当前位置:文档之家› 浅谈Shell煤气化技术

浅谈Shell煤气化技术

浅谈Shell煤气化技术
浅谈Shell煤气化技术

化工技术与开发第40卷

我国是一个多煤少油的国家,煤炭资源丰富,原煤产量居世界第一位[1~2]。在我国,煤炭是发电、化肥、甲醇等能源转化工业的主要原料和燃料,煤炭的生产和消费占一次能源构成的75%[3~4]。然而人类对能源的需求快速增长,以化石燃料为代表的传统能源日趋枯竭,使得能源供应日益紧张[5]。同时,能源利用过程中排放的污染物,如粉尘、二氧化硫、氮氧化合物、碳氢化合物、有毒金属化合物、温室气体等,正在急剧破坏地球的生态平衡和人类自身的生存环境。化石燃料中煤的储量大、价格低廉、供应稳定,但直接燃煤带来的严重环境污染是一个不容忽视的问题。因此,各国政府在考虑利用储量丰富的煤炭资源时,特别重视洁净煤技术的研究与开发工作[6]。

长期以来,我国煤炭综合利用技术落后,煤炭利用率低下,主要以直接燃烧为主。据统计在排放的大气污染物中,90%的SO 2、85%的CO 2、70%的烟尘来自煤燃烧[7~8]。因此,为提高煤炭综合利用率,缓解因煤炭利用所引起的环境污染问题,必须加强洁净煤技术研究。煤气化技术是煤炭洁净技术转化的核心技术之一,是发展煤化学品(氨,甲醇,二甲醚等)、先进IGCC 发电、多联产系统、制氢、燃料电池等过程工业的基础。

1常见煤气化技术比较

煤气化就是以煤炭为原料,采用空气、氧气、

CO 2和水蒸汽为气化剂,在一定温度和压力下,通

过不完全的燃烧过程,将煤中的固定碳转化成可燃性气体(有效气体成分CO 、H 2、CH 4及副产物CO 2、H 2O 等)的过程[9]。

目前新一代煤气化工艺对煤种适应性广,气化压力高,生产能力大,气化效率高,污染少。具有代表性的有Texaco (德士古)水煤浆气化工艺、GSP 气化技术、Shell (壳牌)气化技术[10]。

Texaco 水煤浆加压气化炉是两相并流型气

化炉,氧气和煤浆通过特制的工艺喷嘴混合后喷入气化炉,在炉内水煤浆和氧气发生不完全氧化还原反应产生水煤气,其反应释放的能量可维持气化炉在煤灰熔点温度以上反应以满足液态排渣的需要。

GSP 连续气化炉是在高温加压条件下进行

的,属气流床反应器,几根煤粉输送管均布进入最外环隙,并在通道内盘旋,使煤粉旋转喷出。给煤管线末端与喷嘴顶端相切,在喷嘴外形成一个相当均匀的煤粉层,与气化介质混合后在气化室中进行气化,反应完后最终形成以CO 、H 2为主的煤气进入激冷室。

Shell 煤气化在高温加压条件下进行,属气流

床反应器,煤粉、氧气及水蒸汽并流进入气化炉,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。由于气化炉内温度很高,在有氧存在的条件下,以燃

浅谈Shell 煤气化技术

兵1,巴淑丽2

(1.郑州大学化工与能源学院,郑州,450001;2.重庆能源职业学院能源工程系,重庆,400040)摘

要:随着经济不断发展,能源在社会中的战略地位日益重要。煤气化技术受到各国高度重视。在介绍

能源结构基础上,分析了常见煤气化技术,着重阐述了Shell 气化炉的工艺原理,技术特点,开发现状等,通过对Shell 煤气化技术的分析,论述了Shell 气化技术在我国的应用前景。

关键词:煤气化;Shell ;技术特点中图分类号:TQ 54

文献标识码:A

文章编号:1671-9905(2011)03-0022-04

基金项目:2009年郑州大学研究生科学研究基金(编号A1101)

作者简介:刘兵(1984-),男,郑州大学化工学院博士研究生,主要从事煤的洁净技术研究;巴淑丽(1982-),女,重庆能源职业学

院,讲师,主要从事煤的洁净技术,设备节能与优化等方面的研究

收稿日期:2010-12-08

第40卷第3期2011年3月化

工技术与开发

Technology &Development of Chemical

Industry Vol.40No.3

Mar.2011

第3期

烧反应为主;在氧气反应完后进入到气化反应阶段,最终形成以CO、H2为主的煤气离开气化炉。

上述3种气化方式均为不完全氧化还原反应生成粗合成气,基本原理相同。不同之处在于

Texaco采用水煤浆气化,而GSP和Shell采用干煤粉气化。

2Shell气化技术发展现状

1972年,Shell公司在阿姆斯特丹建立了Koninklijke研究实验室。1976年,一个日投煤量6t的小型开发装置在阿姆斯特丹运转。在1978~ 1983年间,约有21种煤在该装置进行了气化试验。1983年,Shell公司在美国休斯顿建设了一套日投煤量220~360t的大型示范装置[11~13]。1988年,荷兰采用Shell公司壳牌气化炉,气化装置设计能力单炉日处理2000t煤。1989年,荷兰发电局采用Shell气化技术建设250MW整体煤气化燃气-蒸汽联合循环(ICGCC)发电装置[14]。迄今为止,壳牌共在中国签订了10多份煤气化技术转让协议。其中第一份转让协议用于在湖南省乐阳市兴建的煤气化厂,该厂是由壳牌和中石化共同投资兴建的合资企业,日投煤量为2000t,为化肥厂提供合成气用生产原料[15]。壳牌国际研究有限公司向中国最大的煤炭企业神华集团公司转让煤气化技术,该技术用于在内蒙古建立的第一座煤液化厂[16];中国神华煤制油有限公司采用壳牌煤气化技术为其煤液化厂制取氢气。内蒙古鄂尔多斯市伊金霍洛旗兴建的液化厂是中国第一家直接用煤生产油品的工厂[17]。河南永煤集团采用Shell气化炉用于生产甲醇。湖北双环化工集团利用我国丰富的煤炭资源,采用先进的Shell煤气化技术,对合成氨原料线路进行改造。

作为典型的洁净煤技术,Shell煤气化得到90%以上的(CO+H2)粗煤气,粗煤气是合成氨,甲醇,氢气的原料。Shell煤气化合成氨、甲醇简易工艺流程图见图1、2。

图2Shell煤气化生产甲醇工艺图[18]

3Shell气化技术及其工艺流程

3.1Shell气化工艺流程

原料煤被破碎并输送到粉碎机,正常情况下是传统的磨煤机,磨煤机将煤研磨到适于高效气化的尺寸(90%小于100μm)。研磨煤的同时,使用加热的惰性气体流从系统内带走水蒸汽来进行干燥,气流卷走的粉煤通过内部筛分器在袋室内收集。适当的干燥对无故障的煤排放和输送非常重要,并且可以提高装置效率。经过研磨和干燥的煤从磨煤和干燥系统排放到煤加压和输送系统(锁斗),然后加压的煤通过相对的烧嘴输送到气化炉气化室,利用氧气在气化室内进行气化反应,如果需要缓冲蒸汽,通过相同的烧嘴喷入。送入炉内的煤粉、氧气及蒸汽在高温加压条件下发生部分氧化反应,气化炉顶部约1500℃的高温煤气与经冷却后的煤气激冷至900℃左右进入废热锅炉,经回收热量后的煤气温度降至350℃进入除尘和湿式洗涤系统,处理后含尘量小于1mg·m-3,温度为150℃的煤气送后工序。

气化炉由内部带气化室的压力容器组成,并在2~4.5MPa的压力下运行。气化炉内壁温度由循环水通过膜式壁进行控制,以产生饱和蒸汽。膜式壁包围气化区域,气化区域有两个出口。气化区域底部的孔口用于除渣。顶部的出口允许夹带飞灰的合成气进入激冷区域,在该区域内热合成气利用“冷”(180~300℃)无灰再循环气体激冷,以避免粗合成气夹带的融化或粘性飞灰颗粒的结垢问题。

从洗涤塔排出的黑水在闪蒸槽进行减压闪蒸,闪蒸液再进汽提塔汽提,经初级处理后的灰水送至界区外的污水处理装置进一步处理。闪蒸气及汽提气送锅炉作燃料气。在气化炉燃烧段产生的高温熔渣,流入气化炉下部激冷室进行激冷形成玻璃体流入锁斗后定期排放,排出的炉渣经捞渣机运走,捞渣池的灰水送至闪蒸槽及汽提塔一并处理。锁斗内的灰水经锁斗循环泵升压并冷却后返回气化炉底部激冷室。

Shell煤气化典型流程图见图3。

刘兵等:浅谈Shell煤气化

技术23

化工技术与开发第40卷

3.2Shell气化特点

Shell公司开发的Shell气化工艺,是目前最先进的气化工艺之一,实际生产操作表明,煤气化工艺指标达到预期目标,装置运行比较稳定,其主要特点如下:

(1)采用干煤粉作为气化原料,煤粉用氮气输送,操作安全;煤种适应性广泛;

(2)气化温度高,一般在1400~1600℃,碳转化率高;氧耗低,节省运行费用;

(3)气化炉采用水冷壁结构,无耐火砖衬里;每台气化炉设有4~6个烧嘴,对生产负荷调节灵活;

(4)热效率高,总的原料煤热效率高达98%;对环境影响小。气化过程无废气排放,系统排出的熔渣和飞灰含碳低,可作为建筑材料,气化污水不含焦油、酚等污染物,易处理,需要时可以零排放。

4结语

我国的能源分布情况是:石油天然气相对缺乏,而煤炭资源丰富,并且在全国分布比较广泛。在相当一段时期,我国化肥工业,由于生产工艺老化,合成氨生产用的原料煤,多是无烟块煤,而无烟块煤主要分布在山西等少数省区,这对于全国各地的大多数化肥厂来说,成本增高,同时由于机械化程度提高,粉煤率增加,块煤减少,无烟煤利用率低。同时随着生产不断进步,要求扩大对煤种和颗粒的适应范围,增加单炉生产能力,提高煤气化的操作压力,达到环保要求。作为目前最为先进的煤气化技术之一,Shell气化技术具有显著的优点:碳转化率高,氧耗低,气化温度高,单台生产能力高。因此,Shell气化技术可以在很大程度上摆脱以上缺点,充分利用各地煤炭资源,另外采用Shell技术可以大大改善环境。故Shell煤气化技术将被广泛应用于大型煤化工企业,具有广大的发展空间,并且随着Shell煤气化装置投入运行,可以推进Shell煤气化技术在我国的推广应用,带动我国煤气化技术研究的进一步发展。

参考文献:

[1]郑楚光.洁净煤技术[M].武汉:华中理工大学出版社,1996.

[2]石油:中国经济最强烈的思念.http://houston.china-consulate.org/chn/xwgd/t177721.htm.

[3]于涌年.煤炭利用回顾与未来有效技术[J].煤化工,1994,(3):1-7.

[4]韩景城.中国能源消费结构优化问题—中国的能源国情及国际比较形式[J].中国能源,2002,(6):10-13.[5]中国石油安全现状及对策分析.http:fzjhj.shunde.gov.cn/data/main.php?id=2343-1000048..

[6]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社,2006.

[7]陈君球,朱大军.煤炭气化是实现中国媒体洁净利用的重要途径[J].动力工程,1997,17(5):21-27.

[8]杨朗红.利用国际油气资源改善我国能源结构[J].中国能源,1998,(11):12-16.

[9]Hal Turton,L.B.,Long-term security of energy supply and climate change[J].Engergy policy,2006,34:2232-2250.

[10]赵中友.整体煤气化煤气、热、电多联产系统性能分析与优化研究[D].大连:大连理工大学,2008.[11]Zhong Tang,Yang Wang.Efficient and environment friendly use of coal[J].Fuel Processing Technology,

2000,62:137-141.

[12]陈广智.SHELL,煤气化技术在我国应用的思考[J].煤炭加工与综合利用,1999,(6):42-44.

[13]马军,孙志萍.Shell煤气化技术及其在国内的应用[J].化学工业与工程技术,2008,29(3):54-57.[14]郑振安,黄元凯.浅谈SHELL煤气化技术在化工生产中的应用[J].化肥设计,1998,36():6-10.

[15]郑振安.Shell煤气化技术(SCGP)的特点[J].煤化工,2003,(2):7-11.

[16]宫经德.壳牌煤气化技术及其工程应用[J].化肥设计,2007,45(6):8-12.

[17]张洪伟.壳牌煤气化技术的应用前景分析[J].电力环

图3Shell煤气化法的典型流程[6]24

第3期

Current Situation and Prospect of Dyeing Wastewater Treatment with New

Membrane Biological Technology

LI Hao-fei ,TIAN Xiao-ting ,SONG Feng-min

(Institute of Chemical and Environmental Science ,Shaanxi University of Technology ,Hanzhong 723001,China )

Abstract :Membrane biological wastewater treatment method was a kind of method which applied membrane separation technology to treat wastewater.Various new membrane bioreactor technology in printing and dyeing wastewater treatment was systematically introduced ,their characteristics and advantages was analyzed.Accord-ing to the current research status of printing and dyeing wastewater ,the development was prospected.Key words :printing and dyeing wastewater ;new membrane bioreactor

Effects on Distribution of Soil Cadmium Using Photosynthetic Bacteria

XIAO Gen-Lin ,BAI Hong-Juan ,JIA Wan-Li

(College of Chemical &Environment Engineering ,North University of China ,Taiyuan 030051,China )

Abstract :The influences of the distribution of soil cadmium in different soil physical and chemical factors us-ing the photosynthetic bacteria (Rhodobacter sphaeroides )were analyzed in this study.The results showed that the optimum conditions for influencing the distribution of soil cadmium were pH7.0,temperature at 35?C and the amount bacteria of 106/g soil.Under the optimal conditions ,photosynthetic bacteria could reduce the con-tent of bioavailability of cadmium largely and increased the content of biological non-use of cadmium greatly.Therefore ,photosynthetic bacteria could obviously change the content of various forms of soil cadmium ,could improve the quality of crops.The result could provide the experimental basis for popularizing and applying the remediation technology of heavy metals polluted soils using the photosynthetic bacteria.Key words :photosynthetic bacteria ;soil ;cadmium ;distribution

Research for Shell Coal Gasification Technology

LIU Bing 1,BA Shu-li 2

(1.School of Chemical and Energy Engineering ,Zhengzhou University ,Zhengzhou 450001,China ;

2.Department of Energy Engineering ,Technology Institute of Chongqing Energy ,Chongqing 400040,China )

Abstract :With the development of economic ,energy was very important in society for strategic position.Coal gasification technology was very important for the entire world.In introducing the energy structurte ,the common coal gasification technologies were analyzed.The process principle ,technical feature ,status for Shell coal gasi-fication stove ,was mainly introduced.Through analyzed the shell coal gasification technology ,the application prospects of shell coal gasification technology in China was discussed.Key words :coal gasification ;Shell ;technical features

境保护,2007,23(5):57-59.

[18]

任照彬,宋甜甜,路文学.SHELL 粉煤加压气化与新

型水煤浆加压气化的技术评价[J ].化工技术与开发,2004,33(2):17-20.

刘兵等:浅谈Shell 煤气化技术lllllllllllllllllllllllllllllllllllllllllllll (上接第45页)

lllllllllllllllllllllllllllllllllllllllllllll (上接第51页)

25

壳牌煤气化技术简介

主流煤气化技术及市场情况系列展示(之五) 壳牌煤气化技术 技术拥有单位:壳牌全球解决方案国际私有有限公司 壳牌是世界知名的国际能源公司之一。壳牌煤气化技术可以处理石油焦、无烟煤、烟煤、褐煤和生物质。气化炉的操作压力一般在,气化温度一般在1400~1700摄氏度。在此温度压力下,碳转化率一般会超过99%,冷煤气效率一般在80~83%。对于废热回收流程,合成气的大部分显热可由合成气冷却器回收用来生产高压或中压蒸汽;如配合采用低水气比催化剂的变化工艺,在变换单元消耗少量蒸汽即可保证变换深度要求,剩余大量蒸汽可送入全厂蒸汽管网,获得可观的经济效益。 目前,壳牌全球解决方案国际私有有限公司负责壳牌气化技术的技术许可,工艺设计以及技术支持。2007年壳牌成立了北京煤气化技术中心,2012年初,壳牌更是将其全球气化业务总部也从荷兰移师中国,这充分体现了壳牌对中国现代煤化工蓬勃发展的重视,同时壳牌也能更好地利用其全球气化技术能力,贴近市场,为中国客户提供更加快捷周到的技术支持。目前,在北京的壳牌煤气化技术团队可提供从研发、工程设计、培训、现场技术支持以及生产操作和管理的全方位技术支持和服务。 一、整体配套工艺 根据不同的煤质特性以及用户企业的不同生产需求和规划,壳牌开发了下面3种不同炉型: 壳牌废锅流程是当前工业应用经验最丰富的干粉气化技术。它的效率和工艺指标的先进性已经得到了验证和认可,而且在线率也在不断创造新的世界纪录,大部分客户已实现满负荷、长周期、安全、稳定运转。如果业主比较关注热效率,全厂能效和环保效益的话,采用壳牌废锅流程并配合已成功应用的低水气比变换技术应该是最合适稳妥的方案。 壳牌上行水激冷流程特别适合处理有积垢倾向的煤种;适合大型项目,此外投资低,可靠性高。对于比较关注在线率和低投资的业主,采用壳牌上行水激冷流程应该是最合适稳妥的方案。

四种煤气化技术及其应用

四种煤气化技术及其应用 李琼玖,钟贻烈,廖宗富,漆长席,周述志,赵月兴 (成都益盛环境工程科技公司,四川成都610012) 摘要:介绍了4种煤气化工艺技术,包括壳牌工艺、德士古水煤浆气化工艺、恩德工艺、灰熔聚流化床气化工艺,对其技术特点、工艺流程、主要设备及应用实例进行了详细阐述,并对4种工艺进行了对比。 关键词:煤气化;壳牌工艺;德士古;恩德工艺;灰熔聚工艺;煤气炉 中图分类号:TQ546文献标识码:A文章编号:1003-3467(2008)03-0004-04 Four Coal Gasification Technologi es and Their Applicati on L I Q iong-ji u,ZHONG Y i-lie,LIAO Zong-fu, QI Chang-xi,ZHOU Shu-zhi,ZHAO Yue-xing (Chengdu Y i s heng Envir on m ent Eng i n eering Techo logy C o.Ltd,Chengdu610012,China) Abst ract:Four coal gasificati o n technologies,inc l u d i n g Shell techno logy,Texaco coa l-w ater sl u rry gasif-i cati o n,Enticknap pr ocess,ash agg l o m erati o n fl u i d ized bed gasification technology are intr oduced,and the technical features,technolog ical process,m ai n equipm ent and app lication exa m p le o f the four techno l o g i e s are descri b ed in detai.l K ey w ords:coal gasification;She ll techno logy;Texaco;Enticknap process;ash agglo m erati o n tech-nology;gas stove 1壳牌粉煤气化制取甲醇合成气 1.1壳牌工艺技术的特点 壳牌煤气化过程(SCGP工艺)是在高温加压下进行的,是目前世界上最为先进的第FG代煤气化工艺之一。按进料方式,壳牌煤气化属气流床气化,煤粉、氧气及蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。一般认为,由于气化炉内温度很高,在有氧存在的条件下,碳、挥发分及部分反应产物(H2、CO等)以发生燃烧反应为主;在氧气消耗殆尽之后发生碳的各种转化反应,过程进入到气化反应阶段,最终形成以CO、H2为主要成分的煤气离开气化炉。 壳牌粉煤气化的技术特点:1干煤粉进料,加压氮气输送,连续性好,气化操作稳定。气化温度高,煤种适应性广,从无烟煤、烟煤、褐煤到石油焦均可气化,对煤的活性几乎没有要求,对煤的灰熔点范围比其它气化工艺更宽。对于高灰分、高水分、含硫量高的煤种同样适应。o气化温度约1400~1700e,碳转化率高达99%以上,产品气体相对洁净,不含重烃,甲烷含量极低,煤气中有效气体(CO+H2)高达90%以上。?氧耗低,与水煤浆气化相比,氧气消耗低,因而与之配套的空分装置投资可减少。?单炉生产能力大,目前已投入运转的单炉气化压力为3MPa,日处理煤量已达2000t。?气化炉采用水冷壁结构,无耐火砖衬里,维护量少,气化炉内无转动部件,运转周期长,无需备炉。?热效率高,煤中约83%的热能转化在合成气中,约15%的热能被回收为高压或中压蒸汽,总的热效率为98%左右。?气化炉高温排出的熔渣经激冷后成玻璃状颗粒,性质稳定,对环境几乎没有影响。气化污水中含氰化合物少,容易处理,必要时可做到零排放,对环境保护十分有利。à壳牌公司专利气化烧嘴可根据需要选择,气化压力2.5~4.0M Pa,设计保证寿命为8000h,荷兰De m ko lec电厂使用的烧嘴在近4年 收稿日期:2007-10-13 作者简介:李琼玖(1930-),男,教授级高级工程师、研究员,长期从事化工设计、建设、生产工程技术工作,主编5合成氨与碳一化学6、5醇醚燃料与化工产品链工程技术6专著,发表论文百余篇,电话:(028)86782889。

壳牌煤气化

工艺原理  壳牌煤气化过程是在高温、加压条件下进行的,煤粉、氧气及少量蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。由于气化炉内温度很高,在有氧条件下,碳、挥发分及部分反应产物(H2和CO 等)以发生燃烧反应为主,在氧气消耗殆尽之后发生碳的各种转化反应,即气化反应阶段,最终形成以CO和H2为主要成分的煤气离开气化炉。 工艺流程 目前,壳牌煤气化装置从示范装置到大型工业化装置均采用废锅流程,激冷流程的壳牌煤气化工艺很快会推向市场。 原料煤经破碎由运输设施送至磨煤机,在磨煤机内将原料煤磨成煤粉(90%<100μm)并干燥,煤粉经常压煤粉仓、加压煤粉仓及给料仓,由高压氮气或二氧化碳气将煤粉送至气化炉煤烧嘴。来自空分的高压氧气经预热后与中压过热蒸汽混合后导入煤烧嘴。煤粉、氧气及蒸汽在气化炉高温加压条件下发生碳的氧化及各种转化反应。气化炉顶部约1500℃的高温煤气经除尘冷却后的冷煤气激冷至900 ℃左右进入合成气冷却器。经合成气冷却器回收热量副产高压、中压饱和蒸汽或过热蒸汽后的煤气进入干式除尘及湿法洗涤系统,处理后的煤气中含尘量小于1 mg/m3送后续工序。 湿洗系统排出的废水大部分经冷却后循环使用,小部分废水经闪蒸、沉降及汽提处理后送污水处理装置进一步处理。闪蒸汽及汽提气可作为燃料或送火炬燃烧后放空。 在气化炉内气化产生的高温熔渣,自流进入气化炉下部的渣池进行激冷,高温熔渣经激冷后形成数毫米大小的玻璃体,可作为建筑材料或用于路基。 技术特点 (1)煤种适应性广 对煤种适应性强,从褐煤、次烟煤、烟煤到无烟煤、石油焦均可使用,也可将2种煤掺混使用。对煤的灰熔点适应范围比其他气化工艺更宽,即使是较高灰分、水分、硫含量的煤种也能使用。 (2)单系列生产能力大 目前已投人生产运行的煤气化装置单台气化炉投煤量达到2000 t/d 以上。

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

最新国内外先进煤气化技术比选-章荣林

国内外先进煤气化技术比选-章荣林

国内外先进煤气化技术比选 章荣林 (设计大师中国天辰化学工程公司原副总工程师)我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对丰富的优势发展煤化工已成为大家关心的问题。发展煤化工离不开合成气的制备,煤气化就是制备合成气的必要手段。 近年来,我国掀起了一股煤制甲醇热、煤制油热、煤制天然气热、煤制烯烃热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,以期籍煤炭资源的优势,发展煤化工、煤制油、煤制烯烃。这些项目都碰到亟待解决原料选择问题和煤炭气化工艺技术方案的选择问题。 1.各种煤气化工艺的优缺点 我国已经工业化的、已建立示范装置的和已经中试装置考验的、从国外引进技术的、属于国内具有自主知识产权的煤气化装置和技术,有常压固定层间歇式无烟煤(或焦炭)气化技术、常压固定层无烟煤(或焦炭)富氧连续气化技术、鲁奇固定层煤加压气化技术、灰熔聚流化床粉煤气化技术、恩德沸腾层(温克勒)粉煤气化技术、GE德士古(Texaco)水煤浆加压气化技术、多元料浆加压气化技术、多喷嘴(四烧嘴)水煤浆加压气化技术、壳牌(Shell)干煤粉加压气化技术、GSP干煤粉加压气化技术、两段式干煤粉加压气化技术、四喷嘴对置式干粉煤加压气化技术,几乎是国外有的煤气化技术我国都有,国外没有的煤气化技术我国也有。煤气化工艺技术很多,使选择煤气化工艺技术无从着手。首先我们不能只轻信专利商的宣传,现在世界上还没有万能气化炉,各种气化工艺技术都有其特点和优缺点,有其适应范围。对专利商的宣传要去

粗取精、去伪存真,只有通过生产实践长期稳产高产考验过的,经济上合理、环境上符合国家和当地环保规定和要求的,才是最可靠的。下面分别介绍这些技术的优缺点。 (1)常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重。从发展看,属于将逐步淘汰的工艺。 (2)常压固定层无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂、连续气化、原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低、适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 (3)鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。因为其产生的煤气中含有焦油、高碳氢化合物含量约1%左右,甲烷含量约10%左右,同时,焦油分离、含酚污水处理都比较复杂,所以不推荐用以生产合成气。 (4)灰熔聚流化床粉煤气化技术 中国科学院山西煤炭化学研究所在上世纪80年代,就开始研究这项技术,2001年单炉配套20Kt合成氨/a工业性示范装置成功运行,实现了工业化,其

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

煤气化技术

煤气化技术 国外气化炉发展现状 1、GE-德士古(Texaco)气化炉 Texaco气化炉是最成熟的第二代喷流床气化炉,它是由美国德士古石油公司下属的德士古开发公司(Texaco Development Corporation)研发的。第一套日处理15吨煤的中试装置于1948年在美国洛杉矶建成,并于1958年在美国摩根城建立了日处理100吨煤的原型装置,以东部煤为原料,操作压力为2.8MPa,合成气用于生产氨。但由于缺乏竞争力,被迫停止运行。石油危机之后,Texaco 气化炉得到了快速发展,尤其是美国15t/d和德国150t/d的实验装置做了大量的试验,解决了水煤浆制造、高温气体热回收、燃料喷嘴及煤种适应性的系列难题。并且于1983年和1984年分别成功应用于Eastman化工厂和Cool Water IGCC示范电站。目前,Texaco气化炉是国际上最成熟、商业化装置最多的第二代气化炉。美国的伊斯曼2台,日本宇部4台及德国SAR的1台都在运行。除此之外尚有美国Tampa电站一台2400t/d煤的气化炉示范装置。2004年5月,GE能源公司收购了Texaco气化炉业务。 自从上世纪80年代初,Texaco气化炉开始大规模应用,最初主要应用于化工领域,特别是用于F-T合成和生产化工产品。进入上世纪90年代之后,更多的应用于电力生产行业。这主要是因为20世纪90年代以来,IGCC和以IGCC 为核心的多联产系统的迅速发展。在Texaco气化炉被GE能源收购之后,这一趋势会更加明显。 Texaco气化炉进入我国比较早,从20世纪80年代就开始陆续在我国化工行业应用,且有较多业绩。自1993、1996年鲁南化肥厂、陕西渭河化肥厂Texaco 水煤浆气化工业装置分别投运以来,Texaco气化炉在我国陆续投产。Texaco气化炉在我国的国产化进程发展也较快,华东理工大学在开发“多喷嘴对置式水煤浆气化炉”方面,就借鉴了Texaco的运行经验。据我们的统计,截止2006年底,中国共有28台Texaco气化炉建成投运;另外有12台在建,预计2010年之前投运。这些气化炉除了早期有17台以石油焦为气化原料以外,其他气化炉,包括在建的12台都是以煤炭为原料。目前这些气化炉主要用于化工品的生产,尤其

壳牌气化炉的现场组焊技术

石油化工建设10. 03 图1气化炉整体模型 1气化炉概况 近年来,随着煤化工的兴起,煤液化技术、煤制甲醇、油改煤在国内大批推进,其中壳牌气化炉(以下简称:气化炉)是采用最多的设备之一,如神华煤制油、中原大化50万t 甲醇装置、大唐多伦168万t 甲醇46万t 煤基烯烃均采用壳牌专利技术。壳牌气化炉一律为专利设备整体引进,并由外商进行总体设计,其壳体部分大致分由两个国家制造:西班牙、印度L &T 公司;内件部分由荷兰SEG 公司设计,分别由西班牙和L &T 公司制造;其结构形式为膜式水冷壁结构。1.1气化炉总体介绍 气化炉主要由壳体和内件组成。其中壳体分为反应器(Re-actor )+激(急)冷管(Quench Pipe )(位号:V1301),合成气冷却器(Syngas Cooler )+气体返回室(Gas Return Chamber )(位号:V1302),输气管(Transfer Duct )(位号:V1303)。内件分为渣池(位号:V1401)、激冷管中压蒸汽发生器(位号:E1301)、输气管中压蒸汽发生器(位号:E1302)、合成气冷却器中压蒸汽发生器(位号:E1303)、气化炉反应器中压蒸汽发生器(位号:E1320)以及气体返回室内的立管(主管)和斜管(支管)等七部分。1.2设备材料及设备规格 气化炉整体重量约1300t 。壳体主要材质为SA387GR11CL2;在反应器段、合成气冷却器段有一部分材质为复合材料SA387GR11CL2+NO8825;最大壁厚285mm ;壳体最大内径Φ4630mm ;需要现场组对焊缝处的壁厚为65~90mm ;整体长段50.2m 。气化炉整体模型如图1所示。1.3设备分段(以2000t 炉子为例) 为了满足设备内陆道路运输及组焊吊装要求,在初步设计期间,技术方案的讨论必须有制造厂商参加,他们必须充分考虑 管口方位、外壳外部尺寸等因素,并按照以下尺寸和重量极限进 行设计分段: (1)组件高度最高5.1m ;(2 )组件宽度最大7m ;(3)组件长度最长25.00m ;(4)组件重量 最大150t 。 具体的设备分段情况列表如表1、表2所示:(注大唐3000t 炉子分段的几何尺寸及重量略大些) 壳牌气化炉的现场组焊技术 ■肖晓磊 中国化学工程第十一建设公司河南开封 475002 摘 要通过与壳牌公司技术交流,借鉴国外压力容器组焊的先进经验,在国内中石化油改煤工程投料调试的经验基础上, 结合大型气化炉组焊技术的工程实例,阐述一项成熟的气化炉现场组焊技术。本文着重于描述施工程序(组装流程) 、组对与焊接、内件安装。对于无损检测、消除应力热处理、液压试验、衬里等仅做一般性介绍。关键词壳牌技术气化炉现场组对 焊接 中图分类号TG44 文献标识码B 文章编号1672-9323(2010)03-0035-08 35

SCGP(壳牌)煤气化工艺

SCGP(壳牌)煤气化工艺 1、SCGP(壳牌)煤气化技术简介。 1.1工艺原理。 SCGP壳牌煤气化过程是在高温、加压条件下进行的,煤粉、氧气及少量蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。由于气化炉内温度很高,在有氧存在的条件下,碳、挥发分及部分反应产物(H2和CO等)以发生燃烧反应为主,在氧气消耗殆尽之后发生碳的各种转化反应,即过程进入到气化反应阶段,最终形成以CO和H2为主要成分的煤气离开气化炉。典型的SCGP煤气成分见表1。 1.2工艺流程。 目前,壳牌煤气化装置采用废锅流程,废锅流程的壳牌煤气化工艺简略流程见图1。 原料煤经破碎由运输设施送至磨煤机,在磨煤机内将原料煤磨成煤粉(90%<100μm)并干燥,煤粉经常压煤粉仓、加压煤粉仓及给料仓,由高压氮气或二氧化碳气将煤粉送至气化炉煤烧嘴。来自空分的高压氧气经预热后与中压过热蒸

汽混合后导入煤烧嘴。煤粉、氧气及蒸汽在气化炉高温加压条件下发生碳的氧化及各种转化反应。气化炉顶部约1500℃的高温煤气经除尘冷却后的冷煤气激冷至900℃左右进入合成气冷却器。经合成气冷却器回收热量后的煤气进入干式除尘及湿法洗涤系统,处理后的煤气中含尘量小于1mg/m3送后续工序。 湿洗系统排出的废水大部分经冷却后循环使用,小部分废水经闪蒸、沉降及汽提处理后送污水处理装置进一步处理。闪蒸汽及汽提气可作为燃料或送火炬燃烧后放空。 在气化炉内气化产生的高温熔渣,自流进入气化炉下部的渣池进行激冷,高温熔渣经激冷后形成数毫米大小的玻璃体,可作为建筑材料或用于路基。 1.3技术特点。 1.3.1煤种适应性广。 SCGP工艺对煤种适应性强,从褐煤、次烟煤、烟煤到无烟煤、石油焦均可使用,也可将2种煤掺混使用。对煤的灰熔点适应范围比其他气化工艺更宽,即使是较高灰分、水分、硫含量的煤种也能使用。 1.3.2单系列生产能力大。 煤气化装置单台气化炉投煤量达到2000t/d以上,生产能力更高的的煤气化装置也正在建设中。 1.3.3碳转化率高。 由于气化温度高,一般在1400~1600℃,碳转化率可高达99%以上。 1.3.4产品气体质量好。 产品气体洁净,煤气中甲烷含量极少,不含重烃,CO+H2体积分数达到90%以上。 1.3.5气化氧耗低。 与水煤浆气化工艺相比,氧耗低15%~25%,可降低配套空分装置投资和运行费用。 1.3.6热效率高。

Shell煤气化工艺的评述和改进意见

Shell煤气化工艺的综述及流程改进 意见 戴进美 (湖南工学院材料与化学工程系应用化工专业0901班) 摘要:叙述了Shell煤气化技术的发展过程,介绍了Shell煤气化工艺和主要设备的特 点,回顾国内的装置建设情况,坦言一些存在的问题,并提出Shell工艺的改进意见:在为中国设计的制氢气、氨和甲醇化工装置中,将废锅流程改为激冷流程,町以明显降低投资,加快建设周期,提高开车速度,降低运行成本。 关键词:Shell 煤气化工艺废锅流程激冷流程 编者按:虽然Shell煤气化工艺是目前世界上较为先进的第二代煤气化工艺之 一,但是这种工艺不是十全十美的国内引进该枝术应用于氢、氨、醇生产的过程中将面临着很多困难,认识上有很多不足。本文作者结合多年的工程实践经验,坦言Shell煤气化工艺存在的一些问题,并提出Shell工艺的改进意见.可供业界同行参考。 Shell煤气化过程是目前世界上较为先进的第二代煤气化工艺之一。按学术上的分类,She[1煤气化属气流床气化。煤粉、氧气及少量水蒸气在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程,气化产物为以氢气和一氧化碳为主的合成气,二氧化碳的含量很少。 1 Shell煤气化技术的发展历程 自20世纪50年代起,壳牌公司就参与了气化技术的开发。当时,该公司开发r以油为原料的壳牌气化技术(SGP),至今已有150多套SGP没施得到技术转让。在积累油气化经验后,1972年开始在该公司的阿姆斯特丹研究院(KSLA)进行煤气化技术研究。1976年,煤气化工艺(SCGP)已达到一定水平并建立一座处理煤量为6t/d的试验厂,利用该装置一共试验了30多个不同的煤种。 1978年,在汉堡附近的哈尔堡炼油厂建设一座处理煤量为150t/d的工厂,公司利用这座装置进行了一系列成功的试验,至1983年该装置停止运转为止,累计运行了6l00h,其中包括超过1 000h的连续运转,顺利完成了工艺开发和过程优化的任务。 在汉堡中试装置成功运行的基础上,1987年,壳牌公司在美同休斯顿附近的DeerPark 石化巾心建设了一座规模较大的上厂,这庠命名为SCGP l的示范进煤量为每天250t高硫煤或每天400t高湿度、高灰褐煤,共积累了15000h的操作经验。SCGP1试验了约18种原料,

壳牌煤气化问题

1、Shell煤气化技术开车问题分析 Shell粉煤加压气化工艺是荷兰壳牌公司开发的一种先进的煤气化技术,国内进口了十多套,其中三套(分别在岳阳,安庆、枝江)干煤粉气化炉,近一段时间开车。三套干煤粉气化炉刚开车时,出现了严重的问题(按供应商提供操作条件操作):Shell每台气化炉有点火烧嘴一个,开工烧嘴2个,煤粉喷嘴4个。在气化炉投料运行前需要对气化炉进行烘炉,烘炉是用两个开工烧嘴时进行的,用点火烧嘴对开工烧嘴进行点火。点火顺序:点火烧嘴—开工烧嘴—煤粉烧嘴;首先点着点火烧嘴,之后开工烧嘴投料,给气化炉升温和升压,当温度和压力达到了工艺要求的工况时,煤粉烧嘴进行化工投料,至此,气化炉进入化工运行阶段。岳阳,安庆,枝江三家使用Shell气化炉的企业在对点火烧嘴进行开车时都出现了同样的问题:点火不到10秒钟就将其点火烧嘴烧坏;该点火烧嘴的内喷头材质是铜,外壳为不锈钢incolly-800材料。燃料油从内喷头12个圆孔喷出,与氧气在内喷头与外壳之间的空隙混合,然后自12个槽型孔喷出,喷出之后进行燃烧。中心通冷却水,对点火烧嘴进行冷却。在点火烧嘴点火10秒钟后,点火烧嘴的外壳就如同气割一样被切割开了,严重损坏了。 问题①点火烧嘴易损坏,最短时间不大于10秒钟,最多使用不到二十次,厂家是否有改进的措施? ②点火烧嘴造价高昂、更换频繁,从技术上能否提高设备寿命? ③点火烧嘴是否实现了国产化?造价、寿命如何?。

2、SHELL气化炉、GE废锅气化炉和GE水冷激气化炉 ①气化炉运行负荷是否能够达到100%?,目前是多少? ②连续运行时间是多少?目前有没有突破两个月? ③维修项目有哪些?维修时间能否缩短?成本如何? 3、煤气化工艺中循环使用的洗涤灰水如何处理效果最佳? 4、壳牌煤气化工艺流程中的合成气反吹系统的反吹介质能否用洗涤后的粗合成气改为高温高压氮气?是否满足下游装置的工艺要求?对比节省工程投资是多少? 5、壳牌粉煤气化是一种先进成熟的洁净煤气技术,该技术的关键设备是由气化炉、输气管和合成冷却器三大件组成,其中气化炉又是核心,如何将气化炉、输气管和合成气冷却器等设备进行安全可靠合理的配置,实现高转化效率,长周期运行,节省投资? 6、废锅造价高,现在是否有降低造价的措施?尤其采用上行废锅形式,煤气激冷、余热回收、去除渣尘使这套系统变得庞大、复杂、昂贵;为了清除渣尘,采用庞大的陶瓷过滤装置,需要定期脉冲反吹。能否采用下行水激冷工艺设备? 7、气化炉高温排出的熔渣经激冷后成玻璃状颗粒,性质稳定,能否综合利用? 8、合成气中的粉尘含量的标准是多少?检测措施是什么?如果合成气粉尘超标将直接影响合成气的质量,对下游工艺流程有什么影响?

壳牌气化炉用煤分析

煤气化近期用煤分析 一、近期用煤及调整情况 1、煤气化双炉在2017年2月7日及以前用煤主要为: 白羊墅贫瘦煤:东川蒙煤:瑞丰蒙煤=23%:14%:63%。 2、受配煤后煤质波动较大影响在2月8日开始双炉上煤按1:1加配了(汽运阳泉贫瘦煤:瑞丰蒙煤=20%:80%),因此煤气化上煤调整为: (白羊墅贫瘦煤:东川蒙煤:瑞丰蒙煤=23%:14%:63%):(汽运阳泉贫瘦煤:瑞丰蒙煤=20%:80%)=1:1。 3、因近期煤气化消耗较高,为排除相关煤粉指标(如CaO、热值等)对气化炉消耗的影响,自2月14日起煤气化上煤1#炉没变,2#炉改为: 阳泉贫瘦煤:东川大砭窑混蒙煤:大砭窑蒙煤=24%:40%:36% 4、1#炉因前一种煤用完,自2月18日起煤气化1#炉上煤改为: 阳泉贫瘦煤:瑞丰蒙煤:东川蒙煤=18%:64%:18% 二、煤质分析 1、灰分 根据下图1、2#炉用煤灰分可以看出(主要看中采),本月上旬灰分波动较大,上煤时调整为1:1后灰分趋于稳定;2#炉换煤后灰分较同期1#炉要稳定。

2、低位热值 从下图可以看出,双炉低位发热量变化同灰分变化相同,双炉上旬波动较大,中采热值在5700左右;中旬经过两次换煤后双炉热值都有所提高在5800左右。

3、硅铝比 从下图可以看出,本月上煤2月7日调整后硅铝比略有下降,从2.1降到2.0左右;2月14日2#炉第二次调整后从2.0涨到2.2左右;2月18日1#炉调整后硅铝比有所上涨。

4、CaO变化 从下图可以看出本月上旬双炉中采CaO含量基本在6%左右,但波动较大,经双炉上煤调整后波动有所好转;2#炉14日换煤后稳定在6%-7%;1#炉18日换煤后有上涨趋势(受数据较少只供参考)。

国内外煤气化技术新进展

国内外煤气化技术新进展 华陆工程科技有限责任公司刘艳军 一、煤炭的综合利用 我国具有丰富的煤炭资源,煤炭保有储量高达1万亿吨以上,全国煤炭产量2002年近14亿吨,2003年为16亿吨,2009年为亿吨,平均每年以大于5%的速度递增。目前,我国已经成为世界上最大的煤炭生产国和消费国。我国是富煤少油国家,当前每年进口的原油和石油制品已达到国内需求的30%以上,全球范围内新一轮的石油竞争将会愈演愈烈,大力发展煤化工作为保证国家能源安全的战略已凸显重要而紧迫。未来,我国能源以煤为主的状况,在相当长的一段时间内不会有大的改变,预测2010年将占60%左右,2050年不会低于50%,煤炭在我国的能源消费中仍然占有基础性地位。 随着科学技术的发展和人民生活水平的提高,对煤和以煤为原料的相关产品的技术要求也越来越高。然而,由于煤的结构和组成的复杂性,给人们利用煤带来诸多环境问题。例如,煤中含有硫、氯、氮、灰等有害物质在煤炭直接燃烧后被排放到环境中,引起严重的环境污染问题。有关调查统计结果表明:目前我国能源消费总量中约68%为煤炭,其中有85%采用效率低、污染严重的直接燃烧技术。燃煤产生的二氧化硫排放量占全国总排放量的74%,氮氧化物排放量占总排放量的60%,总悬浮颗粒(TSP)排放量占总排放量的70%,二氧化碳排放量占总排放量的85%。目前,我国已成为世界上环境污染严重的国家之一,这不仅严重地威胁到生态环境和人类健康,而且每年由于燃煤而引发的SO2污染和酸雨造成的经济损失已超过1000亿元。因此大量直接燃烧煤炭将受到国家政策限制。 从发展的长远观点来看,我国以煤为主的能源消费结构正面临着严峻挑战,如何解决燃煤引起的环境污染问题已迫在眉睫。我国政府对此高度重视,对环境保护的政策越来越严格,并把煤炭的清洁转化和高效利用列入《中国21世纪议程》,实行“节能优先、结构优化、环境友好”的可持续能源发展战略。 二、煤气化技术 煤气化技术是煤利用技术中的关键技术,而气化炉又是煤气化技术的核心。世界上许多国家对开发新型气化炉都投入了大量的人力和财力,并已经取得了可喜的成果,各种形式的气化炉也陆续投入了工业化生产,这些设备广泛应用于煤

煤气化技术方案比较及选择

煤气化技术方案比较及选择 何正兆,宫经德,郑振安,汪寿建(五环科技股份有限公司,湖北武汉 430079) 2005-09-16 1 煤气化技术概述 以煤为原料生产合成气,国内过去常用常压固定层气化炉。该工艺虽然技术成熟可靠,设备全部国产化,投资较省,但能耗高、煤质要求高,需用无烟块煤或焦炭,资源利用率低,而且是常压操作,生产强度小,操作时“三废”排放量大,对环境污染比较严重,显然与国外煤气化技术相比,存在较大差距。 多年以前,国内研究部门也曾开发过以粉煤为原料的K-T炉和熔渣炉,并在常压固定层气化炉中采用富氧连续气化的工艺,以及近年开发的恩德粉煤气化炉和灰熔聚气化炉等,因种种原因这些技术尚未达到大型工业化装置推广的程度。 早在20世纪初煤气化技术在国外已实现工业化,50年代后因天然气、石油大量开发,煤气化技术发展一度停止不前。 20世纪70年代,国际上出现能源危机,发达国家出于对石油天然气供应紧张的担忧,纷纷把煤气化技术作为替代能源技术重新提到议事日程,并加快了对煤气化新工艺的研究。近二十年来,国外很多公司为了提高燃煤电厂热效率,减少对环境的污染,对煤气化联合循环发电技术进行了大量的开发研究工作,促进了煤气化技术的发展。 目前已成功开发了对煤种适应性广、气化压力高、生产能力大、气化效率高、对环境污染少的新一代煤气化工艺。其中具有代表性的有荷兰壳牌(SHELL)公司的干煤粉气化工艺、美国GE公司的水煤浆气化工艺[原称德士古(TEXACO)水煤浆气化工艺]、美国DYNEGY 公司的DESTEC气化工艺、德国KRUPP UHDE公司的PRENFLO工艺(加压K-T法)及德国鲁奇(LURGI)工艺。其中DESTEC气化工艺与GE 工艺相近,但其业绩及经验不如GE;PRENFLO工艺的工艺指标较好,但目前仅有一套示范装置,生产操作经验较少;鲁奇(LURGI)工艺虽然工业装置较多,生产操作经验也比较丰富,但由于煤气中CH4含量高,有效成分(CO+H2)含量低,且煤气中焦油及酚含量高,污水处理复杂,不宜用来生产合成氨和甲醇的原料气。 目前国际上技术比较成熟、工艺指标比较先进、业绩较多的主要是SHELL 公司干煤粉气化工艺和GE的水煤浆气化工艺,两者均为加压纯氧气流床液态排渣的气化工艺。SHELL公司在渣油气化技术取得工业化成功经验的基础上,于1972年开始从事煤气化技术的研究。1978年第一套中试装置在德国汉堡建成并投入运行;1987年在美国休斯敦附近建成的日投煤量250~400t的示范装置投产;日投煤量2000t 的大型气化装置于1993年在荷兰的Buggenum建成投产(Demkolec电厂),用于联合循环发电,该气化装置为单系列操作,装置的开工率在95%以上。生产实践证明,SHELL煤气化工艺是先进成熟可靠的。目前该技术在国内推广比较迅速。 GE(TEXACO)公司很早就开发了以天然气和重油为原料生产合成气技术,20世纪70年代的石油危机促进其寻找替代能源和洁净的煤气化技术,经多年研究以后,推出了水煤浆气化工艺。该工艺技术自引进中国以来已有山东鲁南、上海焦化、陕西渭河、安徽淮化四套装置投运,最长的已有10年生产操作经验。基本运行良好,显示了水煤浆气化的先进性,但使用该项技术所建的生产装置,要达到长周期满负荷运行,尚较困难,特别是对煤种的选择性限制了其发展。 2 SHELL和GE两种煤气化技术的主要特点 SHELL煤气化工艺与GE水煤浆气化工艺,是当前先进而又成熟的两种煤气化技术,已成功地在工业上应用多年。两种气化工艺对比分析如下。 2.1 原料的适应性 SHELL煤气化是洁净的煤气化工艺,可以使用褐煤、次烟煤、烟煤、无烟煤等煤种以及石油焦为原料,也可使用两种煤掺合的混煤。并可气化高灰分(5.7%~24.5%,最高35%)、高水分(4.5%~30.7%)和高硫分的劣质煤。对于原料煤和燃料煤价差较大的地区有可能使其

煤气化技术简介及装置分类

煤气化技术简介及装置分类 煤气化是清洁利用煤炭资源的重要途径和手段。目前,国内自行开发和引进的煤气化技术种类众多,但总体上可以分为以下三大类: 一、固定床气化技术 以鲁奇为代表的加压块煤气化技术。鲁奇加压气化炉是由联邦德国鲁奇公司于1930年开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂最多的煤气化技术。鲁奇气化炉是制取城市坑口煤气装置中的心脏设备。它适应的煤种广﹑气化强度大﹑气化效率高﹑粗煤气无需再加压即可远距离输送。鲁奇气化技术的特点为:采用碎煤加压式填料方式,即连接在炉体上部的煤锁将原料制成常温碎煤块,然后从进煤口经过气化炉的预热层,将温度提高至300℃左右。从气化剂入口吹进的助燃气体将煤点燃,形成燃烧层。燃烧层上方是反应层,产生的粗煤气从出口排出。炉篦上方的灰渣从底部出口排到下方连接的灰锁设备中,所以气化炉与煤锁﹑灰锁构成了一体的气化装置。鲁奇炉的代表炉型即第三代MARK-IV/4型Ф3800mm加压气化炉, 炉体由内外壳组成,其间形成50mm的环形水冷夹套,是一种技术先进﹑结构更为合理的炉型。我公司为河南义马、大唐克旗等制做了多台鲁奇式气化炉。 图1 鲁奇加压块煤气化装置

二、流化床气化技术 以恩德炉、灰熔聚为代表的气化技术。恩德炉粉煤流化床气化技术是朝鲜恩德“七.七”联合企业在温克勒粉煤流化床气化炉的基础上,经长期的生产实践,逐步改进和完善的一种煤气化工艺。灰融聚流化床粉煤气化技术根据射流原理,在流化床底部设计了灰团聚分离装置,形成床内局部高温区,使灰渣团聚成球,借助重量的差异达到灰团与半焦的分离,在非结渣情况下,连续有选择地排出低碳量的灰渣。目前,中科院山西煤化所山西省粉煤气化工程研究中心开发的加压灰熔聚气化工业装置已经成功应用于晋煤集团天溪煤制油分公司1 0万吨/年煤基MTG合成油示范工程项目,该项目配备了6台灰熔聚气化炉(5开1备),气化炉操作压力0.6MPa,日处理晋城无烟煤1600吨,干煤气产量125000Nm3/h(配套30万吨/年合成甲醇)。 图2 灰熔聚气化反应装置 三、气流床气化技术 1、以壳牌、GSP、科林、航天炉、伍德、熔渣-非熔渣为代表的气流床技术 壳牌干煤粉气化工艺于1972年开始进行基础研究,1978年投煤量150 t/d的中试装置在德国汉堡建成并投人运行。1987年投煤量250~400 t/d的工业示范装置在美国休斯敦投产。在取得大量实验数据的基础上,日处理煤量为2000 t的单系列大型煤气化装置于1993年在荷兰Demkolec电厂建成,煤气化装置所产煤气用于联合循环发电,经过3年多示范运于1998年正式交付用户使用。目前,我国已经引进23套

壳牌煤气化装置(SCGP)操作规程精品完整版

壳牌煤气化装置(SCGP)操作规程 1、煤气化装置各岗位的岗位职责 1.1 磨煤岗位 本岗位的职责是将电厂燃料车间送来的碎煤贮存在碎煤仓V-1101A/B中,石灰石贮存在V-1102A/B中,两者混合配比加入到中速磨A-1101A/B中,〉在微负压和惰性气体条件下被磨粉干燥,干燥所需的热量由热风炉F-1101A/B中燃烧合成气或柴油提供,出来的煤粉要求直径范围0.005mm〈 D〈0.09mm,煤粉被输送到袋滤器S-1103A/B,之后送往低压粉仓V-1201A/B。 1.2 现场岗位 本岗位的主要职责是做好现场巡查工作,,做好开车前后设备的运行、调试,让每件现场设备具备一次开车成功能力;在开车期间,协助中控岗位做好设备的运行监护,准确无误的做好数据记录,并对未运行设备进行维护、保养,使设备随时处于可备用状态。(现场设备包括压缩机,汽包,破渣机,火炬系统,各种高低压泵等)。 1.3 分析岗位 本岗位的职责是对煤气化工艺所需各种原料进行及时准确的分析,对正常生产中的气体,液体,固体进行取样分析,并把分析结果及时反馈给中控岗位,以协助中控岗位控制好整个煤气化装置的运行。 1.4 中控岗位 本岗位的职责是维持磨煤系统(U-1100),煤给料系统(U-1200),气化系统(U-1300),除渣系统(U-1400),干法除尘系统(U-1500),湿法除尘系统(U-1600).初级水处理系统(U-1700)及公共系统(U-3000至3600)的正常运行,并协调与电厂燃料车间,氨厂净化车间,空分车间的生产关系。 磨煤系统(U-1100)的职责是与现场磨煤岗位的协调,将合格的粉煤送往煤给料系统。 煤给料系统(U-1200)由2套完全相同的锁斗加压系统组成,本系统的职责是将磨煤送来的粉煤经煤锁斗加压,再送往气化炉的四个煤烧嘴。 气化系统(U-1300)的职责是将加压后的粉煤以及氧蒸汽混合物通过2对相对的煤烧嘴送入气化炉,使粉煤和氧蒸汽混合物在一定条件发生反应,同时控制好炉内的温度,压力,出口合成气的温度及气化炉内的渣层厚度.并将产生的中压饱和蒸汽导入管网。 除渣系统(U-1400)的职责是将气化炉口流出的液态渣冷却,粒化并排至渣收集槽T-1401,然后捞渣机及渣输送带送往渣场. 干法除尘系统(U-1500)的职责是除去来自合成气中的干灰(通过过滤器和锁斗系统),同时将飞灰中的有毒微量气气提,然后将飞灰输送到筒仓,或送至磨煤系统。 湿法洗涤系统(U-1600)的职责是将经过干法除尘后的热合成气在湿洗塔里洗涤激冷,以脱除粗合成气中所含的氯化氢,氢氟酸和微量固体.最后将合格的合成气送往净化车间。 初级水处理系统(U-1700)的职责是将除渣系统,湿洗系统及其它装置送来的废水,进行初级处理、回收、再利用。 公共系统包括氮气系统(U-3000),燃料和火炬系统(U-3100),冷却水系统(U-3200),工艺水系统(U-3300),蒸汽/冷凝液系统(U-3400),酸碱系统(U-3600)。该系统为各单元提供服务,满足各单元对氮气,各种用水,蒸汽,酸碱等需要。 2、煤气化装置各岗位的岗位管辖范围 2.1 U-1100 磨煤与干燥系统 A-1101A/B 磨煤机2台

相关主题
文本预览
相关文档 最新文档