack[MAX_TASKS][MAX_TASK_DEP];//任务堆栈. unsigned char task_id; //当前活动任务号

//任务切换函数(任务调度器)

void task_switch()

{

task_sp[task_id] = SP;

if(++task_id == MAX_TASKS)

task_id = 0;

SP = task_sp[task_id];

}

//任务装入函数.将指定的函数(参数1)装入指定(参数2)的任务槽中.如果该槽中原来就有任务,则原任务丢失,但系统本身不会发生错误.

void task_load(unsigned int fn, unsigned char tid)

{

task_sp[tid] = task_stack[tid] + 1;

task_stack[tid][0] = (unsigned int)fn & 0xff;

task_stack[tid][1] = (unsigned int)fn >> 8;

}

//从指定的任务开始运行任务调度.调用该宏后,将永不返回.

#define os_start(tid) {task_id = tid,SP = task_sp[tid];return;}

/*==================以下为测试代码=====================*/

void task1()

{

static unsigned char i;

while(1){

i++;

task_switch();//编译后在这里打上断点

}

}

void task2()

{

static unsigned char j;

while(1){

j+=2;

task_switch();//编译后在这里打上断点

}

}

void main()

{

//这里装载了两个任务,因此在定义MAX_TASKS时也必须定义

为2

task_load(task1, 0);//将task1函数装入0号槽

task_load(task2, 1);//将task2函数装入1号槽

os_start(0);

}

限于篇幅我已经将代码作了简化,并删掉了大部分注释,大家可以直接下载源码包,里面完整的注解,并带KEIL工程文件,断点也打好了,直接按ctrl+f5就行了. 现在来看看这个多任务系统的原理:

这个多任务系统准确来说,叫作"协同式多任务".

所谓"协同式",指的是当一个任务持续运行而不释放资源时,其它任务是没有任

何机会和方式获得运行机会,除非该任务主动释放CPU.

在本例里,释放CPU是靠task_switch()来完成的.task_switch()函数是一个很

特殊的函数,我们可以称它为"任务切换器".

要清楚任务是如何切换的,首先要回顾一下堆栈的相关知识.

有个很简单的问题,因为它太简单了,所以相信大家都没留意过:

我们知道,不论是CALL还是JMP,都是将当前的程序流打断,请问CALL和JMP的区别是什么?

你会说:CALL可以RET,JMP不行.没错,但原因是啥呢?为啥CALL过去的就可以用RET跳回来,JMP过去的就不能用RET来跳回呢?

很显然,CALL通过某种方法保存了打断前的某些信息,而在返回断点前执行的RET指令,就是用于取回这些信息.

不用多说,大家都知道,"某些信息"就是PC指针,而"某种方法"就是压栈.

很幸运,在51里,堆栈及堆栈指针都是可被任意修改的,只要你不怕死.那么假如在执行RET前将堆栈修改一下会如何?往下看:

当程序执行CALL后,在子程序里将堆栈刚才压入的断点地址清除掉,并将一个函数的地址压入,那么执行完RET后,程序就跳到这个函数去了.

事实上,只要我们在RET前将堆栈改掉,就能将程序跳到任务地方去,而不限于CALL里压入的地址.

重点来了......

首先我们得为每个任务单独开一块存,这块存专用于作为对应的任务的堆栈,想将CPU交给哪个任务,只需将栈指针指向谁存块就行了.

接下来我们构造一个这样的函数:

当任务调用该函数时,将当前的堆栈指针保存一个变量里,并换上另一个任务的堆栈指针.这就是任务调度器了.

OK了,现在我们只要正确的填充好这几个堆栈的原始容,再调用这个函数,这个

任务调度就能运行起来了.

那么这几个堆栈里的原始容是哪里来的呢?这就是"任务装载"函数要干的事了. 在启动任务调度前将各个任务函数的入口地址放在上面所说的"任务专用的存块"里就行了!对了,顺便说一下,这个"任务专用的存块"叫作"私栈",私栈的意思就是说,每个任务的堆栈都是私有的,每个任务都有一个自已的堆栈.

话都说到这份上了,相信大家也明白要怎么做了:

1.分配若干个存块,每个存块为若干字节:

这里所说的"若干个存块"就是私栈,要想同时运行几少个任务就得分配多少块.而"每个子存块若干字节"就是栈深.记住,每调一层子程序需要2字节.如果不考虑中断,4层调用深度,也就是8字节栈深应该差不多了.

unsigned char idata task_stack[MAX_TASKS][MAX_TASK_DEP]

当然,还有件事不能忘,就是堆指针的保存处.不然光有堆栈怎么知道应该从哪个地址取数据啊

unsigned char idata task_sp[MAX_TASKS]

上面两项用于装任务信息的区域,我们给它个概念叫"任务槽".有些人叫它"任务堆",我觉得还是"槽"比较直观

对了,还有任务号.不然怎么知道当前运行的是哪个任务呢?

unsigned char task_id

当前运行存放在1号槽的任务时,这个值就是1,运行2号槽的任务时,这个值就是2....

2.构造任务调度函函数:

void task_switch()

{

task_sp[task_id] = SP; //保存当前任务的栈

指针

if(++task_id == MAX_TASKS) //任务号切换到下一个任务

task_id = 0;

SP = task_sp[task_id]; //将系统的栈指针指向下个任务的私栈.

}

3.装载任务:

将各任务的函数地址的低字节和高字节分别入在

task_stack[任务号][0]和task_stack[任务号][1]中:

为了便于使用,写一个函数: task_load(函数名, 任务号)

void task_load(unsigned int fn, unsigned char tid)

{

task_sp[tid] = task_stack[tid] + 1;

task_stack[tid][0] = (unsigned int)fn & 0xff;

task_stack[tid][1] = (unsigned int)fn >> 8;

}

4.启动任务调度器:

将栈指针指向任意一个任务的私栈,执行RET指令.注意,这可很有学问的哦,没玩过堆栈的人脑子有点转不弯:这一RET,RET到哪去了?嘿嘿,别忘了在RET前已经将堆栈指针指向一个函数的入口了.你别把RET看成RET,你把它看成是另一种类型的JMP就好理解了.

SP = task_sp[任务号];

return;

做完这4件事后,任务"并行"执行就开始了.你可以象写普通函数一个写任务函数,只需(目前可以这么说)注意在适当的时候(例如以前调延时的地方)调用一下task_switch(),以让出CPU控制权给别的任务就行了.

最后说下效率问题.

这个多任务系统的开销是每次切换消耗20个机器周期(CALL和RET都算在了),贵吗?不算贵,对于很多用状态机方式实现的多任务系统来说,其实效率还没这么高--- case switch和if()可不像你想像中那么便宜.

关于存的消耗我要说的是,当然不能否认这种多任务机制的确很占存.但建议大家不要老盯着编译器下面的那行字"DATA = XXXbyte".那个值没意义,堆栈没算进去.关于比较省存多任务机制,我将来会说到.

概括来说,这个多任务系统适用于实时性要求较高而存需求不大的应用场合,我在运行于36M主频的STC12C4052上实测了一把,切换一个任务不到3微秒. 下回我们讲讲用KEIL写多任务函数时要注意的事项.

下下回我们讲讲如何增强这个多任务系统,跑步进入操作系统时代.

四.用KEIL写多任务系统的技巧与注意事项

C51编译器很多,KEIL是其中比较流行的一种.我列出的所有例子都必须在KEIL 中使用.为何?不是因为KEIL好所以用它(当然它的确很棒),而是因为这里面用到了KEIL的一些特性,如果换到其它编译器下,通过编译的倒不是问题,但运行起来可能是堆栈错位,上下文丢失等各种要命的错误,因为每种编译器的特性并不相同.所以在这里先说清楚这一点.

但是,我开头已经说了,这套帖子的主要目的是阐述原理,只要你能把这几个例子消化掉,那么也能够自已动手写出适合其它编译器的OS.

好了,说说KEIL的特性吧,先看下面的函数:

sbit sigl = P1^7;

void func1()

{

register char data i;

i = 5;

do{

sigl = !sigl;

}while(--i);

}

你会说,这个函数没什么特别的嘛!呵呵,别着急,你将它编译了,然后展开汇编代码再看看:

193: void func1(){

194: register char data i;

195: i = 5;

C:0x00C3 7F05 MOV R7,#0x05

196: do{

197: sigl = !sigl;

C:0x00C5 B297 CPL sigl(0x90.7) 198: }while(--i);

C:0x00C7 DFFC DJNZ R7,C:00C5

199: }

C:0x00C9 22 RET

看清楚了没?这个函数里用到了R7,却没有对R7进行保护!

有人会跳起来了:这有什么值得奇怪的,因为上层函数里没用到R7啊.呵呵,你说的没错,但只说对了一半:事实上,KEIL编译器里作了约定,在调子函数前会尽可能释放掉所有寄存器.通常性况下,除了中断函数外,其它函数里都可以任意修改所有寄存器而无需先压栈保护(其实并不是这样,但现在暂时这样认为,饭要一口一口吃嘛,我很快会说到的).

这个特性有什么用呢?有!当我们调用任务切换函数时,要保护的对象里可以把所有的寄存器排除掉了,就是说,只需要保护堆栈即可!

现在我们回过头来看看之前例子里的任务切换函数:

void task_switch()

{

task_sp[task_id] = SP; //保存当前任务的栈指针

if(++task_id == MAX_TASKS) //任务号切换到下一个任务

task_id = 0;

SP = task_sp[task_id]; //将系统的栈指针指向下个任务的私栈.

}

看到没,一个寄存器也没保护,展开汇编看看,的确没保护寄存器.

好了,现在要给大家泼冷水了,看下面两个函数:

void func1()

{

register char data i;

i = 5;

do{

sigl = !sigl;

}while(--i);

}

void func2()

{

register char data i;

i = 5;

do{

func1();

}while(--i);

}

父函数fun2()里调用func1(),展开汇编代码看看:

193: void func1(){

194: register char data i;

195: i = 5;

C:0x00C3 7F05 MOV R7,#0x05

196: do{

197: sigl = !sigl;

C:0x00C5 B297 CPL sigl(0x90.7) 198: }while(--i);

C:0x00C7 DFFC DJNZ R7,C:00C5

199: }

C:0x00C9 22 RET

200: void func2(){

201: register char data i;

202: i = 5;

C:0x00CA 7E05 MOV R6,#0x05

203: do{

204: func1();

C:0x00CC 11C3 ACALL func1(C:00C3)

205: }while(--i);

C:0x00CE DEFC DJNZ R6,C:00CC

206: }

C:0x00D0 22 RET

看清楚没?函数func2()里的变量使用了寄存器R6,而在func1和func2里都没保护.

听到这里,你可能又要跳一跳了:func1()里并没有用到R6,干嘛要保护?没错,但编译器是怎么知道func1()没用到R6的呢?是从调用关系里推测出来的.

一点都没错,KEIL会根据函数间的直接调用关系为各函数分配寄存器,既不用保护,又不会冲突,KEIL好棒哦!!等一下,先别高兴,换到多任务的环境里再试试: void func1()

{

register char data i;

i = 5;

do{

sigl = !sigl;

}while(--i);

}

void func2()

{

register char data i;

i = 5;

do{

sigl = !sigl;

}while(--i);

}

展开汇编代码看看:

193: void func1(){

194: register char data i;

195: i = 5;

C:0x00C3 7F05 MOV R7,#0x05

196: do{

197: sigl = !sigl;

C:0x00C5 B297 CPL sigl(0x90.7)

198: }while(--i);

C:0x00C7 DFFC DJNZ R7,C:00C5

199: }

C:0x00C9 22 RET

200: void func2(){

201: register char data i;

202: i = 5;

C:0x00CA 7F05 MOV R7,#0x05

203: do{

204: sigl = !sigl;

C:0x00CC B297 CPL sigl(0x90.7)

205: }while(--i);

C:0x00CE DFFC DJNZ R7,C:00CC

206: }

C:0x00D0 22 RET

看到了吧?哈哈,这回神仙也算不出来了.因为两个函数没有了直接调用的关系,所以编译器认为它们之间不会产生冲突,结果分配了一对互相冲突的寄存器,当任务从func1()切换到func2()时,func1()中的寄存器容就给破坏掉了.大家可

以试着去编译一下下面的程序:

sbit sigl = P1^7;

void func1()

{

register char data i;

i = 5;

do{

sigl = !sigl;

task_switch();

} while (--i);

}

void func2()

{

register char data i;

i = 5;

do{

sigl = !sigl;

task_switch();

}while(--i);

}

我们这里只是示例,所以仍可以通过手工分配不同的寄存器避免寄存器冲突,但在真实的应用中,由于任务间的切换是非常随机的,我们无法预知某个时刻哪个寄存器不会冲突,所以分配不同寄存器的方法不可取.那么,要怎么办呢?

这样就行了:

sbit sigl = P1^7;

void func1()

{

static char data i;

while(1){

i = 5;

do{

sigl = !sigl;

task_switch(); }while(--i);

}

}

void func2()

{

static char data i;

while(1){

i = 5;

do{

sigl = !sigl;

task_switch();

}while(--i);

}

}

将两个函数中的变量通通改成静态就行了.还可以这么做:

sbit sigl = P1^7;

void func1()

{

register char data i;

while(1){

i = 5;

do{

sigl = !sigl;

}while(--i);

task_switch();

}

}

void func2()

{

register char data i;

while(1){

i = 5;

do{

sigl = !sigl;

}while(--i);

task_switch();

}

}

即,在变量的作用域不切换任务,等变量用完了,再切换任务.此时虽然两个任务

仍然会互相破坏对方的寄存器容,但对方已经不关心寄存器里的容了.

以上所说的,就是"变量覆盖"的问题.现在我们系统地说说关于"变量覆盖".

变量分两种,一种是全局变量,一种是局部变量(在这里,寄存器变量算到局部变

量里).

对于全局变量,每个变量都会分配到单独的地址.

而对于局部变量,KEIL会做一个"覆盖优化",即没有直接调用关系的函数的变量

共用空间.由于不是同时使用,所以不会冲突,这对存小的51来说,是好事.

但现在我们进入多任务的世界了,这就意味着两个没有直接调用关系的函数其实是并列执行的,空间不能共用了.怎么办呢?一种笨办法是关掉覆盖优化功能.呵呵,的确很笨.

比较简单易行一个解决办法是,不关闭覆盖优化,但将那些在作用域需要跨越任

务(换句话说就是在变量用完前会调用task_switch()函数的)变量通通改成静

态(static)即可.这里要对初学者提一下,"静态"你可以理解为"全局",因为它的地址空间一直保留,但它又不是全局,它只能在定义它的那个花括号对{}里访问. 静态变量有个副作用,就是即使函数退出了,仍会占着存.所以写任务函数的时候,尽量在变量作用域结束后才切换任务,除非这个变量的作用域很长(时间上

长),会影响到其它任务的实时性.只有在这种情况下才考虑在变量作用域跨越任务,并将变量申明为静态.

事实上,只要编程思路比较清析,很少有变量需要跨越任务的.就是说,静态变量并不多.

说完了"覆盖"我们再说说"重入".

所谓重入,就是一个函数在同一时刻有两个不同的进程复本.对初学者来说可能不好理解,我举个例子吧:

有一个函数在主程序会被调用,在中断里也会被调用,假如正当在主程序里调用时,中断发生了,会发生什么情况?

void func1()

{

static char data i;

i = 5;

do{

sigl = !sigl;

}while(--i);

}

假定func1()正执行到i=3时,中断发生,一旦中断调用到func1()时,i的值就被破坏了,当中断结束后,i == 0.

以上说的是在传统的单任务系统中,所以重入的机率不是很大.但在多任务系统中,很容易发生重入,看下面的例子:

void func1()

{

....

delay();

....

}

void func2()

{

....

delay();

....

}

void delay()

{

static unsigned char i;//注意这里是申明为static,不申明static的话会发生覆盖问题.而申明为static会发生重入问题.麻烦啊

for(i=0;i<10;i++)

task_switch();

}

两个并行执行的任务都调用了delay(),这就叫重入.问题在于重入后的两个复本都依赖变量i来控制循环,而该变量跨越了任务,这样,两个任务都会修改i值了.

重入只能以防为主,就是说尽量不要让重入发生,比如将代码改成下面的样子:

#define delay() {static unsigned char i; for(i=0;i<10;i++)

task_switch();}//i仍定义为static,但实际上已经不是同一个函数了,所以分配的地址不同.

void func1()

{

....

delay();

....

}

void func2()

{

....

delay();

....

}

用宏来代替函数,就意味着每个调用处都是一个独立的代码复本,那么两个delay实际使用的存地址也就不同了,重入问题消失.

但这种方法带来的问题是,每调用一次delay(),都会产生一个delay的目标代码,如果delay的代码很多,那就会造成大量的rom空间占用.有其它办法没? 本人所知有限,只有最后一招了:

void delay() reentrant

{

unsigned char i;

for(i=0;i<10;i++)

task_switch();

}

加入reentrant申明后,该函数就可以支持重入.但小心使用,申明为重入后,函数效率极低!

最后附带说下中断.因为没太多可说的,就不单独开章了.

中断跟普通的写法没什么区别,只不过在目前所示例的多任务系统里因为有堆栈的压力,所以要使用using来减少对堆栈的使用(顺便提下,也不要调用子函数,同样是为了减轻堆栈压力)

用using,必须用#pragma NOAREGS关闭掉绝对寄存器访问,如果中断里非要调用函数,连同函数也要放在#pragma NOAREGS的作用域.如例所示:

#pragma SAVE

#pragma NOAREGS //使用using时必须将绝对寄存器访问关闭

void clock_timer(void) interrupt 1 using 1 //使用using是为了减轻堆栈的压力

}

#pragma RESTORE

改成上面的写法后,中断固定占用4个字节堆栈.就是说,如果你在不用中断时任务栈深定为8的话,现在就要定为8+4 = 12了.

另外说句废话,中断里处理的事一定要少,做个标记就行了,剩下的事交给对应的

任务去处理.

现在小结一下:

切换任务时要保证没有寄存器跨越任务,否则产生任务间寄存器覆

盖. 使用静态变量解决

切换任务时要保证没有变量跨越任务,否则产生任务间地址空间(变量)覆盖. 使用静态变量解决

两个不同的任务不要调用同时调用同一个函数,否则产生重入覆

盖. 使用重入申明解决

51单片机实训报告

“51单片机”精简开发板的组装及调试实训报告

为期一周的单片机实习已经结束了。通过此次实训,让我们掌握了单片机基本原理的基础、单片机的编程知识以及初步掌握单片机应用系统开发实用技术,了解“51”单片机精简开发板的焊接方法。同时培养我们理论与实践相结合的能力,提高分析问题和解决问题的能力,增强学生独立工作能力;培养了我们团结合作、共同探讨、共同前进的精神与严谨的科学作风。 此次实训主要有以下几个方面: 一、实训目的 1.了解“51”精简开发板的工作原理及其结构。 2.了解复杂电子产品生产制造的全过程。 3.熟练掌握电子元器件的焊接方法及技巧,训练动手能力,培养工程实践概念。4.能运用51单片机进行简单的单片机应用系统的硬件设计。 5.掌握单片机应用系统的硬件、软件调试方法 二、实验原理 流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的硬件组成的单个单片机。 它的电气性能指标:输入电压:DC4.5~6V,典型值为5V。可用干电池组供电,也可用直流稳压电源供电。 如图所示: 本流水灯实际上就是一个带有八个发光二极管的单片机最小应用系统,即为由发光二极管、晶振、复位、电源等电路和必要的硬件组成的单个单片机。 三、硬件组成 1、晶振电路部分 单片机系统正常工作的保证,如果振荡器不起振,系统将会不能工作;假如振荡器运行不规律,系统执行程序的时候就会出现时间上的误差,这在通信中会体现的很明显:电路将无法通信。他是由一个晶振和两个瓷片电容组成的,x1和x2分别接单片机的x1和x2,晶振的瓷片电容是没有正负的,注意两个瓷片电容相连的那端一定要接地。 2、复位端、复位电路 给单片机一个复位信号(一个一定时间的低电平)使程序从头开始执行;一般有两中复位方式:上电复位,在系统一上电时利用电容两端电压不能突变的原理给系统一个短时的低电平;手动复位,同过按钮接通低电平给系统复位,时如果手按着一直不放,系统将一直复位,不能正常。当要对晶体重置时,只要对此引脚电平提升至高电平并保持两个及其周期以上的时间便能完成系统重置的各

AT89C51单片机的基本结构和工作原理

AT89C51单片机的主要工作特性: ·内含4KB的FLASH存储器,擦写次数1000次; ·内含28字节的RAM; ·具有32根可编程I/O线; ·具有2个16位可编程定时器; ·具有6个中断源、5个中断矢量、2级优先权的中断结构; ·具有1个全双工的可编程串行通信接口; ·具有一个数据指针DPTR; ·两种低功耗工作模式,即空闲模式和掉电模式; ·具有可编程的3级程序锁定定位; AT89C51的工作电源电压为5(1±0.2)V且典型值为5V,最高工作频率为24MHz. AT89C51各部分的组成及功能: 1.单片机的中央处理器(CPU)是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。

(1)运算器 运算器主要用来实现算术、逻辑运算和位操作。其中包括算术和逻辑运算单元ALU、累加器ACC、B寄存器、程序状态字PSW和两个暂存器等。 ALU是运算电路的核心,实质上是一个全加器,完成基本的算术和逻辑运算。算术运算包括加、减、乘、除、增量、减量、BCD码运算;逻辑运算包括“与”、“或”、“异或”、左移位、右移位和半字节交换,以及位操作中的位置位、位复位等。 暂存器1和暂存器2是ALU的两个输入,用于暂存参与运算的数据。ALU的输出也是两个:一个是累加器,数据经运算后,其结果又通过内部总线返回到累加器;另一个是程序状态字PSW,用于存储运算和操作结果的状态。 累加器是CPU使用最频繁的一个寄存器。ACC既是ALU处理数据的来源,又是ALU运算结果的存放单元。单片机与片外RAM或I/O扩展口进行数据交换必须通过ACC来进行。 B寄存器在乘法和除法指令中作为ALU的输入之一,另一个输入来自ACC。运算结果存于AB寄存器中。 (2)控制器 控制器是识别指令并根据指令性质协调计算机内各组成单元进行工作的部件,主要包括程序计数器PC、PC增量器、指令寄存器、指令译码器、定时及控制逻辑电路等,其功能是控制指令的读入、译码和执行,并对指令执行过程进行定时和逻辑控制。AT89C51单片机中,PC是一个16位的计数器,可对64KB程序存储器进行寻址。复位时PC的内容是0000H. (3)存储器 单片机内部的存储器分为程序存储器和数据存储器。AT89C51单片机的程序存储器采用4KB的快速擦写存储器Flash Memory,编程和擦除完全是电器实现。 (4)外围接口电路 AT89C51单片机的外围接口电路主要包括:4个可编程并行I/O口,1个可编程串行口,2个16位的可编程定时器以及中断系统等。 AT89C51的工作原理: 1.引脚排列及功能 AT89C51的封装形式有PDIP,TQFP,PLCC等,现以PDIP为例。 (1)I/O口线 ·P0口 8位、漏极开路的双向I/O口。 当使用片外存储器及外扩I/O口时,P0口作为低字节地址/数据复用线。在编程时,P0口可用于接收指令代码字节;程序校验时,可输出指令字节。P0口也可做通用I/O口使用,但需加上拉电阻。作为普通输入时,应输出锁存器配置1。P0口可驱动8个TTL负载。 ·P1口 8位、准双向I/O口,具有内部上拉电阻。 P1口是为用户准备的I/O双向口。在编程和校验时,可用作输入低8位地址。用作输入时,应先将输出锁存器置1。P1口可驱动4个TTL负载。 ·P2 8位、准双向I/O口,具有内部上拉电阻。 当使用外存储器或外扩I/O口时,P2口输出高8位地址。在编程和校验时,P2口接收高字节地址和某些控制信号。 ·P3 8位、准双向I/O口,具有内部上拉电阻。 P3口可作为普通I/O口。用作输入时,应先将输出锁存器置1。在编程/校验时,P3口接收某些控制信号。它可驱动4个TTL负载。 (2)控制信号线

基于-89C51单片机的秒表课程设计汇本

《单片机技术》 课程设计报告 题目:基于MCU-51单片机的秒表设计班级: 学号: 姓名: 同组人员: 指导教师:王瑞瑛、汪淳 2014年6月17日

目录 1课程设计的目的 (3) 2 课程设计题目描述和要求 (3) 2.1实验题目 (4) 2.2设计指标 (4) 2.3设计要求 (4) 2.4增加功能 (4) 2.5课程设计的难点 (4) 2.6课程设计容提要 (4) 3 课程设计报告容 (5) 3.1设计思路 (5) 3.2设计过程 (6) 3.3 程序流程及实验效果 (7) 3.4 实验效果 (16) 4 心得体会 (17)

基于MCS-51单片机的秒表设计 摘要:单片机控制秒表是集于单片机技术、模拟电子技术、数字技术为一体的机电一体化高科技产品,具有功耗低,安全性高,使用方便等优点。本次设计容为以8051 单片机为核心的秒表,它采用键盘输入,单片机技术控制。设计容以硬件电路设计,软件设计和PCB 板制作三部分来设计。利用单片机的定时器/计数器定时和计数的原理,用集成电路芯片、LED 数码管以及按键来设计计时器。将软、硬件有机地结合起来,使他拥有正确的计时、暂停、清零、并同时可以用数码管显示,在现实生中应用广泛。 关键词:秒表;8051;定时器;计数器 1 课程设计的目的 《单片机应用基础》课程设计是学好本门课程的又一重要实践性教学环节,课程设计的目的就是配合本课程的教学和平时实验,以达到巩固消化课程的容,进一步加强综合应用能力及单片机应用系统开发和设计能力的训练,启发创新思维,使之具有独立单片机产品和科研的基本技能,是以培养学生综合运用所学知识的过程,是知识转化为能力和能力转化为工程素质的重要阶段。 2 课程设计题目描述和要求

单片机原理与应用及C51程序设计实验报告

《单片机原理与应用及C51程序设计》 实验报告

一.软件仿真 1.实验要求 基本要求:用串口输出“hello word”语句。增加的要求:延时或定时输出语句,采用查询/中断的方式控制启动/停止。 2.源程序: (1).采用延时函数,延迟输出语句,p0_0控制启动/停止。 #include #include sbit p0_0=P0^0; void Delay(unsigned int Delaytime); void main(void) { SCON = 0x50; //串口方式1,允许接收 TMOD = 0x20; //定时器1 定时方式2 TCON = 0x40; //设定时器1 开始计数 TH1 = 0xE8; //11.0592MHz 1200 波特率 TL1 = 0xE8; TI = 1; TR1 = 1; //启动定时器 while(1) { if(p0_0==0) {Delay(10000); printf ("Hello World!\n"); //显示Hello World } } } void Delay(unsigned int Delaytime) {unsigned int j=0; for(;Delaytime>0;Delaytime--) for(j=0;j<100;j++); } (2).采用定时器定时,延迟输出语句。P0_0控制启动/停止。 #include

#include sbit p0_0=P0^0; #define uchar unsigned char #define uint unsigned int uchar count; void main() { SCON = 0x50; //串口方式1,允许接收 TMOD = 0x21; TCON = 0x40; //设定时器1 开始计数 TH1 = 0xE8; //11.0592MHz 1200 波特率 TL1 = 0xE8; TH0=0X3C; TL0=0XB0; EA=1; ET0=1; TI = 1; TR1 = 1; //启动定时器 while(1) { if(p0_0==0) { TR0=1; if(count==200) { count=0; printf("hello world!\n"); } } } } void timer0()interrupt 1 { TH0=0X3C; TL0=0XB0; count++; } 3.实验心得: 第一次实验不需要硬件实现,只需要用软件仿真,串口输出“hello word”语句就ok,所以此次实验比较简单,不需要费太多时间就能把实验完成。 二.键控流水灯 1.实验要求: 8051单片机的P1口的P1.0—P1.7分别接有LED(D1—D8),当某一端口输出,为“0”

基于51单片机课程设计

基于51单片机课程设计报告 院系:电子通信工程 团组:电子设计大赛1组 姓名: 指导老师:

目录 一、摘要 (3) 二、系统方案的设计 (3) 三、硬件资源 (5) 四、硬件总体电路搭建 (13) 五、程序流程图 (14) 六、设计感想 (14) 七、参考文献 (16) 附录 (17) 附录 1 程序代码 (17)

一、摘要 本设计以STC89C51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路。单片机通过对信号进行相应处理,从而实现温度控制的目的。文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、led控制程序、超温报警程序。 关键词:STC89C51单片机 DS18B20温度芯片温度控制 ,LED报警提示. 二、系统方案的设计 1、设计要求 基本功能: 不加热时实时显示时间,并可手动设置时间; 设定加热水温功能。人工设定热水器烧水的温度,范围在20~70度之间,打开开关后,根据设定温度与水温确定是否加热,及何时停止加热,可实时显示温度; 设定加热时间功能。限定烧水时间,加热时间内超过温度上限或低于温度下限报警,并可实时显示温度。 2、系统设计的框架

本课题设计的是一种以STC89C51单片机为主控制单元,以DS18B20为温度传感器的温度控制系统。该控制系统可以实时存储相关的温度数据并记录当前的时间。其主要包括:电源模块、温度测量及调理电路、键盘、数码管显示、指示灯、报警、继电器及单片机最小系统。 图1 系统设计框架 3 工作原理 温度传感器 DS18B20 从设备环境的不同位置采集温度,单片机STC8951获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备(压缩制冷器) ,当采集的温度经处理后低于设定温度的下时 , 单片机通过三极管驱动继电器开启升温设备 (加热器) ,这里采用通过LED1和LED2取代!!! 当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声,这里采用HLLED提示。

单片机原理及应用89c51期末复习资料

单片机期末复习资料 实验3 数码管显示设计 1*功能描述:本程序集中体现数码管的静态显示,完成数码管由0到F 的静态显示 ************************************************************/ #include//包含头文件 #define uchar unsigned char #define uint unsigned int //宏定义 sbit dula=P1^4; //端口定义 uchar num,y; uint x; //定义变量 uchar code table[]={ 0xfc,0x60,0xda,0xf2,0x66,0xb6, 0xbe,0xe0,0xfe,0xf6,0xee,0x3e, 0x9c,0x7a,0x9e,0x8e};//0到F的数码管管码 /********************主函数**********************/ void main() { while(1)//进入大循环 { for(num=0;num<16;num++) //判断是否到F { dula=1;//开启锁存器 P0=table[num];//送数码管管码 dula=0;//关闭锁存器 for(x=2000;x>0;x--) for(y=220;y>0;y--);//延时 } } } 2 *功能描述:本程序集中体现数码管的动态扫描显示2009,通过改变数组的值可完成对任意四个数的显示 ************************************************************/ #include #include //包含头文件 #define uchar unsigned char #define uint unsigned int //宏定义 sbit Dula=P1^4; //端口定义 uchar code table[]={ 0xfc,0x60,0xda,0xf2, 0x66,0xb6,0xbe,0xe0, 0xfe,0xf6}; //0到F对应的数码管显示代码 uchar x,i,temp;

51单片机原理及应用期末考试试题汇总6

广西工学院2010—2011 学年第2 学期课程考核试题 考核课程单片机技术(B卷)考核班级通信081,082 考核类型闭卷学生人数80人打印份数85份 一、填空题(每小题2分,共20分) 1.若累加器A中的数据为67H,则PSW中的P=_1__。 2. 一个机器周期=_6_个状态周期=12个振荡周期。 3.89C51的堆栈是按照先进后出的原则进行存取的RAM区。 4. 用一条指令实现以下功能: 若A中数据不等于200,则程序转至PROM_ CJNZ A,#200H,PROM__。 5. 为了使10H—17H作工作寄存器使用RS1,RS0的取值为__1,0。 6. 89C51中21个特殊功能寄存器,其地址凡是能被8整除的都有位寻址功能。 7. 89C51单片机有片内ROM容量_4KB , RAM容量128。 8. 某串行通信中有1个起始位,8个数据位和1个停止位,应选择的异步串行通信方式为方式1。 9. 在89C51单片机初始化时,SP存放的是07H。 10. 当89C51引脚ALE信号有效时,表示从P0口稳定地送出了_数据和地信息。 四、判断题(每小题2分,共20分) 1.如果发生除法溢出错误,则PSW标志位P置1。(∨) 5.对于89C51单片机,当CPU对内部程序存储器寻址超过4K时,系统会自动在外部程序存储器中寻址(∨)。 6.外加晶振频率越高,系统运算速度也就越快,系统性能也就越好(∨)。 7. 位TF0是定时器T1的溢出中断标志位。(∨) 8.在定时器T0和外部中断1都设为高优先级时,外部中断1优先级高于定时器T0。(×)9.子程序的返回指令是RETI ,中断程序的返回指令是RET。(×) 10.波特率是数据传输的速率,指每秒传送的字节数。(∨) 3、51有5个中断源,有2个中断优先级,优先级由软件填写特殊功能寄存器IP 加以选择 4、中断请求信号有电平触发和脉冲触发两种触发方式。 6、74LS273通常用来作简单输出接口扩展;而74LS244则常用来作简单输入接口扩展。 7、A/D转换器的三个重要指标是转换速度、分辨率和转换精度。 二、选择题(从备选答案中选择一个正确答案,并将代号写在括号内。每题2分,共10分) 1、MCS-51单片机外扩存储器芯片时,4个I/O口中用作数据总线的是( B )。 (A)P0和P2口(B)P0口(C)P2和P3口(D)P2口 2、访问外部数据存储器时,不起作用的信号是( C )。 (A)(B)(C)(D)ALE 3、使用定时器T1时,有几种工作模式( C )。 (A)1种(B)2种(C)3种(D)4种 4、MCS-51响应中断时,下面哪一个条件不是必须的( C )。 A、当前指令执行完毕 B、中断是开放的 C、没有同级或高级中断服务 D、必须有RETI 指令 5、当MCS-51进行多机通讯时,串行接口的工作方式应选为( C )。

51单片机红绿灯课程设计

1 电源提供方案 为使模块稳定工作,须有可靠电源。因此考虑了两种电源方案:方案一:采用独立的稳压电源。此方案的优点是稳定可靠,且有各种成熟电路可供选用;缺点是各模块都采用独立电源,会使系统复杂,且可能影响电路电平。 方案二:采用单片机控制模块提供电源。改方案的优点是系统简明扼要,节约成本;缺点是输出功率不高。综上所述,选择方案二。 2 显示界面方案 该系统要求完成倒计时功能。基于上述原因,我考虑了二种方案:方案一:采用数码管显示。这种方案只显示有限的符号和数码字符,简单,方便。方案二:采用点阵式LED 显示。这种方案虽然功能强大,并可方便的显示各种英文字符,汉字,图形等,但实现复杂,成本较高。 综上所述,选择方案一。 3 输入方案: 设计要求系统能调节灯亮时间,并可处理紧急情况,我研究了两种方案:方案一:采用8155扩展I/O 口及键盘,显示等。 该方案的优点是:使用灵活可编程,并且有RAM,及计数器。若用该方案,可提供较多I/O 口,但操作起来稍显复杂。 方案二:直接在I/O口线上接上按键开关。 由于该系统对于交通灯及数码管的控制,只用单片机本身的I/O 口就可实现,且本身的计数器及RAM已经够用。

综上所述,选择方案二。 3.1单片机交通控制系统的通行方案设计 设在十字路口,分为东西向和南北向,在任一时刻只有一个方向通行,另一方向禁行,持续一定时间,经过短暂的过渡时间,将通行禁行方向对换。其具体状态如下图所示。说明:黑色表示亮,白色表示灭。交通状态从状态1开始变换,直至状态6然后循环至状态1,周而复始,即如图2.1所示: 图1 交通状态 本系统采用MSC-51系列单片机AT89C51作为中心器件来设计交通灯控制器。实现以下功能:

51单片机实习报告

(电子工艺实习) 实习报告 院(部):轨道交通学院 实习地点:工程训练中心D309 班级:自动化141 学生姓名:巩龙波学号140816112 指导教师:张吉卫 时间:2015 年11 月9 日到2015 年11 月13 日 山东交通学院

目录 1. 555电路控制二极管闪烁 (1) 1.1 焊接注意事项 (1) 1.2 设计内容与步骤 (1) 1.2.1 设计电路 (1) 1.2.2 画实物电路图 (1) 1.2.3 焊接成果显示 (2) 1.3 设计材料与成果要求 (2) 1.3.1 设计材料 (2) 1.3.2 实验成果 (2) 2. 555单稳态触发器 (3) 2.1 555定时器工作原理 (3) 2.2 555单稳态触发器 (3) 2.3 画实物电路图 (3) 2.4 实验成果 (3) 3. 万用表的组装与应用 (3) 3.1 实验仪器 (3) 3.2 实验原理 (4) 3.3 试验部件与检测方法 (4) 3.4 安装调试与故障检测 (4) 3.4.1安装 (5) 3.4.2调试与故障检测 (5) 3.5 焊装成果显示 (5) 4 实践收获与体会 (6) 5 实验总结 (6)

实习任务

1.555电路控制二极管闪烁 1.1焊接注意事项 ①掌握好加热时间 在保证焊料润湿焊件的前提下时间越短越好。 ②保持合适的温度 保持烙铁头在合适的温度范围。一般经验是烙铁头温度比焊料熔化温度高50℃较为适宜。 ③用烙铁对焊点加力加热是错误的。 会造成被焊件的损伤,例如电位器、开关、接插件的焊接点往往都是固定在塑料构件上,加力的结果容易造成元件失效。 1.2设计内容与步骤 1.2.1设计电路 1.2.2画实物电路图

51单片机课程设计

课程设计说明书
课程设计名称






学生姓名
指导教师
单片机原理及应用课程设计 电子信息工程 140405 20141329 李延琦 胡黄水
2016 年 12 月 26 日

课程设计任务书
课程设计 题目
酒精测试仪
起止日期
2016 年 12 月 26 日— 2017 年 1 月 6 日
设计地点
计算机科学与工程学 院单片机实验室 3409
设计任务及日程安排: 设计任务:分两部分: (一)、设计实现类:进行软、硬件设计,并上机编程、联线、调试、 实现; 1.电子钟的设计 2.交通灯的设计 3.温度计的设计 4.点阵显示 5.电机调速 6.电子音乐发声(自己选曲) 7.键盘液晶显示系统 (二)、应用系统设计类:不须上机,查资料完成软、硬件设计画图。 查资料选定题目。 说明:第 1--7 题任选其二即可。(二)里题目自拟。 日程安排: 本次设计共二周时间,日程安排如下: 第 1 天:查阅资料,确定题目。 第 2--4 天:进实验室做实验,连接硬件并编写程序作相关的模块实验。 第 5--7 天:编写程序,并调试通过。观察及总结硬件实验现象和结果。 第 8--9 天:整理资料,撰写课程设计报告,准备答辩。 第 10 天:上交课程设计报告,答辩。 设计报告要求:
1. 设计报告里有两个内容,自选题目内容+附录(实验内容),每 位同学独立完成。 2. 自选题目不须上机实现,要求能正确完成硬件电路和软件程序 设计。内容包括: 1) 设计题目、任务与要求 2)硬件框图与电路图 3) 软件及流程图 (a)主要模块流程图 (b)源程序清单与注释 4) 总结 5) 参考资料 6)附录 实验上机调试内容
注:此任务书由指导教师在课程设计前填写,发给学生做为本门课程设计 的依据。

51单片机经典教程

单片机经典教程 目录
第一课 第二课 第三课 第四课 第五课 第六课 第七课 第八课 第九课 第十课 第十一课 第十二课 第十三课 第十四课 第十五课 第十六课 第十七课 第十八课 第十九课 第二十课 第二十一课 第二十二课 第二十三课 第二十四课 单片机的概述 单片机的硬件结构与开发过程 单片机的内部结构 一 半导体存储器 单片机的内部结构 二 工作寄存器 单片机的内部结构 三 时序与时钟 单片机的内部结构 四 并行口 单片机的内部结构 五 数据与地址 单片机的内部结构 六 特殊功能存储器 单片机的工作方式 单片机的寻址 单片机的指令 一 数据传递类指令 单片机的指令 二 数据传递类指令 单片机的指令 三 算术逻辑运算类指令 单片机的指令 四 控制转移类指令 单片机的指令 五 位及位操作指令 单片机的程序设计方法 单片机的定时 计数器 单片机的中断系统 单片机的定时/中断实验 一 单片机的定时/中断实验 二 键盘接口及编程方法 一 独立式按键 键盘接口及编程方法 二 矩阵式按键 单片机显示器接口及编程方法 数码管的静态扫描与编程方法 6 9 11 15 18 20 24 27 29 32 35 38 42 47 51 55 64 68 73 78 81 87 90 94
4

第一课 单片机的概述
因为我们的主要课程是单片机的应用 本来不想讲解单片机的历史与发展 这话说现状更确切 些 但为了兼顾大多数朋友 我还是简单的介绍一下这方面的相关知识 一 单片机的由来 单片机 专业名称—Micro Controller Unit(微控制器件) 它是由大名鼎鼎的 INTEL 公司发明的 最早的系列是 MCS-48 后来有了 MCS-51 我们经常说的 51 系列单片机就是 MCS-51 micro controller system 它是一种 8 位的单片机 8 位是什么意思 我们以后再讲 后来 INTEL 公司把它的核心技术转让给了世界上很多的小公司 不过 再小也有几个亿的销售/ 年哦 所以世界上就有许多公司生产 51 系列兼容单片机 比如飞利浦的 87LPC 系列 华邦的 W78 系列 达拉斯的 DS87 系列 现代的 GSM97 系列等等 目前在我国比较流行的就是美国 ATMEL 公司的 89C51 它是一种带 Flash ROM 的单片机 至于什么是 Flash ROM 我在这儿先不作介绍 等以后大家学到相 关的知识时自然就会明白 我们的讲座就是以该型号的单片机来作实验的 讲到这里 也许有的人会 问 我平时在各种书上看到全是讲解 8031 8051 等型号的单片机 它们又有什么不同呢 其实它们同 属于一个系列 只是 89C51 的单片机更新型一点(事实上,89C51 目前正在用 89S51 代替 我们的实验系 统采用就是 89S52 的 兼容 89C52) 这里随便说一下 目前国内的单片机教材都是以 8051 为蓝本的 尽管其内核也是 51 系列的 但毕竟 8051 的单片机已经属于淘汰产品 在市场上也很少见到了 所以由 此感叹 国内的高等教育是如此的跟不上时代的发展需要 这话可能会引起很多人的不满,所以大家别 说是我讲的哦 二 主要单片机的分类 接着上面的话题 再给大家介绍一下我们经常在各种刊物上看到的 AVR 系列和 PIC 系列单片机是 怎么回事 以便让大家对单片机的发展有一个较全面的认识 在没有学习单片机之前 这是一个令很多 初学者非常困惑的问题 这么多的单片机我该先学哪一种呢 AVR 系列单片机也是 ATMEL 公司生产的一种 8 位单片机 它采用的是一种叫 RISC 精简指令集单 片机 的结构 所以它的技术和 51 系列有所不同 开发设备也和 51 系列是不通用的 它的一条指令的 运行速度可以达到纳秒级 即每秒 1000000000 次 是 8 位单片机中的高端产品 由于它的出色性能 目前应用范围越来越广 大有取代 51 系列的趋势 所以学完了 51 系列的 看来必须学会 AVR 的才行 可叹知识爆炸 人生苦短 说完了 AVR 的 再来说说另一种--PIC 系列单片机 它是美国 MICROCHIP 公 司 唉 又是老美 叫微芯公司的生产的另一种 8 位单片机 它采用的也是 RISC 的指令集 它的指令 系统和开发工具与 51 系列更是不同 但由于它的低价格和出色性能 目前国内使用的人越来越多 国 内也有很多的公司在推广它 不过它的影响力远没有 51 系列的大 所以作为初学者 51 系列当然是首 选 以上几种只是比较多见的系列 其实世界上还有许多的公司生产各种各样的单片机 比如 MOTOROLA 的 MC68H 系列 老牌的单片机 TI 的 MSP430C 系列 极低功耗的单片机 德国的西门子 SIEMENS 等等 它们都有各自的结构体系 并不与 51 系列兼容 为了不搞大家的脑筋 这里就不介绍了 等大 家入了门以后自己去研究它吧 我们还是回来了解一下 51 系列单片机到底是个什么东西 它有那些部 分组成 请接着往下看 三 单片机的结构及组成 单片机到底是一种什么 DD 它究竟能做什么呢 其实它就是一种能进行数学和逻辑运算 根据不 同使用对象完成不同控制任务的面向控制而设计的集成电路 此话好象有点绕口 没关系 大家都应该 知道我们经常使用的电脑吧 在电脑上 我们可以用不同的软件在相同的硬件上实现不同的工作 比如 我们用 WORD 可以打字 用 PROTEL 可以设计图纸等等 单片机其实也是如此 同样的芯片可以根据我们 不同的要求做出截然不同的产品 只不过电脑是面向应用的 而单片机是面向控制的 比如控制一个指
6

51单片机课程设计 AD转换

课程设计报告 华中师范大学武汉传媒学院 传媒技术学院 电子信息工程2011 仅发布百度文库,版权所有.

AD转换 要求: A.使用单片机实现AD转换 B.可以实现一位AD转换,并显示(保留4位数字)设计框图:

方案设计: AD转换时单片机设计比较重要的实验。模数转换芯片种类多,可以满足不同用途和不同精度功耗等。 外部模拟量选择的是简单的电位器,通过控制电位器来改变模拟电压。显示电压值采用一般的四位七段数码管。而AD转换芯片采用使用最广的ADC0809 ADC0809芯片有28条引脚,采用双列直插式封装,如图所示。 下面说明各引脚功能: ?IN0~IN7:8路模拟量输入端。 ?2-1~2-8:8位数字量输出端。 ?ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路。?ALE:地址锁存允许信号,输入端,高电平有效。 ?START: A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。 ?EOC: A/D转换结束信号,输出端,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。 ?OE:数据输出允许信号,输入端,高电平有效。当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。 ?CLK:时钟脉冲输入端。要求时钟频率不高于640KHz。

?REF(+)、REF(-):基准电压。 ?Vcc:电源,单一+5V。 ?GND:地 工作原理: 首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。此地址经译码选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位。下降沿启动A/D转换,之后EOC输出信号变低,指示转换正在进行。直到A/D转换完成,EOC 变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。 本次实验采用中断方式 把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。 不管使用上述哪种方式,只要一旦确定转换完成,即可通过指令进行数据传送。 首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。 采用中断可以减轻单片机负担。并可以使程序有更多的空间作二次开发。

单片机课程设计——基于C51简易计算器

单片机十进制加法计算器设计 摘要 本设计是基于51系列的单片机进行的十进制计算器系统设计,可以完成计 算器的键盘输入,进行加、减、乘、除3位无符号数字的简单四则运算,并在LED上相应的显示结果。 设计过程在硬件与软件方面进行同步设计。硬件方面从功能考虑,首先选择内部存储资源丰富的AT89C51单片机,输入采用4×4矩阵键盘。显示采用3位7段共阴极LED动态显示。软件方面从分析计算器功能、流程图设计,再到程序的编写进行系统设计。编程语言方面从程序总体设计以及高效性和功能性对C 语言和汇编语言进行比较分析,针对计算器四则运算算法特别是乘法和除法运算的实现,最终选用全球编译效率最高的KEIL公司的μVision3软件,采用汇编语言进行编程,并用proteus仿真。 引言 十进制加法计算器的原理与设计是单片机课程设计课题中的一个。在完成理论学习和必要的实验后,我们掌握了单片机的基本原理以及编程和各种基本功能的应用,但对单片机的硬件实际应用设计和单片机完整的用户程序设计还不清楚,实际动手能力不够,因此对该课程进行一次课程设计是有必要的。 单片机课程设计既要让学生巩固课本学到的理论,还要让学生学习单片机硬件电路设计和用户程序设计,使所学的知识更深一层的理解,十进制加法计算器原理与硬软件的课程设计主要是通过学生独立设计方案并自己动手用计算机电路设计软件,编写和调试,最后仿真用户程序,来加深对单片机的认识,充分发挥学生的个人创新能力,并提高学生对单片机的兴趣,同时学习查阅资料、参考资料的方法。 关键词:单片机、计算器、AT89C51芯片、汇编语言、数码管、加减乘除

目录 摘要 (01) 引言 (01) 一、设计任务和要求............................. 1、1 设计要求 1、2 性能指标 1、3 设计方案的确定 二、单片机简要原理............................. 2、1 AT89C51的介绍 2、2 单片机最小系统 2、3 七段共阳极数码管 三、硬件设计................................... 3、1 键盘电路的设计 3、2 显示电路的设计 四、软件设计................................... 4、1 系统设计 4、2 显示电路的设计 五、调试与仿真................................. 5、1 Keil C51单片机软件开发系统 5、2 proteus的操作 六、心得体会.................................... 参考文献......................................... 附录1 系统硬件电路图............................ 附录2 程序清单..................................

基于51单片机课程设计报告

单片机课程设计 课题:基于51单片机的交通灯设计 专业:机械设计制造及其自动化 学号: 指导教师:邵添 设计日期:2017/12/18 成绩: 大学城市科技学院电气学院 基于51单片机数字温度计设计报告

一、设计目的作用 本设计是一款简单实用的小型数字温度计,所采用的主要元件有传感器DS18B20,单片机AT89C52,,四位共阴极数码管一个,电容电阻若干。DS18B20支持“一线总线”接口,测量温度围-55°C~+125°C。在-10~+85°C围,精度为±0.5°C。18B20的精度较差,为±2°C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。 本次数字温度计的设计共分为五部分,主控制器,LED显示部分,传感器部分,复位部分,按键设置部分,时钟电路。主控制器即单片机部分,用于存储程序和控制电路;LED显示部分是指四位共阴极数码管,用来显示温度;传感器部分,即温度传感器,用来采集温度,进行温度转换;复位部分,即复位电路,按键部分用来设置上下限报警温度。测量的总过程是,传感器采集到外部环境的温度,并进行转换后传到单片机,经过单片机处理判断后将温度传递到数码管显示。 二、设计要求 (1).利用DS18B20传感器实时检测温度并显示。 (2).利用数码管实时显示温度。 (3).当温度超过或者低于设定值时蜂鸣器报警,LED闪烁指示。 (4).能够手动设置上限和下限报警温度。 三、设计的具体实现 1、系统概述 方案一:由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案设计框图如下:

51单片机原理期末考试题

广西工学201 2011学年 2学期课程考核试 考核课单片机技卷)考核班通08082 考核类闭学生人 8 打印份 8 一、填空题(每小分,2分 1.若累加器A中的数据为67H,则PSW中的P=_1__。 2. 一个机器周期= _6_个状态周期=12个振荡周期。 3.89C51的堆栈是按照先进后出的原则进行存取的RAM区。 4. 用一条指令实现以下功能: 若A中数据不等于200,则程序转至PROM_ CJNZ A,#200H,PROM__。 5. 为了使10H—17H作工作寄存器使用RS1, RS0的取值为__1,0。 6. 89C51中21个特殊功能寄存器,其地址凡是能被8整除的都有位寻址功能。 7. 89C51单片机有片内ROM容量_4KB , RAM容量128。 8. 某串行通信中有1个起始位,8个数据位和1个停止位,应选择的异步串行通信方式为方式1。 9. 在89C51单片机初始化时,SP存放的是07H。 10. 当89C51引脚ALE信号有效时,表示从P0口稳定地送出了_数据和地信息。 四、判断题(每小题2分,共20分) 1.如果发生除法溢出错误,则PSW标志位P置1。(∨) 5.对于89C51单片机,当CPU对内部程序存储器寻址超过4K时,系统会自动在外部程序存储器中寻址(∨)。 6.外加晶振频率越高,系统运算速度也就越快,系统性能也就越好(∨)。 7. 位TF0是定时器T1的溢出中断标志位。(∨) 8.在定时器T0和外部中断1都设为高优先级时,外部中断1优先级高于定时器T0。(×) 9.子程序的返回指令是RETI ,中断程序的返回指令是RET。(×) 10.波特率是数据传输的速率,指每秒传送的字节数。(∨) 3、51有 5个中断源,有2个中断优先级,优先级由软件填写特殊功能寄存器 IP 加以选择 4、中断请求信号有电平触发和脉冲触发两种触发方式。 6、74LS273通常用来作简单输出接口扩展;而74LS244则常用来作简单输入接口扩展。 7、A/D转换器的三个重要指标是转换速度、分辨率和转换精度。 二、选择题(从备选答案中选择一个正确答案,并将代号写在括号内。每题2分,共10分) 1、MCS-51单片机外扩存储器芯片时,4个I/O口中用作数据总线的是( B )。 (A)P0和P2口(B)P0口(C)P2和P3口(D)P2口 2、访问外部数据存储器时,不起作用的信号是( C )。 WRPSENRD(D)(CA))(B)ALE (3、使用定时器T1时,有几种工作模式( C )。 (A)1种(B)2种(C)3种(D)4种 4、MCS-51响应中断时,下面哪一个条件不是必须的( C )。 A、当前指令执行完毕 B、中断是开放的 C、没有同级或高级中断服务 D、必须有RETI指令 5、当MCS-51进行多机通讯时,串行接口的工作方式应选为( C )。 (A)方式0 (B)方式1 (C)方式2 (D)方式0或方式2 三、简答题(每题15分,共30分) 1、MCS-51单片机内部有几个定时/计数器?它们由哪些寄存器组成? 答:MCS-51单片机内部有两个16位可编程的定时/计数器,简称定时器0(T0)和定时器1(T1)。它们分别由方式寄存器TMOD、控制寄存组成。TL1、TH1,TL0、TH0和数据寄存器TCON器. 一、填空题(每空1分,共20分) 1、计算机的系统总线有地址总线、控制总线和数据总线。 2、通常、单片机上电复位时PC= 0000H ,SP= 07H ;而工作寄存器则缺省采用第 00 组,这组寄存器的地址范围是从000H~007H 。 3、JZ e 的操作码地址为1000H,e=20H,它转移的目标地址为 1022H 。 4、汇编语言中可以使用伪指令,它们不是真正的指令,只是用来对汇编过程进行 某种控制进行某种控制。

51单片机电子时钟课程设计报告

第一部分设计任务和要求 1.1 单片机课程设计内容 利用STC89C51单片机和LCD1602电子显示屏实现电子时钟,可由按键进行调时和12/24小时切换。 1.2 单片机课程设计要求 1.能实现年、月、日、星期、时、分、秒的显示; 2.能实现调时功能; 3.能实现12/24小时制切换; 4.能实现8:00—22:00整点报时功能。 1.3 系统运行流程 程序首先进行初始化,在主程序的循环程序中首先调用数据处理程序,然后调用显示程序,在判断是否有按键按下。若有按键按下则转到相应的功能程序执行,没有按键按下则调用时间程序。若没到则循环执行。计时中断服务程序完成秒的计时及向分钟、小时的进位和星期、年、月、日的进位。调时闪烁中断服务程序用于被调单元的闪烁显示。调时程序用于调整分钟、小时、星期、日、月、年,主要由主函数组成通过对相关子程序的调用,如图所示。实现了对时间的设置和修改、LCD显示数值等主要功能。相关的调整是靠对功能键的判断来实现的。 第二部分设计方案 2.1 总体设计方案说明 1.程序设计及调试 根据单片机课程设计内容和要求,完成Protues仿真电路的设计和用Keil软件编写程序,并进行仿真模拟调试。 2.硬件焊接及调试 根据仿真电路图完成电路板的焊接,并进行软、硬件的调试,只到达到预期目的。

3.后期处理 对设计过程进行总结,完成设计报告。 2.2 单片机系统方框图 2.2 单片机系统流程图 主流程图键盘扫描流程图

时钟流程图 第三部分主要器件及简介 3.1 主要器件 1. STC89C51单片机; 2.LCD1602液晶显示屏; 3.2 主要器件简介 1.STC89C51单片机简介 STC89C51是采用8051核的ISP(In System Programming)在系统可编程芯片,最高工作时钟频率 为80MHz,片内含8K Bytes的可反复擦写1000次的 Flash只读程序存储器,器件兼容标准MCS-51指令系 统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,具有在系统可编程(ISP)特性,配合PC端的控制程序即可将用户的程序代码下载进单片机内部,省去了购买通用编程器,而且速度更快。 2.LCD1602液晶显示屏简介

相关主题
文本预览
相关文档 最新文档