信号转导文献
- 格式:pdf
- 大小:504.34 KB
- 文档页数:31
Rspo信号转导通路研究进展王忻妍;朱建伟【期刊名称】《全科医学临床与教育》【年(卷),期】2015(000)003【总页数】3页(P288-290)【作者】王忻妍;朱建伟【作者单位】310012 浙江杭州,杭州市肿瘤医院肿瘤内2科;310012 浙江杭州,杭州市肿瘤医院肿瘤内2科【正文语种】中文特异性顶部盘状底板反应蛋白(r oo f p la te-spec i f i c sp o ndin,R sp o)是一组新型分泌型蛋白,该家族由4种典型的人类分泌型蛋白组成,参与体内外经典的W nt-β连锁蛋白(βca tenin)信号通路的放大[1],W nt-βca tenin信号通路在胚胎发展和成熟组织自我更新过程中发挥着重要作用,现就R sp o信号转导作以下综述。
哺乳动物R sp o蛋白家族包括4种独立的基因产物,它们共用40%~60%特殊的配对氨基酸序列,并有重要的结构同源性[2]。
R sp o1包含263个氨基酸,是典型的分泌型蛋白质。
在4种蛋白中,每个R sp o由5个编码相应结构域的外显子区组成。
N末端蛋白分选信号显示出相对少的相似性[2]。
4个R sp o蛋白氨基末端胞内网状信号肽构成分泌入口的通道。
在前荷尔蒙转化酶区有两个临近的富含半胱氨酸的成对碱性氨基酸蛋白酶(F urin-l ike)区域,紧邻的是凝血酶敏感蛋白基序(thr om b o sp o ndin1 repe a ts,T SR1)。
F urin-l ike与T SR1区域的半胱氨酸残基表现出严格的序列保守性。
C末端区域长度各有不同,具有不同电量的正电荷[2]。
这些区域由不连续的外显子编码,提示其祖蛋白具有模块化起源。
体外实验表明,2个F urin-l ike区域对βca tenin通路的稳定性有重要意义[2]。
F urin-l ike repe a ts与枯草杆菌蛋白酶样前蛋白转化酶家族成员f urin相关,功能尚不清楚。
eNOS-NO-cGMP-PKG信号转导通路在心血管系统缺血再灌注损伤中的作用及研究进展发表时间:2014-08-15T16:18:33.263Z 来源:《医药前沿》2014年第16期供稿作者:李洋杨为民 (研究员)(通讯作者)[导读] 本文就eNOS-NO-cGMP-PKG信号转导通路在缺血再灌注损伤过程中的作用及研究进展做一综述。
李洋杨为民 (研究员)(通讯作者)(云南省昆明市呈贡新区雨花街道春融西路1168号昆明医科大学 650500)【摘要】近年来我国心血管疾病(CCVD)位列各种疾病死因的第一位,缺血性心血管疾病(ICCVD)是临床心血管疾病的主要发病类型。
心血管疾病的发病机理较复杂,目前其机制尚未完全阐明,研究表明它的发病与多种因素有关,其中缺血再灌注损伤(ischemia-reperfusion,IR)是缺血性心血管疾病主要的病理过程[1]。
已有研究显示,缺血再灌注过程中,通过激活eNOS-NO系统,从而激活下游的cGMP-PKG信号通路,实现对缺血性组织的保护。
本文就eNOS-NO-cGMP-PKG信号通路在心血管系统缺血再灌注损伤中的作用及研究进展作一综述。
【关键词】缺血再灌注损伤一氧化氮合酶一氧化氮蛋白激酶G 信号通路【中图分类号】R319 【文献标识码】A 【文章编号】2095-1752(2014)16-0353-03前言缺血性心血管疾病具有高发病率、高死亡率、高复发率及高致残率的特点。
早期恢复血液流通是治疗缺血性心血管疾病的关键,而缺血后再灌注(ischemia-reperfusion,IR)则会导致缺血组织损伤程度的进一步加重。
IR包括第一阶段的瞬时性缺血(ischemia)和第二阶段的再灌注(reperfusion)[2-3],其不仅导致缺血性损伤,还导致血管内皮损伤,炎症反应、氧化应激、血栓形成等,短暂缺血也诱导了对IR具有保护作用的缺血预适应反应。
但目前参与缺血再灌注损伤过程的作用机制尚未完全阐明。
223欢迎关注本刊公众号·综 述·《中国癌症杂志》2019年第29卷第3期 CHINA ONCOLOGY 2019 Vol.29 No.3基金项目:国家自然科学基金(81770137)。
通信作者:陆维祺 E-mail:***********************.cn 先天性免疫应答是机体抗感染免疫的第一道防线,相对于适应性免疫应答来说具有出现早、应答发生速度快等特点。
其主要识别病原体相关分子模式(pathogen-associated molecular patterns,PAMPs)和损伤相关的分子模式(damage-associated molecular patterns,D A M P s )。
其通过模式识别受体(p a t t e r n recognition receptors,PRR)[1]来非特异地识别各种致病物质,PRR主要有以下两类受体:一类是位于细胞膜表面或内体膜上的Toll样受体(Toll-like receptor,TLR),另一类是位于细胞质内的核苷酸结合寡聚化结构域(nucleotide- binding oligomerization domain,NOD)样受体及视黄酸诱导基因(retinoic acid inducible gene,RIG )样受体。
TLR在抗感染与抗肿瘤方面的作用已经被广泛研究,近年来关于同属于PRR的NOD样受体的研究主要集中于其介导的信号通路及其在抗微生物感染中的作用,而关于其与肿瘤关系的研究却很少。
NOD样受体可以分为NLRA、NLRB、NLRC、NLRP和NLRX 5个亚家族,其中NLRC和NLRP亚家族是NOD样受体主要的两种类型,而NOD1和NOD2是NLRC亚家族中的主要代表,也是NOD样受体中研究最多的2个成员[2],本文对NOD1和NOD2受体的分子组成、介导的信号转导通路及其与肿瘤关系的最新NOD样受体介导的信号转导通路及其与肿瘤 关系的研究进展林巧卫1,张 思2,陆维祺11.复旦大学附属中山医院普外科,上海 200032;2.复旦大学上海医学院生物化学与分子生物学系,上海 200032[摘要] 核苷酸结合寡聚化结构域(nucleotide-binding oligomerization domain ,NOD )样受体是一类位于细胞质的模式识别受体,在先天性免疫应答中起着十分重要的作用。
生物文献综述范文生物文献综述,植物内源激素调控植物生长发育。
植物内源激素是一类对植物生长发育具有重要调控作用的化合物,包括植物生长素、赤霉素、脱落酸、激动素等。
这些内源激素通过调控植物的生长、开花、果实成熟等生理过程,对植物的生长发育起着至关重要的作用。
本文将对植物内源激素的生物合成、信号转导以及调控植物生长发育的机制进行综述。
植物内源激素的生物合成是一个复杂的过程,涉及到多个酶的参与。
以生长素为例,它是一种重要的植物内源激素,其生物合成主要通过色氨酸途径进行。
首先,色氨酸在酶的作用下被转化为吲哚-3-乙酸,然后再经过一系列酶的催化作用最终合成生长素。
而赤霉素的生物合成则是通过异戊二烯途径进行的,这一过程也是一个复杂的生物合成过程,需要多个酶的参与。
植物内源激素的信号转导是植物生长发育调控的重要环节。
植物内源激素通过与受体蛋白结合,触发一系列信号转导通路,最终调控植物的生长发育。
以生长素为例,它的信号转导主要通过TIR1/AFB蛋白介导的途径进行。
当生长素与TIR1/AFB蛋白结合后,会激活SCF E3泛素连接酶复合物,进而降解生长素反应蛋白,从而调控植物的生长发育。
而赤霉素的信号转导则主要通过GID1蛋白介导的途径进行,这一过程也是一个复杂的信号转导通路。
植物内源激素通过调控植物的生长发育,对植物的生长发育起着至关重要的作用。
生长素是植物生长发育的主要调控激素,它对植物的细胞分裂、伸长、分化等过程起着重要作用。
赤霉素则主要调控植物的伸长生长,它能够促进植物的茎、叶等器官的伸长,从而影响植物的整体生长。
而激动素则主要调控植物的开花、果实成熟等生理过程,它对植物的生殖生长起着重要作用。
综上所述,植物内源激素通过生物合成、信号转导等过程调控植物的生长发育,对植物的生长发育起着重要作用。
但是,目前对植物内源激素调控机制的研究还存在许多未解之谜,需要进一步深入研究。
相信随着科学技术的不断进步,对植物内源激素调控机制的研究将会取得更多的突破,为植物生长发育的调控提供更多的理论基础和应用价值。
hHGF调控肝纤维化信号转导途径研究刘灏;陈景良;向国安【期刊名称】《南方医科大学学报》【年(卷),期】2010(030)003【摘要】目的应用寡聚核苷酸基因表达谱芯片研究人肝细胞生长因子(hHGF)转染肝癌细胞系后基因表达谱的差异,分析hHGF抗肝纤维化的信号转导途径.方法应用包含20000条人类全长基因的寡聚核苷酸芯片ImaGene3.0检测hHGF转染的肝癌细胞系基因表达谱差异,并选择其中参与肝纤维化过程的存在表达上调基因[信号转导和转录激活因子1(STAT1)和丝裂原活化蛋白激酶1(MAPK1)]用RT-PCR方法进行验证分析.结果基因芯片筛选出存在差异表达的基因.其中包括转录因子、细胞周期素、细胞因子相关蛋白、糖脂类物质代谢相关酶及细胞信号转导相关因子等,RT-PCR验证参与肝纤维化过程中的几种存在表达差异的基因,其中STAT1和MAPK1表达明显上调,与基因芯片分析结果一致.结论 hHGF转染肝癌细胞系存在基因表达差异,可能影响细胞周期的调控、物质代谢相关过程及细胞信号转导系统.hHGF可能通过激活JAK/STAT通路和MAPK通路发挥其抗肝纤维化作用.【总页数】4页(P431-434)【作者】刘灏;陈景良;向国安【作者单位】南方医科大学中西医结合医院普外科,广东,广州,510315;南方医科大学中西医结合医院普外科,广东,广州,510315;广东省第二人民医院普外科,广东,广州,510317【正文语种】中文【中图分类】R657.3;R34【相关文献】1.植物PP2C蛋白磷酸酶负调控ABA信号转导途径研究进展 [J], 阮海华2.调控RANTES的信号转导途径研究进展 [J], 刘辽;杨云霞3.调控哮喘趋化因子作用的信号转导途径研究进展 [J], 张维溪;李昌崇4.瘦素对大鼠肝纤维化的信号转导调控及槲寄生碱的干预作用 [J], 孟霞;王学丛;丰平;卢静;王学江5.基于Rho-ROCK信号转导通路调控肝纤维化研究进展 [J], 郑洋;王嘉孺;王佳慧;刘露露;傅品悦;赵铁建因版权原因,仅展示原文概要,查看原文内容请购买。
植物光信号转导LI Xiukun;XU Dongqing【摘要】植物的生长发育受到多种环境因素的影响,而光信号是其中最重要的环境信号之一.从植物的种子萌发开始到完成整个生命周期,光参与调控其中几乎每一个生长和生理发育过程.植物自身进化了一整套复杂而精细的光信号转导系统,以应对自然界中时刻变化的光环境.经过30多年的研究,植物光生物学家确定了光受体-E3泛素化连接酶复合体-转录因子为主要调控途径的光信号转导体系.这一信号转导网络控制了植物体内将近1/3基因的表达,从而在分子层面上确保植物的正常生长发育.【期刊名称】《自然杂志》【年(卷),期】2019(041)003【总页数】5页(P183-187)【关键词】光信号;光受体;COP/DET/FUS【作者】LI Xiukun;XU Dongqing【作者单位】;【正文语种】中文太阳光是植物能量的主要来源。
除此之外,光还作为一个重要的环境信号因子影响和调控植物的诸多生长发育和生理过程。
自20世纪90年代以来,植物光生物学家借助分子生物学和分子遗传学的发展和各种新的技术方法,对植物光信号转导进行研究并有突破性的进展。
植物接受光信号并传递至下游,进而作出适时的应答反应,以适应时刻变化的光环境。
植物是固生生物,从种子落地发芽开始,就会在一个固定的地点完成整个生命周期。
但是,植物并不像我们看到的那样静止不动,在微观层面上可谓是瞬息万变。
不同光环境下,植物启动精密的光信号转导系统以应对不同的光质、光强、光照时间和方向,确保其自身的健康生长。
1 植物识别光信号的物质——光受体阳光普照一切生物,为大自然带来生机。
所谓大海航行靠舵手,万物生长靠太阳。
自1906年美国科学家Garner和Allard发现光对植物生长发育的影响开始,全世界的科学家就从未停止过光对植物作用的研究。
在数万年的进化过程中,植物为了感知和识别光信号已经进化出几类不同的光受体。
它们是识别280~315 nm 的 UV-B 信号的紫外光受体 UVR8[1-2] 、吸收波段为315~500 nm 的 UV-A和蓝光受体隐花色素 1 和 2(CRY1和CRY2)以及向光素 1 和 2(Phot1和Phot2)[3-5] ,而光敏色素(PHYA~PHYE)主要吸收600~750 nm 的红光和远红光[6] (图1)。
第一章细胞信号转导(signal transdution)教学时数:4学时左右。
教学目的与要求:使学生了解细胞信号转导的定义和内容;掌握受体和和跨膜信号转换的过程,植物细胞第二信使的种类及重要作用。
教学重点:细胞信号转导的定义、研究内容;受体和跨膜信号转换;细胞内的第二信使系统。
教学难点:细胞受体和跨膜信号转换。
本章主要阅读文献资料:1.翟中和编:《细胞生物学》,高等教育出版社。
2.王镜岩主编:《生物化学》(第三版),高等教育出版社。
3.宋叔文、汤章城主编:《植物生理与分子生物学》(第二版),科学出版社。
4.王宝山主编:《植物生理学》(2004年版),科学出版社。
本章讲授内容:生长发育是基因在一定时间、空间上顺序表达的过程,而基因表达除受遗传信息支配外,还受环境的调控。
植物在整个生长发育过程中,受到各种内外因素的影响,这就需要植物体正确地辨别各种信息并作出相应的反应,以确保正常的生长和发育。
例如植物的向光性能促使植物向光线充足的方向生长,在这个过程中,首先植物体要能感受到光线,然后把相关的信息传递到有关的靶细胞,并诱发胞内信号转导,调节基因的表达或改变酶的活性例如:光质→光受体→信号转导组分→光调节基因→向光性反应对于植物来讲,在生命活动的各个阶段都受到周围环境中各种因素的影响,例如温度、湿度、光、重力、病原微生物等等。
有来自相邻细胞的刺激、细胞壁的刺激、激素等等刺激,连接环境刺激到植物反应的分子途径就是信号转导途径,细胞接受信号并整合、放大信号,最终引起细胞反应,这种信息在胞间传递和胞内转导过程称为植物体内的信号传导。
植物细胞信号转导(signal transdution)主要研究植物感受、传导环境刺激的分子途径及其在植物发育过程中调控基因的表达和生理生化反应,即细胞耦联各种(内部或外源)刺激信号与其引起的特定的细胞生理效应之间的一系列反应机制。
植物细胞信号转导的模式生物体在不同的生长发育阶段,自身也不断产生各种信号,以调节其本身的生命进程,如激素、营养物质等。
Recognition and Signaling by T oll-Like ReceptorsA.Phillip West,∗Anna Alicia Koblansky,∗and Sankar GhoshSection of Immunobiology and Department of Molecular Biophysics andBiochemistry,Yale University School of Medicine,New Haven,Connecticut 06520;email:phillip.west@,alicia.koblansky@,sankar.ghosh@Annu.Rev.Cell Dev.Biol.2006.22:409–37First published online as a Review in Advance on July 5,2006The Annual Review ofCell and Developmental Biology is online at This article’s doi:10.1146/annurev.cellbio.21.122303.115827Copyright c2006by Annual Reviews.All rights reserved1081-0706/06/1110-0409$20.00∗These authors contributed equally to this work.Key Wordsinnate immunity,leucine-rich repeat,TIR domain,signal transduction,MyD88,TRIFAbstractT oll-like receptors (TLRs)are transmembrane proteins that de-tect invading pathogens by binding conserved,microbially derived molecules and that induce signaling cascades for proinflammatory gene expression.A critical component of the innate immune sys-tem,TLRs utilize leucine-rich-repeat motifs for ligand binding and a shared cytoplasmic domain to recruit the adaptors MyD88,TRIF ,TIRAP ,and/or TRAM for downstream signaling.Despite signifi-cant domain conservation,TLRs induce gene programs that lead not only to the robust production of general proinflammatory me-diators but also to the production of unique effectors,which provide pathogen-tailored immune responses.Here we review the mecha-nisms by which TLRs recognize pathogens and induce distinct sig-naling cascades.409A n n u . R e v . C e l l D e v .B i o l . 2006.22:409-437. D o w n l o a d e d f r o m a r j o u r n a l s .a n n u a l r e v i e w s .o r g b y H A R V A R D U N I V E R S I T Y o n 12/02/07. F o r p e r s o n a l u s e o n l y .ContentsINTRODUCTION.................410TLR LIGAND SPECIFICITIES....411TLR1,TLR2,and TLR6.........411TLR3...........................412TLR4...........................413TLR5...........................413TLR7and TLR8.................414TLR9...........................414TLR11..........................414DIVERSITY OF TLR LIGAND RECOGNITION................414Leucine-Rich-Repeat Diversity ...415Cooperative Interactions Between TLRs.........................416Coreceptors and TLR Binding Specificity.....................417TLR SIGNALING PATHWAYS....418MyD88-Dependent Signaling.....419MyD88-Independent/TRIF-Dependent Signaling..........421Additional TIR Adaptor Proteins..422TLR-Mediated Inductionof IRFs .......................424Chromatin Remodeling and TLR Signaling Specificity...........425NEGATIVE REGULATION OF TLR SIGNALING ..............425FINAL THOUGHTS ..............427INTRODUCTIONMetchnikoff first described the innate im-mune system more than a century ago,yet research into this critical arm of immunity was largely overshadowed by the discov-ery of antibodies,B and T cells,and other Innate immunity:the initial,rapidly induced immune response of multicellularorganisms;utilizes nonclonal,germline-encoded receptors for pathogenrecognition and the activation/recruitment of phagocytic cellscomponents of the adaptive immune sys-tem (Silverstein 2003).Recent work,how-ever,has yielded substantial insight into the composition and function of innate immu-nity,and it is now apparent that the innate immune system utilizes an intricate network of effector mechanisms to clear or moder-ate pathogen replication until the adaptiveimmune system can mount a more specific and robust response.In 1989,Janeway (1989)proposed that innate effector mechanisms are initiated via the specific detection of mi-crobes by germline-encoded,nonclonal re-ceptors,which are essential for the imme-diate detection and control of infection in mammals.These molecules,termed pattern-recognition receptors (PRRs),primarily func-tion in recognizing microbial structures re-ferred to as pathogen-associated molecular patterns (PAMPs).Building on this foundational hypothe-sis,researchers have shown that the innate immune system is phylogenetically con-served and is present in all multicellular or-ganisms (Hoffmann 1999,Medzhitov 2001,Medzhitov &Janeway 1997).As proposed by Janeway (1989),innate immunity is in fact predicated upon PRR detection of abun-dantly expressed PAMPs,which are con-served among broad classes of microor-ganisms.These molecules are critical for pathogen replication and/or survival and are unique to microorganisms.Thus,they are ab-sent from host cells and thereby endow the host with an efficient,nonself-reactive means to detect invading pathogens.Examples of such microbial products include lipopolysac-charide (LPS),lipoproteins,and viral or bac-terial nucleic acids.Signaling through PRRs induces a cascade of events including pro-duction of proinflammatory chemokines and cytokines,activation of complement,recruit-ment of phagocytic cells,and mobilization of professional antigen-presenting cells.In the late 1990s,three key discoveries significantly advanced the understanding and definition of PRR-mediated innate immunity.First,in 1996,the Drosophila melanogaster pro-tein T oll,identified previously for its role in dorso-ventral embryo patterning,was shown to be critical for effective immune responses in adult flies against the fungus Aspergillus fu-migatus (Lemaitre et al.1996).The following year,a mammalian homolog of the Drosophila T oll receptor,initially termed human T oll and now known as T oll-like receptor 4(TLR4),410West·Koblansky·GhoshA n n u . R e v . C e l l D e v .B i o l . 2006.22:409-437. D o w n l o a d e d f r o m a r j o u r n a l s .a n n u a l r e v i e w s .o r g b y H A R V A R D U N I V E R S I T Y o n 12/02/07. F o r p e r s o n a l u s e o n l y .was identified.A constitutively active form of this receptor could activate the transcrip-tion factor nuclear factor-kappa B (NF-κB),leading to the expression of proinflammatory genes encoding interleukin (IL)-1,IL-6,and IL-8and the upregulation of costimulatory molecules (Medzhitov et al.1997).Finally,identification of a point mutation in the Tlr4gene that rendered mice unresponsive to LPS challenge,and more susceptible to Gram-negative bacterial sepsis,definitively linked TLRs to innate immune responses (Poltorak et al.1998).TLRs are type I transmembrane proteins of the Interleukin-1receptor (IL-1R)fam-ily that possess an N-terminal leucine-rich-repeat (LRR)domain for ligand binding,a sin-gle transmembrane domain,and a C-terminal intracellular signaling domain.The TLR C terminus is homologous to the intracellular domain of the IL-1R and is thus referred to as the T oll/IL-1receptor (TIR)domain.TLRs are expressed at the cell membrane and in subcellular compartments such as the endo-some.TLRs are widely expressed in many cell types,including nonhematopoietic ep-ithelial and endothelial cells,although most cell types express only a select subset of these receptors.Hematopoietically derived sentinel cells,such as macrophages,neutrophils,and dendritic cells (DCs),however,express most of the TLRs,with some variation in differ-ent subsets,e.g.,between conventional DCs and plasmacytoid DCs.Thus far,13mam-malian TLRs,10in humans and 13in mice,have been identified (Beutler 2004).TLRs 1–9are conserved among humans and mice,yet TLR10is present only in humans and TLR11is functional only in mice.Although much is known about the ligands and signaling path-ways of TLRs 1–9and 11,the biological roles of TLRs 10,12,and 13remain unclear,as their expression patterns,ligands,and modes of signaling have yet to be defined.Over the past few years,several excellent reviews detailing the many aspects of TLR bi-ology have been published.T o avoid duplica-tion,we focus our review on the mechanismsPRR:patternrecognition receptor Pathogen-associatedmolecular pattern (PAMP):amolecular pattern common to classes of microorganisms but not found in host cellsLPS:lipopolysaccharide Cytokine:proteins such as TNF αand IL-6that affect the function and behavior ofneighboring cells via receptor-mediated signaling.Immune cytokines are often referred to as interleukins (IL)TLR:T oll-like receptorNuclearfactor-kappa B (NF-κB):an evolutionarily conservedtranscription factor critical for the production of effector cytokines,growth factors,and enzymes required for the initiation and resolution ofimmune responses LRR:leucine-rich repeatTIR:T oll/IL-1receptor homology domainby which TLRs recognize ligands and in-duce specific signaling cascades for unique an-timicrobial gene programs and general proin-flammatory responses.We provide a brief overview of known TLR ligands,a discussion of the mechanisms by which TLRs achieve diversity in ligand recognition,and a dis-cussion of our current knowledge about the molecular pathways that determine signaling specificity.TLR LIGAND SPECIFICITIES TLR1,TLR2,and TLR6LPS was originally considered to be the ligand for TLR2,but subsequent studies revealed that contaminating bacterial lipoprotein in LPS preparations is the actual ligand (Wetzler 2003).In agreement with these later findings,TLR2-deficient macrophages were found to be hyporesponsive to several Gram-positive bacterial cell wall components as well as Staphylococcus aureus peptidoglycan (T akeuchi et al.2000).Additional work has shown that TLR2is involved in the recognition of a wide range of microbial products and gen-erally functions as a heterodimer with either TLR1or TLR6(Ozinsky et al.2000,Wyllie et al.2000).The TLR2/TLR1heterodimer recognizes a variety of lipoproteins,includ-ing those from mycobacteria and meningo-cocci (T akeuchi et al.2002,Wetzler 2003),whereas the TLR2/TLR6complex recog-nizes mycoplasma lipoproteins and peptido-glycan (T akeuchi et al.2001).Recent reports have demonstrated that triacylated lipopro-teins from bacteria are preferentially recog-nized by the TLR1/TLR2complex,whereas diacylated lipoproteins are recognized by the TLR2/TLR6complex (T akeuchi et al.2002).However,additional TLR2ligands do not ap-pear to require TLR1or TLR6for signal-ing,implying that TLR2may recognize some ligands as homodimers or heterodimers with other non-TLR molecules.Such TLR2lig-ands include the Gram-positive cell wall com-ponent lipoteichoic acid;the mycobacterial •TLR Recognition and Signaling411A n n u . R e v . C e l l D e v .B i o l . 2006.22:409-437. D o w n l o a d e d f r o m a r j o u r n a l s .a n n u a l r e v i e w s .o r g b y H A R V A R D U N I V E R S I T Y o n 12/02/07. F o r p e r s o n a l u s e o n l y .Figure 1TLR ligand specificities.TLRs recognize a diverse array of PAMPs from bacteria,viruses,protozoa,and fungi.For detection of bacteria,heterodimeric TLR2/1binds triacyl lipopeptides,whereas TLR2/6dimers bind diacyl lipopeptides and lipoteichoic acid.Homodimeric TLR2binds peptidoglycan,atypical LPS,phenol-soluble modulin from Staphylococcus epidermidis ,and porin proteins from Neisseria .Inaddition,TLR4binds LPS,TLR5binds flagellin,and TLR9binds bacterial CpG DNA.TLR11detects an unidentified protein(s)from uropathogenic Escherichia coli .Viral dsRNA,RSV F protein,ssRNA,and unmethylated CpG DNA are sensed by TLRs 3,4,7/8,and 9,respectively.Finally,heterodimeric TLR2/6binds fungally derived zymosan and Trypanosoma cruzi GIPLs,whereas TLR11also senses a profilin-like protein from T oxoplasma gondii .Abbreviations:dsRNA,double-stranded RNA;LPS,lipopolysaccharide;GIPLs,glycolipids;PAMP ,pathogen-associated molecular pattern;RSV F ,respiratory syncytial virus fusion;ssRNA,single-stranded RNA;TLR,T oll-like receptor.cell wall component lipoarabinomannan;atypical LPS produced by Legionella ,Lep-tospira interrogans,Porphyromonas gingivitis,and Bordetella ;and porins present in the outer membrane of Neisseria (Figure 1)(Massari et al.2002,Wetzler 2003).In addition to bacterial PAMPs,TLR2het-ero/homodimers recognize fungal and pro-tozoan molecules.Zymosan (a crude mix-ture of glucans,mannan,proteins,chitin,and glycolipids extracted from the cell mem-brane of fungi)induces signaling through TLR2/6(Kataoka et al.2002,Underhillet al.1999a).In addition,glycosylphos-phatidylinositol (GPI)anchors and glycoinos-itolphospholipids from the parasitic protozoa Trypanosoma cruzi induce signaling through TLR2(Campos et al.2001).TLR3Double-stranded RNA (dsRNA)was long hypothesized to be a viral PAMP ,as it is pro-duced during the course of many viral in-fections.Expression of human TLR3con-fers responsiveness to purified dsRNA and412West·Koblansky·GhoshA n n u . R e v . C e l l D e v .B i o l . 2006.22:409-437. D o w n l o a d e d f r o m a r j o u r n a l s .a n n u a l r e v i e w s .o r g b y H A R V A R D U N I V E R S I T Y o n 12/02/07. F o r p e r s o n a l u s e o n l y .polyinosinic-polycytidylic acid [poly(I:C)]in HEK293cells,and TLR3-deficient mice dis-play impaired responses to these ligands.TLR3signaling results in the activation of NF-κB and interferon regulatory factor 3(IRF3),ultimately leading to the production of antiviral molecules,such as type I interfer-ons (IFN-α/β)(Alexopoulou et al.2001).Recent research,however,has demon-strated TLR3-independent recognition of viral dsRNA via the helicases RIG-I (retinoic acid–inducible gene I)and MDA5(melanoma-differentiation-associated gene 5),which are cytoplasmic PRRs expressed abundantly in multiple cell types (Andrejeva et al.2004,Y oneyama et al.2004).RIG-I and MDA5differentially recognize different groups of RNA viruses and are thus critical for a robust antiviral response (Kato et al.2006).These receptors contain a helicase domain for RNA binding and two caspase recruitment domains (CARDs)for signal transduction.Upon ligand binding,RIG-I and MDA5bind and activate the adaptor IPS-1(interferon-βpromoter stimulator 1;also termed CARDIF ,MAVS,and VISA)for NF-κB and IRF3activation and subsequent production of IFN-β(Kawai et al.2005,Meylan et al.2005,Seth et al.2005,Sun et al.2006,Xu et al.2005).The importance of RIG-I-and MDA5-mediated viral recog-nition is further supported by gene-targeting experiments demonstrating that TLR3and its adaptor TRIF are not required for type I IFN production in some virally infected cells,such as fibroblasts and conventional DCs (Honda et al.2003).However,plasmacytoid dendritic cells exclusively utilize TLR3/TRIF signaling for type I IFN production in re-sponse to RNA viruses and poly(I:C)(Kato et al.2005).TLR4LPS is the most thoroughly studied TLR lig-and.LPS,a glycolipid component of the outer membrane of Gram-negative bacteria,ex-hibits the most potent immunostimulatory ac-Polyinosinic:poly-cytidylic acid [poly(I:C)]:a synthetic,double-stranded RNA mimic that binds and signals through TLR3IRF:interferon regulatory factor Interferon (IFN):cytokines that block viral replication and infection ofsurrounding cellstivity among all known TLR ligands (Miyake 2004).T race amounts of LPS activate the in-nate immune system via TLR4,leading to the production of numerous proinflammatory mediators,such as TNF α,IL-1,and IL-6.As discussed below,TLR4alone is not suffi-cient for a robust response to LPS;additional components of the LPS recognition com-plex,CD14and MD-2,are required.Other TLR4ligands include Lipid A analogs (Lien et al.2000),taxol (Perera et al.2001),my-cobacterial components (Means et al.1999),Aspergillus hyphae (Mambula et al.2002),Cryptococcus neoformans capsular polysaccha-ride (Shoham et al.2001),and respiratory syn-cytial virus (RSV)F protein (Kurt-Jones et al.2000).TLR5Flagellin,a protein component of Gram-negative bacterial flagella,is the cognate lig-and for TLR5(Hayashi et al.2001).TLR5recognizes a highly conserved,central core structure of flagellin that is essential for protofilament assembly and bacterial motil-ity (Smith et al.2003).Interestingly,the TLR5recognition site is masked in the fil-amentous flagellar structure,thus indicat-ing that TLR5recognizes only monomeric flagellin (Smith et al.2003).Furthermore,flagellin appears to bind directly to TLR5at residues 386–407of the extracellular do-main (ED),as TLR5-ED mutants lacking this domain are unable to interact with flagellin in biochemical assays (Mizel et al.2003b).Recent articles have demonstrated TLR5-independent recognition of cytosolic Salmonella typhimurium flagellin via Ipaf,a member of the nucleotide-binding oligomer-ization domain (NOD)-LRR (Franchi et al.2006,Miao et al.2006).Ipaf-mediated recog-nition of cytosolic flagellin is critical for caspase-1activation and subsequent IL-1βse-cretion by macrophages,further highlighting the significance of TLR-independent pattern recognition in the overall complexity of the innate immune response. •TLR Recognition and Signaling413A n n u . R e v . C e l l D e v .B i o l . 2006.22:409-437. D o w n l o a d e d f r o m a r j o u r n a l s .a n n u a l r e v i e w s .o r g b y H A R V A R D U N I V E R S I T Y o n 12/02/07. F o r p e r s o n a l u s e o n l y .CpG DNA:short DNA sequences consisting ofcytosine-guanosine sequences flanked by additionalnucleotides that bind and signal via TLR9TLR7and TLR8Mouse TLR7recognizes a class of synthetic antiviral compounds,such as imidazoquino-lines and loxoribine (Hemmi et al.2002).Furthermore,TLR7and human TLR8de-tect the antiviral azoquinoline compound R-848(Jurk et al.2002).These synthetic compounds are structurally related to nu-cleic acids;TLR7and human TLR8rec-ognize guanosine-or uridine-rich single-stranded RNA (ssRNA)derived from RNA viruses (Diebold et al.2004,Heil et al.2003,Lund et al.2004).Interestingly,mammalian RNA,which contains many modified nu-cleosides,is significantly less stimulatory via TLRs 7and 8than bacterial RNA,suggest-ing that the mammalian host utilizes nucle-oside modification as a means to distinguish between endogenous and pathogen-derived RNA (Kariko et al.2005).Similar to the func-tion of TLR3,engagement of these receptors leads to the production of type I IFNs,which are obligate components of antiviral innate immunity.TLR9TLR9recognizes bacterial DNA contain-ing unmethylated CpG motifs,and TLR9-deficient mice are not responsive to CpG DNA challenge (Hemmi et al.2000).TLR9expressed in plasmacytoid DCs recognizes vi-rally derived CpG sequences for the induction of IFN-α(Krug et al.2004,Lund et al.2003,T akeshita et al.2001).The low frequency and high rate of methylation of CpG mo-tifs prevent recognition of mammalian DNA by TLR9under physiological circumstances.In certain autoimmune disorders,however,IgG2a/chromatin complexes containing CpG DNA can engage the B cell receptor and TLR9concomitantly,leading to the pro-duction of rheumatoid factor and other au-toreactive molecules (Leadbetter et al.2002,Viglianti et al.2003).A recent report indi-cated that the intracellular,endosomal restric-tion of TLR9is critical for discriminating be-tween self and nonself DNA,as host DNA,unlike microbial DNA,does not usually en-ter the endosomal compartment (Barton et al.2006).Finally,Coban et al.(2005)reported that TLR9recognizes a novel non-DNA lig-and called hemozoin,which is a hydrophobic heme polymer produced by malaria parasites as they digest host hemoglobin.In addition to TLR9-mediated detection of CpG DNA in the endosomal compartment,the mammalian innate immune system also responds to foreign DNA in the cytosol.This response is important for type I IFN produc-tion in response to viruses and intracellular pathogens,such as Listeria monocytogenes and Shigella flexneri ,that replicate in the cytoplasm (Ishii et al.2006,Stetson &Medzhitov 2006).As membrane restriction prevents TLRs from sampling the cytosol for PAMPs,cytosolic PRRs have evolved to provide comprehensive innate immune recognition that offsets TLR restriction.TLR11Gene-targeting studies revealed that TLR11-deficient mice are susceptible to uropathogenic Escherichia coli infection (Zhang et al.2004).Although the bacterial ligand for TLR11remains undiscovered,the stimulatory activity of uropathogenic bacteria can be destroyed by proteinase K treatment,suggesting that TLR11recognizes a protein ligand.TLR11also recognizes a class of profilin-like molecules expressed by apicomplexan protozoans,including T oxoplasma gondii (Yarovinsky et al.2005).DIVERSITY OF TLR LIGAND RECOGNITIONAs described above,TLRs sense an extremely diverse repertoire of molecular structures from pathogens.Because TLRs recognize conserved molecules shared among members of a particular class of microbes (e.g.,LPS from Gram-negative pathogens and ssRNA from RNA viruses),the entire pathogenic414West·Koblansky·GhoshA n n u . R e v . C e l l D e v .B i o l . 2006.22:409-437. D o w n l o a d e d f r o m a r j o u r n a l s .a n n u a l r e v i e w s .o r g b y H A R V A R D U N I V E R S I T Y o n 12/02/07. F o r p e r s o n a l u s e o n l y .universe can be readily sampled by a small group of receptors (Medzhitov &Janeway 1997).However,the mechanism by which this limited group of germline-encoded re-ceptors uniquely recognizes its ligands is still unclear,and it is remarkable that TLRs rec-ognize such varied molecules utilizing a con-served LRR motif.In addition,TLRs 2and 4are unique in their ability to recognize multiple,diverse PAMPs.In light of this di-versity of recognition,we discuss below the identified and otherwise possible mechanisms by which TLRs bind their ligands,namely through diversification of LRR motifs,coop-erative interactions between different TLRs,and the use of non-TLR coreceptors or accessory molecules.Leucine-Rich-Repeat DiversityThe basic LRR motif comprises 24amino acids that form a β-strand and an α-helix joined by a loop,and it is present in several prokaryotic and eukaryotic receptors (Kobe &Kajava 2001).TLRs contain a unique consen-sus LRR,xLxxLxLxx [N/L ]x +xx +xxxxFxxLx ,where x represents any amino acid and +rep-resents any hydrophobic amino acid (Bell et al.2003).This consensus sequence appears re-peatedly throughout the extracellular domain of TLRs,although other variants of this mo-tif are present.In a recent article,Bell et al.(2003)thoroughly characterize each LRR in TLRs 1–10and propose that nonconsensus LRRs containing insertions after residues 10and 15confer ligand specificity.Insertions in LRRs after the tenth amino acid are predicted to provide ligand binding sites at the concave surface of TLRs,whereas insertions at posi-tion 15are predicted to create binding sites at the convex surface.There are several compelling examples in support of this model,including TLR9and TLR5LRR insertions that potentially create binding sites for CpG DNA and flagellin,re-spectively.With regard to TLR9,insertions at position 10of LRRs 2,5,8,and 11occur on the concave face of the receptor and perhapscreate potential CpG binding sites.Notably,the insertion in the eighth LRR contains two cysteine-rich CXXC motifs,which mediate direct binding of CpG DNA by a transcrip-tional activator termed CpG-binding protein (Lee et al.2001).Thus,the location and sequence of these nonconsensus LRRs sug-gest that they function in TLR9-dependent CpG DNA binding,although this hypothe-sis has not been tested experimentally (Bell et al.2003,Lee et al.2001).As mentioned above,Mizel et al.(2003b)recently mapped the TLR5extracellular domain required for flagellin binding (amino acids 386–407),and they also showed that the domain encom-passes an LRR.Interestingly,the predicted flagellin binding site resides within LRR 14of the extracellular domain,and it contains a six-residue insertion after position 15,which provides further experimental support for the insertion specificity model (Bell et al.2003).Finally,mutational analysis of the TLR2extracellular domain illustrated that deletion of the first seven N-terminal LRRs did not drastically affect its ability to transduce sig-nals for NF-κB and mitogen-activated pro-tein kinase (MAPK)activation in 293cells;therefore,its ability to interact with microbial polypeptides and peptidoglycan remains un-affected (Meng et al.2003,Mitsuzawa et al.2001).However,N-terminal mutant TLR2displayed downstream signaling deficiencies in response to many other TLR2ligands,pro-viding evidence that specific LRR domains on TLR2interact with different PAMPs,thereby increasing recognition capacity.Therefore,LRRs on each TLR seem to function to create unique ligand specificities for the respective receptors,which aids in explaining the diverse array of PAMPs recognized by this family of PRRs.Most data regarding LRRs and ligand binding are predicated on some form of muta-tional analysis in which large portions of var-ious TLR ectodomains are removed and the degree of inhibition between PAMP/receptor interaction is observed biochemically.Although these experiments are highly •TLR Recognition and Signaling415A n n u . R e v . C e l l D e v .B i o l . 2006.22:409-437. D o w n l o a d e d f r o m a r j o u r n a l s .a n n u a l r e v i e w s .o r g b y H A R V A R D U N I V E R S I T Y o n 12/02/07. F o r p e r s o n a l u s e o n l y .informative,they do not address the concern that mutating portions of any protein may result in an overall altered conformation.Thus,the altered binding of ligands to mutated TLRs may not be the direct re-sult of removing the binding site per se.Ultimately,cocrystallographic studies are needed to provide concrete proof of specific PAMP/TLR interaction domains,but given the difficulty in purifying large amounts of TLR extracellular domains,this proof has been slow to arrive.Recently,Bell et al.(2005)and Choe et al.(2005)independently solved the crystal struc-ture of human TLR3-ED,providing a ma-jor breakthrough in the structural analysis of TLRs.Both groups concluded that the struc-ture of human TLR3is a horseshoe-shaped solenoid that is heavily glycosylated,and both identified possible dsRNA binding sites.Dis-agreeing with the current model of TLR lig-and binding,Choe et al.(2005)concluded that glycosylation and the overall negative charge of the concave surface would likely prevent dsRNA binding.They proposed that the binding site of dsRNA exists on the con-vex,glycosylation-free face of TLR3,which consequently has many basic residues to ac-commodate the net negative charge of nucleic acids.In contrast,Bell et al.(2005)argued that the binding site for dsRNA may reside in the concave region of the solenoid because sulfate ions that mimic the phosphate backbone of nucleic acids were found attached to the side chains of several amino acids on the concave face.These authors also proposed that loops created from insertions in LRRs 12and 20yield a pocket on the glycosylation-free,con-vex face of TLR3suitable for dsRNA bind-ing.Because these insertions are highly con-served across TLR3from different species,these sites likely participate in ligand binding (Bell et al.2005).Although no cocrystalliza-tion data were provided,the structural anal-yses present substantial insight into the po-tential means by which TLR3binds dsRNA.As the LRR sequence and crystal structure of TLR3indicate multiple ligand binding sites,it is interesting to consider whether this re-ceptor binds ligands in addition to dsRNA.Additional evidence is needed to determine whether this idea is correct.However,other TLRs bind multiple ligands,and the large sur-face area and spatial distribution of putative binding sites on TLR3may explain the di-verse ligand specificities of other TLRs.Cooperative Interactions Between TLRsAs described above,TLR2functions as a heterodimer with TLRs 1and 6for recog-nition of a diverse group of PAMPs.Al-though bacterial lipopeptides are important ligands for these heterodimeric pairs,data from many other groups suggest that TLR2/1or TLR2/6dimers recognize additional lig-ands,such as zymosan,Y ersinia V antigen (Sing et al.2002),and Escherichia coli en-terotoxins (Hajishengallis et al.2005).These ligands are structurally unrelated to bacte-rial lipopeptides,and the diversity of recog-nition is likely provided by the combination of LRR domains on each TLR.Recently,Omueti et al.(2005)showed that LRRs 9–12of human TLRs 1and 6mediate the abil-ity of these receptors to discriminate between acylated lipoproteins,as domain exchange be-tween the two receptors alters lipopeptide re-sponsiveness in transfected cells.Additionally,LRRs 7–10of TLR2were shown to be crit-ical for responses to tri-lauroylated lipopep-tides (Grabiec et al.2004,Meng et al.2003).T aken in combination,these data suggest that TLR2/1and TLR2/6heterodimers bind lipopeptide PAMPs cooperatively at regions predicted to lie on the convex,outer loops of both receptors (Omueti et al.2005).Although these studies clarify heterodimeric TLR re-sponses to lipopeptides,they do not readily explain the requirement of both TLR2and either TLR1or TLR6receptor pairs for the recognition of structurally unrelated PAMPs.Analysis of all three TLRs reveals that several nonconsensus LRRs containing insertions lie outside of the predicted lipopeptide binding416West·Koblansky·GhoshA n n u . R e v . C e l l D e v .B i o l . 2006.22:409-437. D o w n l o a d e d f r o m a r j o u r n a l s .a n n u a l r e v i e w s .o r g b y H A R V A R D U N I V E R S I T Y o n 12/02/07. F o r p e r s o n a l u s e o n l y .。