当前位置:文档之家› 焊点可靠性之焊点寿命预测

焊点可靠性之焊点寿命预测

焊点可靠性之焊点寿命预测
焊点可靠性之焊点寿命预测

— 1 —

焊点可靠性之焊点寿命预测

在产品设计阶段对SMT 焊点的可能服役期限进行预测,是各大电子产品公司为保证电子整机的可靠性所必须进行的工作,为此提出了多种焊点寿命预测模型。

(1) 基于Manson-Coffin 方程的寿命预测模型

M-C 方程是用于预测金属材料低周疲劳失效寿命的经典经验方程[9]。其基本形式如下:

C N p f =ε?β

(1-1)

式中 N f — 失效循环数;

?εp — 循环塑性应变范围;

β, C — 经验常数。

IBM 的Norris 和Landzberg 最早提出了用于软钎焊焊点热疲劳寿命预测的M-C 方程修正形式[2]:

)/exp()(max /1kT Q Cf N n p m f -ε?= (1-2)

式中 C, m, n — 材料常数;

Q — 激活能;

f — 循环频率;

k — Boltzmann 常数;

T max — 温度循环的最高温度。

Bell 实验室的Engelmaier 针对LCCC 封装SMT 焊点的热疲劳寿命预测对M-C 方程进行了修正[10]:

c f f N /1'221???? ??εγ?= (1-3)

)1ln(1074.1106442.024f T c s +?+?--=-- (1-4)

式中 ?γ — 循环剪切应变范围;

f 'ε— 疲劳韧性系数,2f 'ε=0.65;

c — 疲劳韧性指数;

T s — 温度循环的平均温度。

采用M-C 型疲劳寿命预测方程,关键在于循环塑性应变范围的确定。主要有两种方法:一种是解析法[10,11],通过对焊点结构的力学解析分析计算出焊点在热循环过程中承受的循环应变范围,如Engelmaier 给出[10]:

— — 2 40010)]()([2-?-α--α=γ?T T T T h L

s s c c (1-5)

式中 L — LCCC 器件边长;

h — 焊点高度;

αc , αs — 分别为陶瓷芯片载体和树脂基板的热膨胀系数;

T c , T s — 分别为陶瓷芯片载体和树脂基板的温度;

T 0 — power-off 时的稳态温度。

另一种方法是基于有限元数值模拟的结果给出循环塑性应变范围[12-14]。由于所采用的软钎料合金本构方程的不同,在M-C 方程中采用循环塑性应变范围、或循环蠕变应变范围、或循环非弹性总应变范围存在着争议。

M-C 方程作为一经验方程,对疲劳失效数学规律的宏观描述是成功的。但是在实际应用中,由于方程中的参数均须来自于初期试验结果,而不同的试件形式、载荷条件等因素将导致不同的参数结果,外推性相当差。例如Engelmaier 的修正方程中参数确定依据的是Wild [15]的试验数据,而其他研究者在引用时则引起了较大的误差[16]。

需要指出的是,由于SMT 焊点的微细特征,通过试验方法获得焊点在热循环过程中的循环应变范围数据极为困难。近年来开始了一些尝试[17-20],主要方法是光学干涉法。Motorola 公司的Guo 等人对近年来光学技术的发展及其在应力/应变试验测量方面的应用作了综述[19]。来自同一公司的Lu 提出了一种具有更高精度,基于数字图象处理技术的数字灰度值校正技术[20]。但目前为止采用有限元数值模拟方法还是主流。

(2) 基于断裂力学的寿命预测模型

既然SMT 焊点失效过程的宏观表象为裂纹的萌生与扩展,因此采用断裂力学的方法通过预测疲劳裂纹扩展速率从而预测出疲劳寿命是一种自然的思维方式,物理概念也比较清晰。

在断裂力学中对于疲劳裂纹扩展速率也存在一经典经验方程—Paris 方程,其基本形式如下[21]:

m H C dN

da )(?= (1-6) 式中 a — 裂纹长度;

?H — 主控裂纹扩展的力学参量;

C, m — 表征疲劳裂纹扩展阻力的材料参数。

Paris 方程的应用重点在于确定主控裂纹扩展的力学参量,这在断裂力学中也是一个存在争议的问题。出身于Boeing 公司的Paris 最初在线弹性断裂

力学的应用中采用的是应力场强度因子?K[22],Westinghouse研发中心的Liaw 等人将其引入了软钎焊焊点的疲劳问题分析[23]。后继研究中,HP公司的Lau 提出采用循环?J积分[24];Ford公司的Pao提出采用可以表征材料蠕变行为的C*积分[25];北卡罗来纳大学的Guo提出采用循环塑性功密度?W p[26];最

近Ford公司的Hu提出采用一种基于应变的主控力学参数a

γ

?[21]。

π

总体而言,由于焊点的表面裂纹扩展及长度可以进行试验观测(通常采用光学显微镜对表面裂纹长度进行观察,精确性较差。Auburn大学的Krishnamoorthy等人已提出采用Moire干涉技术直接测量软钎焊焊点钎料合金/Cu界面的断裂参数—裂纹张开位移[27]),断裂力学的应用可以进行试验的验证。但是由于断裂力学的发展水平,其应用有相当大的局限性。一方面,基于断裂力学的寿命预测模型中不包含金属学因素的影响;另一方面,作为弹塑性断裂力学基石的J积分在卸载载荷条件下丧失了物理意义,因此其在循环载荷条件下的应用受到了置疑[28]。

(3) 基于损伤力学的寿命预测模型

损伤力学中将材料的失效过程看作是损伤的累积过程。对于材料失效过程的数值模拟及寿命预测的一般研究途径为:将损伤度量变量引入材料的本构方程或定义一种变量为损伤度量,而后进行结构在一定载荷条件下损伤度量演化的试验或数值模拟,并规定损伤度量达到一临界值时材料失效。对于表面组装焊点,力学试验中可以采用裂纹总面积[29]、焊点接触电阻变化[30]、焊点热阻变化[31,32]、循环应力幅值下降[33,34]等作为损伤度量。有限元数值模拟中通常采用不可逆变形或耗散能作为损伤度量。西北大学的Dasgupta从能量耗散的角度建立了损伤度量[35],而Solomon等人却指出采用耗散能作为损伤度量不能导致唯一的损伤值,因为载荷和应变速率对系统能量有很大影响[36]。Ford公司的Pan建立了临界累积应变能损伤度量[37];Basaran等人提出一种基于热力学第二定律和统计力学的以熵变为基础的损伤度量,并将之纳入软钎料合金的损伤耦合型粘塑性本构方程[38-40]。基于损伤力学的寿命预测方法可以模拟材料失效的全过程,但是限于损伤力学目前还处于发展阶段,损伤度量的物理意义及其临界值—损伤判据的定义均不是很清楚。

—3 —

工程预测焊点疲劳寿命

工程预测焊点疲劳寿命 介绍了一种预测焊点疲劳寿命的工程计算方法及其软件系统。这一方法用有限元中的刚性梁单元模拟焊核,用壳单元模拟连接板,求取通过梁单元传递的力和力矩;根据这些力和力矩计算焊核附近连接板和焊核周围的“结构应力”;然后通过一组以结构应力为控制参数的焊点S—N曲线估计焊点的疲劳损伤。描述了软件系统的框架和特点,用两个简单的例子说明这一方法的应用。结果表明,分析结果与试验结果相比有一定的保守性。 在汽车工业中,点焊被广泛地用于零部件和结构的制造。点焊构件的耐久性主要取决于焊点的疲劳强度。在一条生产自动线上装备一个焊点的点焊机械装置可能需要30万美元,为了补救某一问题而必须在生产时再增加一个点焊装置,其费用可能不止2倍。如果我们能在设计的早期预测焊点的疲劳寿命,那么显然这些费用可以降到最低点。更有意义的是,它也有助于缩短产品的开发周期,提高产品的质量。 Smith和Cooper用断裂力学方法研究过受剪切载荷焊点的疲劳寿命预测问题。他们指出:“一个焊点也许可以被认为是一个外表面有一环向深裂纹的实心圆棒,当这一圆棒受一个Ⅰ—Ⅱ复合型载荷时,它会在最大的局部Ⅰ型方向产生分叉裂纹并扩展”。他们说明了根据计算的裂纹扩展速率可以较好地预测焊点的疲劳寿命,并用他们的计算结果作出一些简单的设计曲线。Smith和Cooper所建议的方法基于对简单受剪搭接接头的有限元模拟,这种方法需要进一步的发展才能用于其它不同的焊点型式,处理变幅异相复杂载荷。发展的结

果可能是一个简单的专门针对焊点的规范,按照英国标准BS7608的方法,给出适用于不同点焊类型的载荷—寿命曲线族。 事实上,关联不同加载条件下焊点的疲劳强度,载荷是一个相当糟糕的参量。Raji和Sheppard提到,不同型式受不同载荷的焊点,它的疲劳耐久性能够通过分析板内焊点周边的局部应力得到更好的理解,这一局部应力指的是焊点附近的结构应力。Rupp等人描述了如何计算这些结构应力。他们根据最大应力、最小应力和一个载荷谱对焊点的疲劳寿命进行了预测。本文介绍的技术类似于Rupp等人的工作,不同的是进一步地将结构应力计算与应力缩放、叠加以及应用瞬态有限元分析结果等方法结合起来。下面将先介绍软件的技术细节,然后给出两个说明简例。 1 方法概述 方法要求将焊点模拟成为MSC/NASTRAN中的刚性梁单元;经这些梁单元传递的力和力矩被用来计算结构(名义)应力,这些应力为围绕焊点熔核和连接板的局部应力;按照S—N总寿命方法,用这些结构应力预估焊点的疲劳寿命。 软件系统由一些经过修改的MSC/FATIGUE模块组成,它的核心为焊点疲劳分析器SPOTW,图1表示了这一软件的框架。该系统当前只支持两板焊点的疲劳计算。焊点应当用连接两板中面且垂直于这两个中面的刚性梁表达,而板用位于板中面的壳单元模拟。焊点的长度因此是板厚之和的一半。焊点附近的网格不需要做任何细化,对壳单元的唯一要求是它们能将正确的力传至刚性梁。事实上,使用大尺寸的壳单元(大于2倍的熔核直径)似乎能获得最好的结果,即最

焊点可靠性之焊点寿命预测

— 1 — 焊点可靠性之焊点寿命预测 在产品设计阶段对SMT 焊点的可能服役期限进行预测,是各大电子产品公司为保证电子整机的可靠性所必须进行的工作,为此提出了多种焊点寿命预测模型。 (1) 基于Manson-Coffin 方程的寿命预测模型 M-C 方程是用于预测金属材料低周疲劳失效寿命的经典经验方程[9]。其基本形式如下: C N p f =ε?β (1-1) 式中 N f — 失效循环数; ?εp — 循环塑性应变范围; β, C — 经验常数。 IBM 的Norris 和Landzberg 最早提出了用于软钎焊焊点热疲劳寿命预测的M-C 方程修正形式[2]: )/exp()(max /1kT Q Cf N n p m f -ε?= (1-2) 式中 C, m, n — 材料常数; Q — 激活能; f — 循环频率; k — Boltzmann 常数; T max — 温度循环的最高温度。 Bell 实验室的Engelmaier 针对LCCC 封装SMT 焊点的热疲劳寿命预测对M-C 方程进行了修正[10]: c f f N /1'221???? ??εγ?= (1-3) )1ln(1074.1106442.024f T c s +?+?--=-- (1-4) 式中 ?γ — 循环剪切应变范围; f 'ε— 疲劳韧性系数,2f 'ε=0.65; c — 疲劳韧性指数; T s — 温度循环的平均温度。 采用M-C 型疲劳寿命预测方程,关键在于循环塑性应变范围的确定。主要有两种方法:一种是解析法[10,11],通过对焊点结构的力学解析分析计算出焊点在热循环过程中承受的循环应变范围,如Engelmaier 给出[10]:

焊点可靠性研究详解

SMT焊点可靠性研究 前言 近几年﹐随着支配电子产品飞速发展的高新型微电子组装技术--表面组装技术(SMT)的飞速发展﹐SMT焊点可靠性问题成为普遍关注的焦点问题。 与通孔组装技术THT(Through Hole Technology)相比﹐SMT在焊点结构特征上存在着很大的差异。THT焊点因为镀通孔内引线和导体铅焊后﹐填缝铅料为焊点提供了主要的机械强度和可靠性﹐镀通孔外缘的铅焊圆角形态不是影响焊点可靠性的主要因素﹐一般只需具有润湿良好的特征就可以被接受。但在表面组装技术中﹐铅料的填缝尺寸相对较小﹐铅料的圆角(或称边堡)部分在焊点的电气和机械连接中起主要作用﹐焊点的可靠性与THT焊点相比要低得多﹐铅料圆角的凹凸形态将对焊点的可靠性产生重要影响。 另外﹐表面组装技术中大尺寸组件(如陶瓷芯片载体)与印制线路板的热膨胀系数相差较大﹐当温度升高时﹐这种热膨胀差必须全部由焊点来吸收。如果温度超过铅料的使用温度范围﹐则在焊点处会产生很大的应力最终导致产品失效。对于小尺寸组件﹐虽然因材料的CTE 失配而引起的焊点应力水平较低﹐但由于SnPb铅料在热循环条件下的粘性行为(蠕变和应力松弛)存在着蠕变损伤失效。因此﹐焊点可靠性问题尤其是焊点的热循环失效问题是表面组装技术中丞待解决的重大课题。 80年代以来﹐随着电子产品集成水平的提高,各种形式﹑各种尺寸的电子封装器件不断推出﹐使得电子封装产品在设计﹑生产过程中,面临如何合理地选择焊盘图形﹑焊点铅料量以及如何保证焊点质量等问题。同时﹐迅速变化的市场需求要求封装工艺的设计者们能快速对新产品的性能做出判断﹑对工艺参数的设置做出决策。目前﹐在表面组装组件的封装和引线设计﹑焊盘图形设计﹑焊点铅料量的选择﹑焊点形态评定等方面尚未能形成合理统一的标准或规则﹐对工艺参数的选择﹑焊点性能的评价局限于通过大量的实验估测。因此﹐迫切需要寻找一条方便有效的分析焊点可靠性的途径﹐有效地提高表面组装技术的设计﹑工艺水平。 研究表明﹐改善焊点形态是提高SMT焊点可靠性的重要途径。90年代以来﹐关于焊点形成及焊点可靠性分析理论有大量文献报导。然而﹐这些研究工作都是专业学者们针对焊点

计算机系统的焊点可靠性试验(doc 5页)

计算机系统的焊点可靠性试验(doc 5页)

焊点可靠性试验的计算机模拟 本文介绍,与实际的温度循环试验相比,计算机模拟提供速度与成本节约。 在微电子工业中,一个封装的可靠性一般是通过其焊点的完整性来评估的。锡铅共晶与近共晶焊锡合金是在电子封装中最常用的接合材料,提供电气与温度的互联,以及机械的支持。由于元件内部散热和环境温度的变化而产生的温度波动,加上焊锡与封装材料之间热膨胀系统(CTE)的不匹配,造成焊接点的热机疲劳。不断的损坏最终导致元件的失效。 在工业中,决定失效循环次数的标准方法是在一个温室内进行高度加速的应力试验。温度循环过程是昂贵和费时的,但是计算机模拟是这些问题的很好的替代方案。模拟可能对新的封装设计甚至更为有利,因为原型试验载体的制造成本非常高。本文的目的是要显示,通过在一个商业有限单元(finite element)代码中使用一种新的插入式专门用途的材料子程序,试验可以在计算机屏幕上模拟。 建模与试验 宁可通过计算程序试验来决定焊点可靠性的其中一个理由是缺乏已验证的专用材料模型和软件包。例如,市场上现有的所有主要的商业有限单元分析代码都对应力分析有效,但是都缺乏对焊点以统一的方式进行循环失效分析的能力。该过程要求一个基于损伤机制理论的专门材料模型和在实际焊点水平上的验证。可以肯定的是,所有主要的有限单元分析代码都允许用户实施其自己的用户定义的插入式材料子程序。 直到现在,还不可能测量疲劳试验期间在焊点内的应力场,这对确认材料模型是必须的。在Buffalo大学的电子封装实验室(UB-EPL)开发的一个Moiré 干涉测量系统允许在疲劳试验到失效期间的应力场测试。 基于热力学原理的疲劳寿命预测模型也已经在UB-EPL开发出来,并用于实际的BGA封装可靠性试验的计算机模拟。在焊点内的损伤,相当于在循环热机负载下材料的退化,用一个热力学构架来量化。损伤,作为一个内部状态变量,结合一个基于懦变的构造模型,用于描述焊点的反映。该模型通过其用户定义的子程序实施到一个商业有限单元包中。 预测焊点的可靠性 焊接点的疲劳寿命预测对电子封装的可靠性评估是关键的。在微电子工业中预测失效循环次数的标准方法是基于使用通过试验得出的经验关系式。如果

双相钢搭接点焊接头疲劳寿命分析

收稿日期:2007-07-09基金项目:国家“863”高技术研究发展计划资助项目(2006AA04Z 126) 双相钢搭接点焊接头疲劳寿命分析 许 君, 张延松, 朱 平, 陈关龙 (上海交通大学车身制造技术中心,上海 200240) 摘 要:研究了双相钢焊点特征,对不同匹配双相钢搭接焊点进行了疲劳试验,获得了焊点的载荷寿命曲线。研究了双相钢焊点的疲劳裂纹扩展及失效形式,分析和解释了疲劳过程中的现象,并根据裂纹的实际扩展路径,提出了局部等效张开应力强度因子 k eq ,从断裂力学的角度对双相钢焊点的疲劳失效进行了分析。结果表明,k eq 能够有效 地关联具有不同厚度,不同熔核直径的搭接焊点试样的疲劳寿命,是反映双相钢焊点疲劳强度的有效参量,能够用来预测焊点疲劳寿命。关键词:双相钢;点焊;疲劳强度;局部等效应力强度因子 中图分类号:TG 115.28 文献标识码:A 文章编号:0253-360X (2008)05-0045- 04 许 君 0 序 言 在汽车工业中,为适应提高油效和减少尾气排放的需要,汽车轻量化已经成为21世纪汽车技术 的前沿和热点[1] 。减少汽车重量的主要途径就是使用轻量化材料。传统的低碳钢以及高强度低碳合金钢(HS LA )现在正越来越多地被双相高强度钢(DP )所取代,双相钢的抗拉强度可以达到600MPa 甚至更高,它能够在不降低车身强度和刚度等各项性能指标的前提下,减少车身重量,而它现在也是整个汽车工业以及钢铁工业研究的热点。双相高强钢由低碳钢和低碳低合金钢经临界区处理或控制轧制而得到,主要由铁素体和马氏体组成。具有屈服强度低,初始加工硬化速率高,在加工硬化和屈服强度上表现高应变速率敏感性以及强度和延性配合好等特点[2,3]。不仅如此,双相高强钢还具有极强的吸能作用,从而在车辆发生碰撞或其它事故时更好地保护驾乘者的安全。 近年,虽然汽车白车身部件的连接出现了许多新的方法,比如激光焊接、粘接等等,但是电阻点焊仍然是车身构件连接的最主要方式。一般情况下,一辆轿车的白车身上有大约3000个焊点,焊点周围存在较严重的应力集中,疲劳裂纹易于形成和扩展,车身结构的大部分疲劳失效都发生在焊点或者焊点周围,焊点的局部失效会降低整个车辆的各种 功能指标,包括刚度、振动、噪声、以及车辆耐久性等 [4] 。随着双向高强钢越来越多地应用于汽车车身 制造中,双相钢焊点疲劳强度也逐渐成为各大汽车厂商的研究焦点。 在双相钢搭接点焊接头进行疲劳试验的基础上,对双相钢点焊接头疲劳裂纹扩展及失效形式进行了讨论,获得了焊点的载荷寿命曲线,分析和解释了疲劳过程中的现象,并根据裂纹的实际扩展路径,提出了局部等效张开应力强度因子k eq ,它是反映焊点疲劳寿命的有效参量。 1 试验方法 1.1 材料与试样 疲劳试验试样使用了双相高强钢DP600GI 以及DP780GI ,对应于DP600GI 有0.8mm 以及1.4mm 两 种厚度钢板,而DP780GI 则有1.0mm 以及1.6mm 两种厚度钢板,两种材料化学成分以及力学性能分别列于表1和表2。用于疲劳试验的拉剪试样具体几何尺寸见图1。为了保证获得焊点的一致性,所有试样的几何尺寸都保持一致,且焊接钢板都是同种厚度的组合,具体焊接参数如表3。 表1 DP600GI 和DP780GI 的化学成分(质量分数,%) Table 1 Chemical compo sitions of DP600GI and DP780GI 材料 C Mn P S Al Fe DP600GI 0.11 1.430.010.0010.02余量DP780GI 0.13 2.01 0.03 0.002 0.049 余量 第29卷第5期2008年5月 焊 接 学 报 TRANS ACTI ONS OF THE CHI NA WE LDI NG I NSTIT UTI ON V ol.29 N o.5May 2008

焊点疲劳强度研讨

焊点疲劳强度研讨 一.疲劳强度 电子元器件的焊点必须能经受长时间的微小振动和电路发散的热量。随着电子产品元器件安装密度的增加,电路的发热量增加,经常会发生焊接处的电气特性劣化,机械强度下降或出现断裂等现象。材料在变动载荷和应变长期作用下,因累积损伤而引起的断裂现象,称为疲劳。疲劳是一种低应力破坏。 二.提高疲劳强度性能的方法 2.1提高焊点的可靠性 提高焊点可靠性的最好方法有三个:提高焊点合金的耐用性;减少元件与PCB之间热膨胀系数(CTE)的失配;尽可能按照实际的柔软性来生产元件,向焊点提供更大的应变; 2.1.1提高焊点合金的耐用性 2.1.1.1选择合适的焊膏 2.1.1 润湿性能 对于焊料来说,能否与基板形成较好的浸润,是能否顺利地完成焊接的关键。如果一种 合金不能浸润基板材料,则会因浸润不良而在界面上产生空隙,易使应力集中而在焊接 处发生开裂。 焊料的润湿性主要的指标浸润角和铺展率。从现象上看,任何物体都有减少其自身表面 能的倾向。因此液体尽量收缩成圆球状,固体则把其接触的液体铺展开来覆盖其表面。 如果液体滴在固体表面,则会形成图一所示的情况。 图二和图三分别表示浸润不良和良好的现象。 θ为浸润角,显然浸润角越小,液态焊料越容易铺展,表示焊料对基板的润湿性能越好。 a. 当θ<900,称为润湿,B角越小,润湿性越好,液体越容易在固体表面展开; b. 当θ>90时称为不润湿,B角越大,润湿性越不好,液体越不容易在固体表面上铺展开, 越容易收缩成接近圆球的形状;

c. 当θ=00或180“时,则分别称为完全润湿和完全不润湿。 通常电子工业焊接时要求焊料的润湿角θ<200。 影响焊料润湿性能主要有:焊料和基板的材料组分、焊接温度、金属表面氧化物、环境介质、基板表面状况等。 IPC-SPVC用润湿力天平来测量并用润湿时间以及最大润湿力来表示的方法评估了不同组成的 SAC 合金的润湿性,结果发现其中(零交时间与最大润湿力)并无差异,见图4。各候选合金与锡铅共晶合金的润湿性比较见图5。 图 4 不同组成的SAC的润湿性评估结果

最新整理焊点可靠性试验的计算机模拟.doc

焊点可靠性试验的计算机模拟 本文介绍,与实际的温度循环试验相比,计算机模拟提供速度与成本节约。 在微电子工业中,一个封装的可靠性一般是通过其焊点的完整性来评估的。锡铅共晶与近共晶焊锡合金是在电子封装中最常用的接合材料,提供电气与温度的互联,以及机械的支持。由于元件内部散热和环境温度的变化而产生的温度波动,加上焊锡与封装材料之间热膨胀系统(CTE)的不匹配,造成焊接点的热机疲劳。不断的损坏最终导致元件的失效。 在工业中,决定失效循环次数的标准方法是在一个温室内进行高度加速的应力试验。温度循环过程是昂贵和费时的,但是计算机模拟是这些问题的很好的替代方案。模拟可能对新的封装设计甚至更为有利,因为原型试验载体的制造成本非常高。本文的目的是要显示,通过在一个商业有限单元(finite element)代码中使用一种新的插入式专门用途的材料子程序,试验可以在计算机屏幕上模拟。建模与试验 宁可通过计算程序试验来决定焊点可靠性的其中一个理由是缺乏已验证的专用材料模型和软件包。例如,市场上现有的所有主要的商业有限单元分析代码都对应力分析有效,但是都缺乏对焊点以统一的方式进行循环失效分析的能力。该过程要求一个基于损伤机制理论的专门材料模型和在实际焊点水平上的验证。可以肯定的是,所有主要的有限单元分析代码都允许用户实施其自己的用户定义的插入式材料子程序。 直到现在,还不可能测量疲劳试验期间在焊点内的应力场,这对确认材料模型是必须的。在Buffalo大学的电子封装实验室(UB-EPL)开发的一个Moiré干涉测量系统允许在疲劳试验到失效期间的应力场测试。 基于热力学原理的疲劳寿命预测模型也已经在UB-EPL开发出来,并用于实际的BGA封装可靠性试验的计算机模拟。在焊点内的损伤,相当于在循环热机负载下材料的退化,用一个热力学构架来量化。损伤,作为一个内部状态变量,结合一个基于懦变的构造模型,用于描述焊点的反映。该模型通过其用户定义的子程序实施到一个商业有限单元包中。 预测焊点的可靠性 焊接点的疲劳寿命预测对电子封装的可靠性评估是关键的。在微电子工业中预测失效循环次数的标准方法是基于使用通过试验得出的经验关系式。如果使用一个分析方法,通过都是使用诸如Coffin-Manson(C-M)这样的经验曲线。通常,

金属疲劳寿命预测

金属疲劳寿命的预测 摘要 当一个金属样品受到循环载荷时,大量的起始裂纹将在它的体内出现。样品形成了有初始裂纹的样本:样品越大,样本也越大。在作者先前的研究中表明,在极值统计的帮助下,通过估计最大预期裂纹深度能够预测疲劳极限。本来表明,在一个类似的方式下,疲劳极限以上的疲劳裂纹萌生时间是可以预测的。用最小的分布可得到最短预期初始时间的预测,代替了用最大分布估计最大裂纹尺寸,并以广泛的实验数据获得了好的赞同。 本文为构件的总的疲劳寿命估计提供了一种新的方法。当得知了预计的裂纹萌生寿命和临界裂纹尺寸时,稳定的裂纹扩展就能通过Paris law计算出来。总的疲劳寿命的估算值是裂纹萌生和裂纹扩展的总和。本文介绍的是:为发现任何一种材料裂纹萌生寿命而相应的构建设计曲线的方法。 1、介绍 估计金属构件疲劳寿命的最古老和最常用的方法是S-N曲线,尽管它的缺点众所周知。其中之一是,因观察试样缺口的光滑程度不同而使得疲劳寿命有很大的不同。有些手册尝试通过为不同的应力值浓度的因素单独设计曲线解决这个问题,如Buch。其被当时看作是避免这一问题的局部应变方法。在这种方法中,提出了无论试样的形状如何,相同的应变振幅总是相同的疲劳寿命。 一个构件的总疲劳寿命可以分为3个阶段:裂纹产生、裂纹稳定扩展和裂纹失稳生长。最后一个阶段很迅速,在估计总的疲劳寿命时可以在实际工作中忽略。利用LEFM可获得裂纹稳定生长的可靠样本。不同几何的应力强度因子和所收录例子的大量的公式都可在文献中找到,并且权函数的使用为扩展这种方法的使用提供了可能性。 用类似LEFM的方式对裂纹初始相位的建模,或裂纹的扩展做了很多的尝试,例如:Miller,Austen,Cameron and Smith。另一种方法是用局部应变方法仅对初始寿命进行估计,然后用LEFM和一个合适的计算机程序完成对总疲劳寿命的计算。 经Makkonen研究表明,统计方法能够用来预测金属构件的疲劳极限。当一个构件受到交变载荷时,大量的微裂纹将在它的内部产生,裂纹的数量取决于试样的大小。运用极值统计法来计算裂纹样品类型中的最大裂纹的估计值成为可

WLCSP器件焊点可靠性

Rate-dependent properties of Sn–Ag–Cu based lead-free solder joints for WLCSP Y.A.Su a ,L.B.Tan a ,T.Y.Tee b ,V.B.C.Tan a,* a National University of Singapore,Department of Mechanical Engineering,9Engineering Drive 1,Singapore 117576,Singapore b Amkor Technology,Inc.,2Science Park Drive,Singapore 118222,Singapore a r t i c l e i n f o Article history: Received 22July 2009 Received in revised form 18January 2010Available online 24February 2010 a b s t r a c t The increasing demand for portable electronics has led to the shrinking in size of electronic components and solder joint dimensions.The industry also made a transition towards the adoption of lead-free solder alloys,commonly based around the Sn–Ag–Cu alloys.As knowledge of the processes and operational reli-ability of these lead-free solder joints (used especially in advanced packages)is limited,it has become a major concern to characterise the mechanical performance of these interconnects amid the greater push for greener electronics by the European Union. In this study,bulk solder tensile tests were performed to characterise the mechanical properties of SAC 105(Sn–1%wt Ag–0.5%wt Cu)and SAC 405(Sn–4%wt Ag–0.5%wt Cu)at strain rates ranging from 0.0088s à1to 57.0s à1.Solder joint array shear and tensile tests were also conducted on wafer-level chip scale package (WLCSP)specimens of different solder alloy materials under two test rates of 0.5mm/s (2.27s à1)and 5mm/s (22.73s à1).These WLCSP packages have an array of 12?12solder bumps (300l m in diameter);and double redistribution layers with a Ti/Cu/Ni/Au under-bump metallurgy (UBM)as their silicon-based interface structure. The bulk solder tensile tests show that Sn–Ag–Cu alloys exhibit higher mechanical strength (yield stress and ultimate tensile strength)with increasing strain rate.A rate-dependent model of yield stress and ultimate tensile strength (UTS)was developed based on the test results.Good mechanical perfor-mance of package pull-tests at high strain rates is often correlated to a higher percentage of bulk solder failures than interface failures in solder joints.The solder joint array tests show that for higher test rates and Ag content,there are less bulk solder failures and more interface failures.Correspondingly,the aver-age solder joint strength,peak load and ductility also decrease under higher test rate and Ag content.The solder joint results relate closely to the higher rate sensitivity of SAC 405in gaining material strength which might prove detrimental to solder joint interfaces that are less rate sensitive.In addition,speci-mens under shear yielded more bulk solder failures,higher average solder joint strength and ductility than specimens under tension. ó2010Elsevier Ltd.All rights reserved. 1.Introduction Electronic components are shrinking in size to meet demands for lightweight and feature ?lled portable electronic products.This leads to decreasing solder joint dimensions,where mechanical reli-ability has become an issue [1],especially under high strain rate conditions during testing,transport and handling,impact loading under automotive [2]and consumer portable applications. Tin lead alloy (SnPb)was commonly used as a solder material in microelectronic packaging,but it is also hazardous to the environ-ment and health.Therefore,the industry made a transition to lead-free solders,with the implementation a ban on lead (Pb)from elec-tronic products by the EU RoHS (restriction of the use of certain hazardous substances in electrical and electronic equipment)in July 2006.The transition to lead-free solders is led by the widely adopted Sn–Ag–Cu (SAC)eutectic [3].However,some studies have shown that standard SAC alloys such as SAC 405(Sn–4%wt Ag–0.5%wt Cu)have poorer mechanical performance than eutectic SnPb under high strain rate conditions [4].Moreover,with the increasing popularity of portable devices,the performance of Sn–Ag–Cu solder joints under high strain rate and large rate ranges typical of drop impact situations is a major concern. In this study,dogbone-shaped bulk material tensile tests were conducted to investigate the effect of strain rate and silver content on the material properties of Sn–Ag–Cu solders.Solder joint array shear and tensile experiments were conducted on WLCSP speci-mens of different alloy materials under different strain rates and loading orientations to investigate the effects of strain rate,silver content in Sn–Ag–Cu solder joints,and loading orientation on microelectronic packages.Failure analyses were also performed on the fractured dogbone-shaped bulk material test specimens and WLCSP solder joints. 0026-2714/$-see front matter ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.microrel.2010.01.043 *Corresponding author. E-mail address:mpetanbc@https://www.doczj.com/doc/2811737487.html,.sg (V.B.C.Tan). Microelectronics Reliability 50(2010) 564–576 Contents lists available at ScienceDirect Microelectronics Reliability journal homepage:w w w.e l s e v i e r.c o m /l oc a t e /m i c r o r e l

焊点可靠性研究

SMT焊点可靠性研究 近几年,随着支配电子产品飞速发展的高新型微电子组装技术--表面组装技术(SMT)的 飞速发展,SMT焊点可靠性问题成为普遍关注的焦点问题。 与通孔组装技术THT(Through Hole Technology)相比,SMT在焊点结构特征上存在着很大的差异。THT焊点因为镀通孔内引线和导体铅焊后,填缝铅料为焊点提供了主要的机械强度和可靠性,镀通孔外缘的铅焊圆角形态不是影响焊点可靠性的主要因素,一般只需具有润湿良好的特征就可以被接受。但在表面组装技术中,铅料的填缝尺寸相对较小,铅料的圆角(或称边堡)部分在焊点的电气和机械连接中起主要作用,焊点的可靠性与THT焊点相比要 低得多,铅料圆角的凹凸形态将对焊点的可靠性产生重要影响。 另外,表面组装技术中大尺寸组件(如陶瓷芯片载体)与印制线路板的热膨胀系数相差较 大,当温度升高时,这种热膨胀差必须全部由焊点来吸收。如果温度超过铅料的使用温度范围,则在焊点处会产生很大的应力最终导致产品失效。对于小尺寸组件,虽然因材料的CTE 失配而引起的焊点应力水平较低,但由于SnPb铅料在热循环条件下的粘性行为(蠕变和应力松弛)存在着蠕变损伤失效。因此,焊点可靠性问题尤其是焊点的热循环失效问题是表面组装技术中丞待解决的重大课题。 80年代以来,随着电子产品集成水平的提高,各种形式、各种尺寸的电子封装器件不断推出,使得电子封装产品在设计、生产过程中,面临如何合理地选择焊盘图形、焊点铅料量以及如何保证焊点质量等问题。同时,迅速变化的市场需求要求封装工艺的设计者们能快速对新产品的性能做出判断、对工艺参数的设置做出决策。目前,在表面组装组件的封装和引线设计、焊盘图形设计、焊点铅料量的选择、焊点形态评定等方面尚未能形成合理统一的标准或规则,对工艺参数的选择、焊点性能的评价局限于通过大量的实验估测。因此,迫切需要寻找一条方便有效的分析焊点可靠性的途径,有效地提高表面组装技术的设计、工艺水平。 研究表明,改善焊点形态是提高SMT焊点可靠性的重要途径。90年代以来,关于焊点 形成及焊点可靠性分析理论有大量文献报导。然而,这些研究工作都是专业学者们针对焊点 可靠性分析中的局部问题进行的,尚未形成系统的可靠性分析方法,使其在工程实践中的具体应

焊点可靠性之焊点寿命改善

焊点可靠性之焊点寿命改善 提高SMT焊点可靠性的方法主要有以下四种: (1) 研制开发新型基板材料以减小陶瓷芯片载体与树脂基板之间的热膨胀系数差。研究主要集中于印刷电路板材料,已经研制开发了42%Ni-Fe合金(CTE=5ppm/o C)、Cu-因瓦合金-Cu复合材料板(CTE=2.8~13ppm/o C)等新型基板材料,效果较好[41]。但是由于新型材料制作工艺复杂、价格昂贵,其实用性受到很大限制,90年代起极少有此类研究见于文献。 (2) 提高软钎料合金自身的力学性能,向Sn-Pb共晶合金基体中加入微量合金元素以实现合金强化。由于实际生产中需综合考虑成本、工艺性等多方面问题,对Sn-Pb基钎料合金而言,这方面的工作较少,主要是添加Ag[42]。朱颖博士开发了Sn-Pb-RE系列钎料合金,不仅提高表面组装焊点热循环寿命2-3倍,而且在成本和工艺性方面均有很好的应用前景[43]。近年来,随着环境保护呼声的日益提高,开发无铅钎料(Lead-Free Solder)成为了软钎焊材料研究的热点,HP公司的Glazer对此作了很好的综述[44],焦点在于新型无铅钎料合金在保证润湿性的前提下,其熔点要与现有工艺条件匹配且其力学性能要优于Sn-Pb共晶合金。 (3) 焊点形态优化设计。作为承受载荷的结构件,不同的焊点形态将导致焊点内部不同的热应力-应变分布,从而导致不同的焊点热疲劳性能。焊点形态优化设计包括两方面的内容:一是焊点形态预测,即在钎料量、焊点高度、焊盘几何、软钎焊规范等工艺参数确定的条件下,借助于焊点成型的数学物理模型计算出焊点的最终形态。近年来提出了多种基于能量最小原理的焊点形态预测模型[45-47]。二是优化设计,即何种焊点形态才具有最优的热疲劳性能。优化判据的确定是一个涉及到焊点失效机制的理论问题,目前还远没有 —1 —

BGA焊点可靠性研究综述

BGA焊点可靠性研究综述 Review of Reliability of BGA Solder Joints 陈丽丽,李思阳,赵金林(北京航空航天大学,北京100191) Chen Li-li,Li Si-yang,Zhao J in-lin(College of Reliability and System Engineering, Beihang University,Beijing100191) 摘要:随着集成电路封装技术的发展,BGA封装得到了广泛应用,而其焊点可靠性是现代电子封装技术的重要课题。该文介绍了BGA焊点可靠性分析的主要方法,同时对影响焊点可靠性的各因素进行综合分析。并对BGA焊点可靠性发展的前景进行了初步展望。 关键词:有限元;焊点;可靠性;BGA 中图分类号:TN305.94文献标识码:A文章编号:1003-0107(2012)09-0022-06 Abstract:With the development of IC packaging technology,BGA is widely used,the reliability of its sol-der joints has became an important subject of modern electronic packaging technology.In this paper,a common method to analysis the reliability of BGA solder joints is introduced,various parameters which were displayed and the factors of influence on the solder joints,reliability were analyzed simultaneity. Based on above,we have an expectation of development foreground of the reliability of BGA solder joints. Key w ords:finite element;solder joint;reliability;BGA CLC num ber:TN305.94Docum ent code:A Article ID:1003-0107(2012)09-0022-06 0引言 近年来,高功能,高密度,高集成化的BGA封装技术成为主流的封装形式,其焊点可靠性是现代电子封装技术的重要课题。电子封装技术的飞速发展,不断为焊点可靠性的研究提出新课题。传统焊点可靠性研究主要依靠实验,近年来有限元模拟法成为焊点可靠性研究的主要手段;微观显示技术的发展,为分析焊点构成成分变化及裂纹产生,发展提供有力的支持;无铅化进程,针对焊点在不同载荷条件下材料性质成为当前研究的热点;不断涌现出大量新型BGA封装形式,其内部结构,尺寸以及空洞对焊点可靠性的影响有待进一步的研究;板级焊点的可靠性也越来越得到重视。本文主要针对以上几个问题进行综述分析。 1焊点可靠性研究方法 传统的焊点可靠性研究主要依靠实验,随着电子产品的微型化,焊点向着更加微小的方向发展,应用实验方法对其可靠性进行分析面临很大的困难。有限元模拟法[1],将一个结构分离成若干规则的形状单元,并在空间用边界模型来定义每一个单元就可求解整体结构的位移和应力,利用该方法研究焊点的可靠性也成为热点。 针对单独使用实验方法与有限元模拟方法的局限性,现阶段焊点可靠性的研究多采用实验与有限元模拟方法综合使用的方法。分析方法流程汇总如图1所示。 电子显微技术的发展,使得测试手段多样化发展,检测结果更为准确,对于焊点内部化学成分及结构的变化观察更为直观,能够更好地了解其失效原因,失效部位的形成及发展。下面汇总几种常见的测试方法如表1所示。 2器件级焊点可靠性影响因素 器件封装技术的飞速发展,封装结构,尺寸和材料都发生了较大变化。近年来,专家学者对这类器件级焊点可靠性的影响因素进行了大量研究,下面针对其研究成果进行总结概括。 2.1新型BGA封装结构 2.1.1热增强型BGA 随着电子封装向高密度,薄型化的方向发展,封装的尺寸越来越小,器件的功率越来越大,对芯片的热可靠性提出了更高的要求,为减小热阻,提高热性能,产生了多种热增强型BGA,其主要特点是在BGA封装的底部中间位置(芯片)加有一个散热的铜块或铜片,增加热传导能力,主要用于高功耗器件的封装。其主要结构 作者简介:陈丽丽(1986-),女,硕士研究生,研究方向为系统安全及可靠性。22

倒装芯片封装结构中SnAgCu焊点热疲劳寿命预测方法研究_李晓延

倒装芯片封装结构中SnAgCu 焊点热疲劳寿命预测方法研究 THERMO -FATIGUE LIFE PREDICTION METHODOLOGIES FOR SnAgCu SOLDER JOINTS IN FLIP -CHIP ASSEMBLIES 李晓延 王志升 (北京工业大学材料学院,北京100022) LI XiaoYan WANG ZhiSheng (School of M ate rials Scienc e and Engineering ,Beijing Unive rsity of Technology ,Beijing 100022,China ) 摘要 由于焊点区非协调变形导致的热疲劳失效是倒装芯片封装(包括无铅封装)结构的主要失效形式。到目前为止,仍无公认的焊点寿命和可靠性的评价方法。文中分别采用双指数和双曲正弦本构模型描述SnAgCu 焊点的变形行为,通过有限元方法计算焊点累积蠕变应变和累积蠕变应变能密度,进而据此预测倒装芯片封装焊点的热疲劳寿命。通过实验验证,评价上述预测方法的可行性。结果表明,倒装芯片的寿命可由芯片角焊点的寿命表征;根据累积蠕变应变能密度预测的焊点热疲劳寿命比根据累积蠕变应变预测的焊点热疲劳寿命更接近实测数据;根据累积蠕变应变预测的热疲劳寿命比根据累积蠕变应变能密度预测的热疲劳寿命长;采用双指数本构模型时,预测的焊点热疲劳寿命也较长。 关键词 热疲劳 寿命预测 倒装芯片焊点 无铅化中图分类号 TG407 O346.2 TB114.3 A bstract Thermal fatigue failure ,due to the fracture of solder joints which was caused by the mis match deformation ,is frequentl y encountered in flip chip (FC )assemblies .Unfortunately ,there is n o widel y accepted method to evaluate the reliability of solder joints ,especially for lead -free solder joints ,in s uch assemblies up to now .The constitutive models of double power law and the hyperbolic sine law were implemented to simulate the deformation of Sn AgCu solder joints in flip chip assemblies .The accumulated creep strain and ac -cu mulated creep strain energy dens ity of the solder joints were calculated ,via finite element method ,and were use to predict the thermal fatigue life of flip chip assemblies .The applicability of the above life prediction methods was evaluated through cross check of the present results with that of the literatures .It was found that the life of the FC assemblies could be estimated by the prediction of the life of the corner solder joints .The thermal fatigue life ,estimated according to accumulated creep strain energy density is closer to the test data than that of the life estimated according to accumulated creep strain .The life predicated according to accumulated creep strain shown a slightly high value than that predicated accordin g to accumulated creep strain energy density .The double power law constitutive equation results in a higher predicted life . Key words Themo -fatigue ;Life prediction ;Flip chip ;Solder joint ;Lead free Corr es ponding autho r :LI Xiao Yan ,E -mail :xyli @bjut .edu .cn The project supported b y the National Natural Science Foundation of China (No .50475043),Nature Science Foundation of Beijin g (2052006)and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No .20040005012). Manuscript received 20060712,in revised form 20060831. 1 引言 小型化和高密度组装是新一代电子产品的主要特征,倒装芯片(flip chip on board ,FCOB )封装结构的广 泛应用正是为了满足上述特征要求,在倒装芯片封装中,硅芯片通过焊点直接安装于玻璃环氧树脂印刷电路基板(printed circuit board ,PCB )上,以确保短的互连电路、高的集成密度和良好的噪音控制。这类倒装芯 片封装结构的简图如图1所示。一般来说,倒装芯片 封装结构包含四个主要部分,芯片、焊点、基板和填充胶。在芯片制造和服役的温度循环中,封装材料的热物理性能,特别是热膨胀系数的差异引起芯片中非协调变形的发生,焊点中的应力和应变也随之升高。研究表明,芯片的破坏与倒装芯片封装结构所经历的非协调形变历史密切相关。由于倒装芯片封装结构的复杂性和修复的困难,一个焊点(特别是角点) 的破坏往 Journal of Mechanical Strength 2006,28(6):893~898 李晓延,男,1963年5月生,陕西省礼泉县人,汉族。哈尔滨工业大学工学博士,芬兰拉彭兰塔工业大学科学博士,中国焊接学会常务理事,北 京工业大学教授,主要从事材料和结构全寿命周期的强度与可靠性研究。 20060712收到初稿,20060831收到修改稿。本文研究得到国家自然科学基金(50475043)、北京市自然科学基金(2052006)和教育部博士点基金 (20040005012)的资助。

相关主题
文本预览
相关文档 最新文档