当前位置:文档之家› 第4章 风荷载

第4章 风荷载

结构阻尼比对单管塔风荷载计算的影响分析

结构阻尼比对单管塔风荷载计算的影响分析 结构阻尼比对单管塔风荷载计算的影响分析结构阻尼比对单管塔风荷载计算的影响分析屠海明1张帆2 (1.同济大学建筑设计研究院(集团)有限公司上海200092;2.中国铁塔股份有限公司北京100142)摘要:为了分析结构阻尼比对单管塔风荷载计算的影响,本文进行了阻尼比不同取值时风振系数的计算对比。结果表明风振系数随着结构阻尼比的增加而显著下降。然后根据上海某单管塔实测得到的阻尼比与规范规定的阻尼比取值,分别对该单管塔风荷载进行了计算对比。实测的阻尼比大于规范规定的取值,相应计算得到的风荷载也明显降低。这给单管塔的优化设计提供了参考依据。关键词:阻尼比单管塔风荷载引言近年来随着通信基站建设的发展,对通信塔的专业化、标准化提出了更高的要求。对于单管塔的设计和制作而言,起控制作用的荷载是风荷载,得到相对准确的风荷载设计值,对于每年数万座标准化生产的单管塔而言,具有很重要的经济意义。本文作者[1]根据2012年调整前后的荷载规范,对高耸结构的风荷载进行了分析与对比,并提出了《高耸结构设计规范》(GB 50135-2006)中风荷载部分条文的修改意见。但是以上分析没有专门涉及结构阻尼比对于风荷载计算的影响分析。同济大学何敏娟[2]等采用激振法对336m黑龙江电

视塔进行了模态参数的实测和分析,实测结构一阶阻尼比为0.028,大于规范规定值0.02。同济大学闫祥梅等[3]对位于河北的辛安-衡水500kV线路工程的几座直线输电塔转角塔进行了环境脉动下的动力测试。同济大学设计院梁峰[4]对上海新国际博览中心展馆两侧的30m高钢结构灯杆进行 了微风振动下的动力测试,得到了灯杆的自振频率和阻尼比。本文作者对上海移动两座单管塔进行了微风振动下的动力测试,并根据实测结果,与规范规定值对比,探讨结构阻尼比对单管塔风荷载计算的影响。 1 阻尼比对风荷载计算的影响结构阻尼比用于表达结构阻尼的大小,是描述结构在振动过程中能量耗散的术语。引起结构能量耗散的因素很多,主要有:材料阻尼,周围介质对振动的阻尼,节点、支座连接处的阻尼等。结构阻尼对结构效应的影响体现在结构的风致振动中,对于高耸结构的风振分析,比较准确的是采用频率域和时间域的动力分析方法。实际工程中,为了方便应用,按照荷载规范计算等效风荷载,用静力分析方法计算结构风效应。因此,结构阻尼比对风荷载计算的影响,主要体现在风振系数的计算上。《建筑结构荷载规范》(GB 50009-2012)中风振系数的表达式为:其中:g为峰值因子;I10为10m高名义湍流强度;Bz为背景分量因子;共振分量因子R表示与频率有关的积分项,可按下列公式计算:其中:ζ1为结构阻尼比;f1为结构第1阶自振频率;kw为

风荷载标准值

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:(-1) 式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的 值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μs 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 书P55页表4.2给出了各类地区风压沿高度变化系数。位于山峰和山坡地的高层建筑,其风压高系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μz 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。几种常用结构形式的风载体型系数如下图

输电线路风荷载的全方位计算

输电线路风荷载的全方位计算 摘要:在高压架空送电线路设计中,最不利风向时的风荷载常决定着杆塔内力大小或基础作用力的大小。本文将通过几个工程实例详细说明在高压架空送电线路设计中,如何确定几种特殊情况下最不利风向时的风荷载计算,以确保高压架空送电线路的安全运行。 关键词:全方位;基础作用力;运行情况;不平衡张力;风荷载 Abstract: In the project design of overhead transmission lines, the most unfavorable wind direction, wind load often determines the internal force of tower or base force size. This article will through several engineering examples in detail in the overhead transmission line design, how to determine some special situations the most unfavorable wind direction wind load calculation, to ensure the high voltage overhead power transmission line safe operation. Key words: all-around; base forces; operation; unbalanced tension; wind load 1 引言 在高压架空送电线路设计中,杆塔荷载的计算应执行《110~750kV架空输电线路设计规范》(以下简称《规程》)中第10条“杆塔荷载及材料”。其中正常运行情况下,应计算的荷载组合是: 1 基本风速、无冰、未断线; 2 设计覆冰、相应风速及气温、未断线 3 最低气温、无冰、无风、未断线(适用于终端和转角杆塔) 本文主要针对上述第一种情况,在正常运行大风情况下计算铁塔内力或基础作用力时可能出现的漏洞。《电力工程高压送电线路设计手册》(第二版)第六章第二节也对这种组合也提出了更详细的规定,提出“在杆塔设计中,应取最不利的风向来计算杆塔的内力”。在一般情况下,按照这些规定计算杆塔荷载,能满足线路工程施工投产后的安全运行要求。但伴随着室温效应的影响,几年来极端气候更加频繁地出现,内地表现为超常量的下雪和降雨、沿海地区表现为强热带风暴风力的逐级增加和风球的更加飘忽不定。在这些情况下,有必要对杆塔荷载更加严谨的计算,以保证高压送电线路的安全运行。在线路设计中,不能主观臆测最不利的风向,应通过严谨的计算来确定。因此我们可利用计算机技术,模拟自然风对杆塔所有方向的冲击,全方位计算杆塔风荷载,才使计算结果正确可靠。下面就列举几个设计工程中常碰到的案例。

9、2.6风荷载标准值计算

2.6风荷载标准值计算 作用在屋面梁和楼面梁节点处的集中风荷载标准值: 为了简化计算起见,通常将计算单元范围内外墙面的分布风荷载,化为等量的作用于楼面集中风荷载,计算公式如下: 0)(/2k z z i j W w h h B βμ=+ 式中: 基本风压200.5/kN m w =;结构基本周期1(0.06~0.09)0.24~0.36n s s T ==,取 10.30.25s s T =>考虑风振影响。作用在屋面梁和楼面梁节点处的集中风荷载标准值 为:w=βz ·μs ·μz ·ωo ,对于矩形平面μs =1.3;μz 可査荷载规范底层柱高取h=4.3+0.45=4.75m 。计算过程如下表中所示W k =β z μ s μz 0ω. 。0ωT 12 =0.5 ×0.32 =0.045, 由于地面粗糙度为C 类,0ωT 12 应乘以0.62,得0.0279查表ξ=1.15 ;H/B=16.45 /82.5=0.20 查表V=0.40。 (1)各楼层位置处的zi β值计算结果zi β=1+ξVZ/H z μ 表2.6-1 (2)各楼层位置处的风荷载标准值Fi= Ai zi βμs z μωo 表2.6-2

水平风荷载作用下框架内力分析 1) 柱端弯矩 如图2.6-2 h y V M )(1上-= 图2.6-2柱端弯矩计算图 2)梁端弯矩:根据结点平衡求出 对于边柱如图2.6-3 下上i i i M M M += 3)对于中柱如图:2.4-3 Vyh M =下

按两端线刚度分配 右左左 下上左) (i i i M M M i i i ++= 图2.6-3 梁端弯矩计算 4)水平荷载引起的梁端剪力、柱轴力 如图2.6-4所示: 梁端剪力: l M M V i i 右 左+= 柱轴力:边柱 ∑==N i R R V N 1 中柱 ∑=-=N i R R R V V N )(21 图2.6-4 梁端剪力计算 1/1轴框架各柱的杆端弯矩、梁端弯矩计算过程见下表2.6-3表2.6-4 表2.6-3 表2.6-4 梁端弯矩剪力 右 左右 下上右) (i i i M M M i i i ++=

【精品文档类】风荷载计算规律及公式

第二部分 风荷载计算 一:风荷载作用下框架的弯矩计算 (1)风荷载标准值计算公式:0k z s z W w βμμ=??? 其中k W 为垂直于建筑物单位面积上的风荷载标准值 z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w = 该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。 (2)确定各系数数值 因结构高度19.830H m m =<,高宽比19.8 1.375 1.514.4 H B ==<,应采用风振系数z β来考虑风压脉动的影响。该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载 规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。 层数 ()i H m z μ z β 1()/q z KN m 2()/q z KN m 7女儿墙底部 17.5 0.79 1.00 2.370 1.480 6 16.5 0.77 1.00 2.306 1.441 5 13.2 0.74 1.00 2.216 1.385 4 9.9 0.74 1.00 2.216 1.385 3 6.6 0.74 1.00 2.216 1.385 2 3.3 0.74 1.00 2.216 1.385 1 -3.3 0.00 0.00 0.000 0.000 (3)计算各楼层标高处的风荷载z 。攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=???得沿房屋高度分布风荷载标准值。 7.20.4 2.88z z s z z s z q βμμβμμ=?=,根据各楼层标高处的高度i H ,查得z μ代入上式,可 得各楼层标高处的()q z 见表。其中1()q z 为迎风面,2()q z 背风面。 风正压力计算: 7. 1() 2.88 2.88 1.00 1.300.790.8 2.370/z s z q z KN m βμμ==????= 6. 1() 2.88 2.88 1.00 1.300.770.8 2.306/z s z q z KN m βμμ==????= 5. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 4. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 3. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 2. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 1. 1() 2.88 2.880.00 1.300.740.80.000/z s z q z KN m βμμ==????= 风负压力计算: 7. 2() 2.88 2.88 1.00 1.300.790.5 1.480/z s z q z KN m βμμ==????= 6. 2() 2.88 2.88 1.00 1.300.770.5 1.441/z s z q z KN m βμμ==????= 5. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 4. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 3. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????=

输电塔风荷载计算

输电塔架风荷载计算 1.输电塔基本信息 本输电塔架的塔身为干字型方形塔架,总高53.5m,地处B类地区,离地10m高处的风速为33m/s,整个塔身沿高度方向分为11个风荷载计算段。 图1 塔身立面图

2.风荷载计算 2.1投影面积的计算 不考虑塔身迎风面的倾斜度,将塔身分段投影到迎风面计算净面积,根据所给角钢以及圆钢管的尺寸,计算投影面积,并计算出塔身轮廓所围的面积,以便计算每一段的挡风系数。 2.2基本风压 基本风压是以当地比较空旷平坦的地面上离地 10m 高统计所得的50年一遇 10min 平均最大风速为标准,近似计算如下: 22 2 00330.68/16001600v w kN m === 2.3 体形系数的计算 塔架体型系数s μ如下计算 ?? ? ??+++=角钢、钢管混合 钢管 角钢)1(1.1) 1(8.0)1(3.1s ηηημ η——背风面风荷载降低系数。 故各塔架段的体形系数按上式计算可得表1 表1 体型系数的计算 2.4 顺风向风振系数 由于塔形为干字型,而且高度小于75m ,故干字型塔架一阶自振周期: 10.0390.657T s ===

故塔架的第一阶自振频率1f 为: 11 1 1.52f Hz T == 塔架一阶振型系数如下计算: 44 3221346)(H z H z H z z +-= φ 对于一般竖向悬臂型结构,例如高层建筑和构架、塔架、烟囱等高耸结构,均可仅考虑结构第一振型的影响。z 高度处的风振系数z β可按下式计算 210121R B gI z z ++=β 式中g 为峰值因子,可取2.5;10I 为10m 高名义湍流强度,对应B 类地面粗糙度,可取0.14;R 为脉动风荷载的共振分量因子;z B 为脉动风荷载的背景分量因子。 R = 11305 f x x = > w k 地面粗糙度对B 类地面粗糙度分别取1.0;1ζ结构阻尼比,对钢结构可取0.01。 11()()x z a z z H z B k z ρρφμ= z ρ——脉动风荷载竖直方向相关系数; 0.795z ρ== x ρ——脉动风荷载水平方向相关系数,本算例此相关系数可取1x ρ=。 其中k=0.910,a1=0.218。

扣件式钢管脚手架风荷载标准值计算

扣件式钢管脚手架风荷载标准值计算 在编制扣件式钢管脚手架安全施工组织设计时,作用于脚手架的水平风荷载,往往是计算的难点之一。我们依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(以下简称《脚手架规范》)和国家现行《建筑结构荷载规范》(GBJ9-87)(以下简称《荷载规范》)的有关规定,对风荷载的计算参数进行分析,找出规律性的内涵,以便准确地计算,确保施工安全。 脚手架规范第4.2.3条规定:作用于脚手架的水平风荷载标准值,应按下式计算: ωk=0.7μzμsω0 式中ωk——风荷载标准值(kN/m2) μz——风压高度变化系数; μs——脚手架风荷载体型系数 ·ω0——基本风压(kN/m2)。 计算风荷载标准值除修正系数外,还有三个参数,现分析归纳如下: 一、基本风压ω0及修正系数 基本风压ω0应按荷载规范“全国基本风压分布图”的规定采用。 荷载规范规定:风荷载标准值ωk=βzμzμsω0,即风荷载标准值中还应乘以风振系数βz,以考虑风压脉动对高层建筑结构的影响。脚手架规范编制时,考虑到脚手架附着在主体结构上,故取βz=1。

荷载规范规定的基本风压是根据重现期为30年确定的,而脚手架使用期较短,遇到强劲风的概率相对要小得多,基本风压ω0乘以0.7修正系数是参考英国脚手架标准计算确定的。 二、风压高度变化系数μz 荷载规范规定:风压高度变化系数,应根据地面粗糙度类别按《荷载规范》采用。 地面粗糙度可分为A、B、C三类 A类指近海海面、海岛、海岸、湖岸及沙漠地区; B类指田野、乡村、丛林、丘陵及房屋比较烯疏的中、小城镇和大城市郊区 C类指有密集建筑群的在城市市区。 选用风压高度变化系数,应注意以下两种情况: 1.立杆稳定计算,应取离地面5m高度计算风压高度变化系数。经计算,风荷载虽然在脚手架顶部最大,但此处脚手架结构所产生的轴压力很小,综合计算值最小;5m高度处组合风荷载产生计算值虽较小,但脚手架自重产生的轴压力接近最大,综合计算值最大。根据以上分析,立杆稳定性计算部位为底部。 2.连墙件计算,应取脚手架上部计算风压高度变化系数。连墙件的轴向力设计值与风压高度变化系数成正比函数关系,即架体升高,风压高度变化系数增大,连墙作轴向力设计值随之增大,架体顶部达到最大。连墙件稳定承载力及扣件抗滑承载力验算,应取连墙件最大轴向力设计值。 三、风荷载体型系数μs 风荷载体型系数按《脚手架规范》4.2.4规定计算。

第三章 荷载的统计分析

第三章 荷载的统计分析 作用(action): 使结构 产生应力与变形的外部 因素 直接作用:施加在结构上 的集中力或分布力,如自 重、风压、 雪压、人员及设备重等.习惯上称之为荷载 间接作用:引起结构外加变形和约束变形的原因,如温度、 地震等 3.1荷载分类 3.1.1按随时间的变异分类 永久荷载:在设计基准期内量值不随时间变化,或其变化与平均值之比可以忽略不计.如结构自重、土壤最终重量形成的 土压力、预加应力等. 可变荷载:在设计基准期内量值随时间而变且其变化与平均值之比不能忽略,如使用或居住荷载(人员、设备、家具等)以 及风、雪等, 偶然荷载:在设计基准期内不一定出现,而一旦出现其量值很大且持续时间很短.如撞击、爆炸、某地区罕遇的龙卷风等.3.1.2按随空间的变异分类

固定荷载:在结构上具有固定分布的荷载.如结构自重、结构上的固 定设备荷载等. 自由荷载:在结构上一定范围内可以任意分布的荷载.如风、雪以及人员、家具等. 3.1.3按结构的反应特点分类 静态荷载:使结构产生的加速度可忽略不计.如永久荷载、家具、稳 定风压等, 动态荷载:使结构产生不能忽略不计的加速度.如设备振动、脉动风压等. 3.1.4按有无界限值分类 有界荷载:具有明显的上界和(或)下界值(具有已知限值).如水坝静 水压力、桥梁上火车的静载效应等。 无界荷载:无明显的上界值和下界值(不具有已知限值). 3.2荷载的概率模型 3.2.1荷载的随机过程模型 问题提出:β算法的需要 荷载的随机过程模型:平稳二项随机过程 荷载变动的周期性 简单,便于工程应用 永久荷载: 特点:在设计基准期[0,T]内必然出现,量值不随时间而变. 样本函数图形:一平行于时间轴的直线

25m单管塔风荷载计算

25m灯管塔计算书 概况: 本计算书为云南联通25m灯管塔标准塔,设1个平台,分别在23m高度处,平台设计板状天线6付(迎风面积按0.45m2/付计);塔体采用圆形杆体,连接方式采用法兰连接,塔底用Q235预埋锚栓进行连接。 设计依据: 1. 设计依据: (1) 钢结构设计规范(GB 50017-2003) (2) 高耸结构设计规范(GBJ135-2006) (3) 建筑结构荷载规范(GB 5009-2001)(2006年版) (4) 移动通信工程钢塔桅结构设计规范(YD/T 5131-2005) 2. 设计荷载: 根据建设单位提出的要求确定设计荷载。 塔架设计基本风压0.45kN/m2,设计地震烈度6度。 荷载计算: 按《移动通信工程钢塔桅结构设计规范》第3.2.5条第3点,钢塔桅结构的抗震设防烈度为8度及以下时可不进行截面抗震验算,因此只验算风荷载作用下截面承载力。 华信设计建筑设计研究院(https://www.doczj.com/doc/2f9579473.html,) 第1 页共6 页

以下统计风荷载: 按搬运条件、制作工艺等要求,将塔段从下至上分为8000,8000,11000共3段,每段厚度分别为10mm、8mm、6mm. 对杆体,移动通信工程钢塔桅结构设计规范(YD/T 5131-2005),本塔体为折边型,体型系数取Us=1.0; 华信设计建筑设计研究院(https://www.doczj.com/doc/2f9579473.html,) 第2 页共6 页

内力计算: 内力计算采用ANSYS通用有限元程序,选用Beam44变截面梁单元,荷载作用简图及计算结果(位移、弯矩、剪力)如下: 华信设计建筑设计研究院(https://www.doczj.com/doc/2f9579473.html,) 第3 页共6 页

扣件式钢管脚手架风荷载标准值计算

扣件式钢管脚手架风荷载标准值计算 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

扣件式钢管脚手架风荷载标准值计算在编制扣件式钢管脚手架安全施工组织设计时,作用于脚手架的水平风荷载,往往是计算的难点之一。我们依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(以下简称《脚手架规范》)和国家现行《建筑结构荷载规范》(GBJ9-87)(以下简称《荷载规范》)的有关规定,对风荷载的计算参数进行分析,找出规律性的内涵,以便准确地计算,确保施工安全。 ωk=0.7μzμsω0 式中ωk——风荷载标准值(kN/m2) μz——风压高度变化系数; μs——脚手架风荷载体型系数 ·ω0——基本风压(kN/m2)。 计算风荷载标准值除修正系数外,还有三个参数,现分析归纳如下:

一、基本风压ω0及修正系数 基本风压ω0应按荷载规范“全国基本风压分布图”的规定采用。 荷载规范规定:风荷载标准值ωk=βzμzμsω0,即风荷载标准值中还应乘以风振系数βz,以考虑风压脉动对高层建筑结构的影响。脚手架规范编制时,考虑到脚手架附着在主体结构上,故取βz=1。 荷载规范规定的基本风压是根据重现期为30年确定的,而脚手架使用期较短,遇到强劲风的概率相对要小得多,基本风压ω0乘以0.7修正系数是参考英国脚手架标准计算确定的。 二、风压高度变化系数μz 荷载规范规定:风压高度变化系数,应根据地面粗糙度类别按《荷载规范》采用。 地面粗糙度可分为A、B、C三类 A类指近海海面、海岛、海岸、湖岸及沙漠地区;

B类指田野、乡村、丛林、丘陵及房屋比较烯疏的中、小城镇和大城市郊区 C类指有密集建筑群的在城市市区。 选用风压高度变化系数,应注意以下两种情况: 1.立杆稳定计算,应取离地面5m高度计算风压高度变化系数。经计算,风荷载虽然在脚手架顶部最大,但此处脚手架结构所产生的轴压力很小,综合计算值最小;5m高度处组合风荷载产生计算值虽较小,但脚手架自重产生的轴压力接近最大,综合计算值最大。根据以上分析,立杆稳定性计算部位为底部。 2.连墙件计算,应取脚手架上部计算风压高度变化系数。连墙件的轴向力设计值与风压高度变化系数成正比函数关系,即架体升高,风压高度变化系数增大,连墙作轴向力设计值随之增大,架体顶部达到最大。连墙件稳定承载力及扣件抗滑承载力验算,应取连墙件最大轴向力设计值。 三、风荷载体型系数μs

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算: w k =β gz μ z μ s1 w ……7.1.1-2[GB50009-2001 2006年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z:计算点标高:15.6m; β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m按5m计算): β gz =K(1+2μ f ) 其中K为地面粗糙度调整系数,μ f 为脉动系数 A类场地:β gz =0.92×(1+2μ f ) 其中:μ f =0.387×(Z/10)-0.12 B类场地:β gz =0.89×(1+2μ f ) 其中:μ f =0.5(Z/10)-0.16 C类场地:β gz =0.85×(1+2μ f ) 其中:μ f =0.734(Z/10)-0.22 D类场地:β gz =0.80×(1+2μ f ) 其中:μ f =1.2248(Z/10)-0.3 对于B类地形,15.6m高度处瞬时风压的阵风系数: β gz =0.89×(1+2×(0.5(Z/10)-0.16))=1.7189 μ z :风压高度变化系数; 根据不同场地类型,按以下公式计算: A类场地:μ z =1.379×(Z/10)0.24 当Z>300m时,取Z=300m,当Z<5m时,取Z=5m; B类场地:μ z =(Z/10)0.32 当Z>350m时,取Z=350m,当Z<10m时,取Z=10m; C类场地:μ z =0.616×(Z/10)0.44 当Z>400m时,取Z=400m,当Z<15m时,取Z=15m; D类场地:μ z =0.318×(Z/10)0.60 当Z>450m时,取Z=450m,当Z<30m时,取Z=30m; 对于B类地形,15.6m高度处风压高度变化系数: μ z =1.000×(Z/10)0.32=1.1529 μ s1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数μ s1 : 一、外表面 1. 正压区按表7.3.1采用; 2. 负压区 -对墙面,取-1.0 -对墙角边,取-1.8 二、内表面 对封闭式建筑物,按表面风压的正负情况取-0.2或0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的,在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料,在上述区域风吸力系数可取-1.8,其余墙面可考虑-1.0,由于围护结构有开启的可能,所以

风荷载标准值

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,力,位移,加速度等)是高层建筑设计 计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特 点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动 (简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对 结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件力。阵风对结构的 作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析 脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法 为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引 起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风 振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉 动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作

一般情况下的风荷载计算

参考规范: 《建筑结构荷载规范》GB50009-2012 《高层建筑混凝土结构技术规程》JGJ3-2010 风荷载: 风荷载标准值 《荷载规范》8.1.1、《高规》4.2.1 0w w z s z k μμβ= (1)该风荷载标准值的计算公式适用于计算主要承重(主体)结构的风荷载; (2)所求的风荷载标准值为顺风向的风荷载; (3)风荷载垂直于建筑物的表面; (4)风荷载作用面积应取垂直于风向的最大投影面积; (5)适用于计算高层建筑的任意高度处的风荷载。 基本风压 《荷载规范》3.2.5第2款 对雪荷载和风荷载,应取重现期为设计使用年限…… 《荷载规范》8.1.2 基本风压应采用按本规范规定的方法确定的50年重现期的风压,但不得小于0.3kN/㎡。 《荷载规范》E.5 《高规》4.2.2 ……对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采用。 (条文说明)……一般情况下,对于房屋高度大于60m 的高层建筑,承载力设计时风荷载计算可按基本风压的1.1倍采用…… 《烟规》5.2.1 ……基本风压不得小于0.35kN/㎡。对于安全等级为一级的烟囱,基本风压应按100年一遇的风压采用。 风压高度变化系数 《荷载规范》8.2.1 地面粗糙度 A 类 近海海面和海岛、海岸、湖岸及沙漠地区 B 类 田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇 C 类 密集建筑群的城市市区 D 类 密集建筑群且房屋较高的城市市区 《荷载规范》表8.2.1 对墙、柱的风压高度变化系数,均按墙顶、柱顶离地面距离作为计算高度z ,查表用插入法确定。 风压体型系数 《荷载规范》8.3.1 围墙:按第32项,取1.3 《高规》4.2.3 1 圆形平面建筑取0.8; 2 正多边形及截角三角形平面建筑,由下列计算:n s /2.18.0+=μ 3 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取1.3; 4 下列建筑取1.4: 1)V 形、Y 形、弧形、双十字形、井字形平面建筑; 2)L 形、槽形和高宽比H/B 大于4的十字形平面建筑;

第4章 风荷载

第四章风荷载

主要内容: ?4.1 风的有关知识 ?4.2 风压 ?4.3 结构抗风计算的几个重要概念?4.4 顺风向结构风效应 ?4.5 横向结构风效应

4.1 风的有关知识 1 . 风的形成 由于存在压力差或气压梯度,空气从气压高的地方向气压底的地方流动而形成风。

2 . 两类性质的大风 1.台风 弱的热带气旋→引入暖湿空气→在涡旋内部产生上升和对流运动→加强涡旋→‥‥‥→台风 2.季风 冬季:大陆冷,海洋暖,风:大陆→海洋 夏季:大陆热,海洋凉,风:海洋→大陆

3. 我国的风气候总况 我国的风气候总体情况如下: (1)台湾、海南和南海诸岛,由于地处海 洋,年年受台风直接影响,是我国的最大风 区。 (2)东南沿海地区由于受台风影响,是我国大陆上的大风区。风速梯度由沿海指向内陆。台风登陆后,由于受地面摩擦的影响,风速能弱很快,在离海岸100km处,风速约减小一半。 (3)东北、华北和西北地区是我国的次大风区,风速梯度由北向南,与寒潮入侵路线一致。华北地区夏季受季风影响,风速有可能超过寒潮风。黑龙江西北部处于我国纬度最北地区,它不在蒙古高压的正前方,因此那里的风速不大。 (4)青藏高原地势高,平均海拔4-5km,也属较大风区。 (5)长江中下游、黄河中下游是小风区,一般台风到此已大为减弱,寒潮风到此也是强弩之末。 (6)云贵高原处于东亚大气环流的死角,空气经常处于静止状态,加之地形闭塞,形成我国最小风区。

4. 风级 为了区分风的大小,根据风对地面(或海面)物体影响程度,常将风划分为13个等级。风速越大,风级越大,由于早期人们还没有仪器来测定风速,就按照风所引起的现象来划分风级。风的13个等级如表4-1所示。

风荷载计算方法与步骤

1风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。 1.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算: ω 风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压 1.1.1基本风压 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。 按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。 也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。 1.1.2风压高度变化系数 风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。规范以B类地面粗糙程度作为标准地貌,给出计算公式。 1.1.3风荷载体形系数 1)单体风压体形系数 (1)圆形平面;

(2)正多边形及截角三角平面,n为多边形边数; (3)高宽比的矩形、方形、十字形平面; (4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面; (5)未述事项详见相应规范。 2)群体风压体形系数 详见规范规程。 3)局部风压体形系数 檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于2.0。未述事项详见相应规范规程。 1.1.4风振系数 对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。(对于高度H大于30米、高宽比且可忽略扭转的 高层建筑,均可只考虑第一振型的影响。) 结构在Z高度处的风振系数可按下式计算: ○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下: ○2R为脉动风荷载的共振分量因子,计算方法如下: 为结构阻尼比,对钢筋混凝土及砌体结构可取; 高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用

风荷载取值规范

3.1.3 风荷载 建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。 1、风荷载标准值计算 垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算: βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。多层建筑,建筑物高度<30m ,风振系数近似取1。 (1)风荷载体型系数μS 风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规 表3.1.10 建筑物体型系数取值表 注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。 注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定。 注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。 W W z s z k μμβ=)21.3(-

注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局部风压力体型系数。 (2)风压高度变化系数μz 设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。 对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。 表3.1.11 风压高度变化系数 关于地面粗糙程度的分类: A类:近海海面、海岛、海岸、湖岸及沙漠地区; B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区; C类:有密集建筑群的城市市区; D类:有密集建筑群和且房屋较高的城市市区。 (3)基本风压值W0 基本风压值W0,单位kN/m2,以当地比较空旷平坦场地上离地10m高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照《荷载规范》附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表。 2、基本风压的取值年限 《荷载规范》在附录D中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限: ①临时性建筑物:取n=10年一遇的基本风压标准值; ②一般的工业与民用建筑物:取n=50年一遇的基本风压标准值; ③特别重要的建筑物、或对风压作用比较敏感的建筑物(建筑物高度大于60m):取 表3.1.12 浙江省主要城镇基本风压(kN/m2)取值参考表

塔基础设计的水平荷载计算

塔基础设计的水平荷载计算 摘要:本文就塔基础结构设计中水平荷载计算进行阐述,使设计者能够掌握塔基础设计工程中的关键点,从而,加深对塔基础的认识。 关键词:塔型设备风荷载地震作用 引言 塔设备是石油化工、石油工业、化学工业等生产中最重要的设备之一。塔设备由塔设备本体、塔设备附属构筑物(如操作平台、栏杆、梯子、管线等)、支持塔设备的基础这三部分组成。塔基础支持塔设备的全部荷载(包括垂直荷载、水平荷载等),所以塔基础的设计非常重要,要求达到坚固、适用、经济和合理。 塔型设备属于高耸构筑物,在高耸构筑物计算中风荷载和地震作用的计算尤为重要。在塔基础的结构设计中,应根据使用中在结构上可能同时出现的荷载,按照承载能力极限状态和正常使用极限状态分别进行荷载效应组合。 表1荷载组合表 通过表1可以发现在塔基础结构设计中无论何种工况的组合都少不了风荷载。同时地震荷载在组合中往往起着决定性作用,《石油化工塔型设备基础设计规范》(SH3030-1997)中5.4.4列出了可不进行截面抗震验算的几种情况,说明在这几种情况下风荷载起决定因素。所以下面我们重点讨论风荷载作用和水平地震作用。 1 风荷载[] 露天放置的塔设备在风力作用下,将在两个方向上产生振动。一种是顺风向的振动,振动的方向与风流向的一致,另一种是横风向的振动,振动方向与风的流向垂直。前一种振动是常规设计的主要内容,后一种振动也称风诱发的振动,在工程界以前较少予以重视,但现在对诱发振动的研究日益受到重视,而在塔设备设计的时候考虑风诱发的振动已成为必然的趋势。 1.1 风向风荷载(常规风荷载计算) 《石油化工塔型设备基础设计规范》(SH3030-1997)5.3.1条给出了塔风

风荷载计算算例

3.6.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为: 0k z s z w u u βω= (8.1.1-1) s u ——体型系数 z u ——风压高度变化系数 z β——风振系数 0ω——基本风压 k w ——风荷载标准值 体型系数s u 根据建筑平面形状由《建筑结构荷载规范》表7.3.1确定。本项目建筑平面为规则的矩形,查表8.3.1项次30,迎风面体型系数0.8(压风指向建筑物内侧),背风面-0.5(吸风指向建筑外侧面),侧风面-0.7(吸风指向建筑外侧面)。 风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表8.2.1确定。本工程结构顶端高度为3.0x30+0.6=90.6米,建筑位于北京市郊区房屋较稀疏,由规范8.2.1条地面粗糙度为B 类。 由表8.2.1高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为1.93和2.00。 则90.6米高度处的风压高度变化系数通过线性插值为: 90.690(2.00 1.93) 1.93 1.934210090z u -=-+=-

对于高度大于30m 且高宽比大于1.5的房屋,以及基本自振周期T1大于0.25s 的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。 本工程30层钢结构建筑。基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算: 1012Z z gI B β=+ (8.4.3) 式中: g ——峰值因子,可取2.5 10I ——10m 高度名义湍流强度,对应ABC 和D 类地面粗糙,可分别取0.12、0.14、0.23和0.39; R ——脉动风荷载的共振分量因子 z B ——脉动风荷载的背景分量因子 脉动风荷载的共振分量因子可按下列公式计算: R = (8.4.4-1) 115x x => (8.4.4-2) 式中: 1f ——结构第1阶自振频率(Hz ) w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取1.28、1.0、0.54和0.26; 1ζ——结构阻尼比,对钢结构可取0.01,对有填充墙的钢结构房屋可取0.02,对钢筋混凝土及砌体结构可取0.05,对其他结构可根据工程经验确定。 经过etabs 软件分析,结构自振周期1 4.67f s =

相关主题
文本预览
相关文档 最新文档