当前位置:文档之家› 铝原子簇

铝原子簇

铝原子簇
铝原子簇

铝原子簇

摘要原子簇是现今化学研究的热点之一。简要介绍了原子簇的概念,并详细介绍了铝原子簇中的Al13、Al14的结构、性质,以及铝碘化物原子簇的稳定性规律。最后介绍了研究铝原子簇的意义。

关键词原子簇铝原子簇超原子凝胶模型

Science 上发表了2篇美国宾夕法尼亚州大学教授A.Welford Castleman

等关于铝原子簇(clusters of aluminum atoms)研究的文章[1,2],引起了广泛的兴趣和关注。原子簇(cluster)是当今化学比较活跃的研究领域,涉及的内容非常广泛和丰富,取得了许多引人注目的研究成果。最为人们所熟悉的原子簇可能就是足球烯(C60)。了解原子簇,不仅能了解当前科技的发展与科学家们进行的探索,还能帮助人们在介观的角度上认识自然。

在20世纪80年代以前,人们对物质系统的研究可分为宏观和微观2个层次。约在20世纪80年代中期,人们提出了介观这一概念,并将尺度介于宏观和微观之间的体系称为介观体系。为了研究的方便,人们又把介观体系细分为亚微米体系(0.1 μm~1 μm)、纳米体系(1 nm~100 nm)和原子簇(典型尺寸<1 nm)[3]。原子簇从其大小上看,是介于原子分子和纳米体系之间的。原子簇化学是无机化学、物理化学、结构化学和金属化学相互交叉衍生出的一门边缘学科。进入20世纪90年代,它与纳米科学技术、介观物理相结合,成为一门迅速发展的新型交叉科学。铝原子簇是该领域的研究热点之一。

1 原子簇

1.1 原子簇是什么

原子簇是由几个乃至几百个原子以化学键结合在一起的聚集体,是一种特殊的物质状态[4]。也有学者认为:原子簇是由几个乃至几千个原子或分子(国际

上多数定义原子数在10~10 5范围)通过一定的物理或化学结合力组成的相对

稳定的微观和亚微观聚集体[5]。原子簇的名称是F.A. Cotton 于1966年首次提出的[6]。1982年,徐光宪建议将原子簇化合物定义为:以3个或3个以上的有限原子直接键合组成多面体或缺顶多面体骨架为特征的分子或离子[7]。目前的一些文献中常将原子簇和原子簇化合物均称为原子簇[8]。原子簇按照原子间的化

原子结构示意图大全

+19 2 8 8 1 钾K +20 2 8 8 2 钙Ca +21 2 8 9 2 钪Sc +22 2 8 10 2 钛Ti +23 2 8 11 2 钒V +24 2 8 13 1 铬Cr +25 2 8 13 2 锰Mn +26 2 8 14 2 铁Fe +27 2 8 15 2 钴Co +28 2 8 16 2 镍Ni +29 2 8 18 1 铜Cu +30 2 8 18 2 锌Zn +31 2 8 18 3 镓Ga +32 2 8 18 4 锗Ge +33 2 8 18 5 砷As +34 2 8 18 6 硒Se +35 2 8 18 7 溴Br +36 2 8 18 8 氪Kr +37 2 8 18 8 1 铷Rb +38 2 8 18 8 2 锶Sr +39 2 8 18 9 2 钇Y +40 2 8 18 10 2 锆Zr +41 2 8 18 12 1 铌Nb +42 2 8 18 13 1 钼Mo +43 2 8 18 13 2 锝Tc +44 2 8 18 15 1 钌Ru +45 2 8 18 16 1 铑Rh +46 2 8 18 18 钯Pd +47 2 8 18 18 1 银Ag +48 2 8 18 18 2 镉Cd +49 2 8 18 18 3 铟In +50 2 8 18 18 4 锡Sn +51 2 8 18 18 5 锑Sb +52 2 8 18 18 6 碲Te +53 2 8 18 18 7 碘I +54 2 8 18 18 8 氙Xe +55 2 8 18 18 8 1 铯Cs +56 2 8 18 18 8 2 钡Ba +57 2 8 18 18 9 2 镧La +58 2 8 18 19 9 2 铈Ce +59 2 8 18 21 8 2 镨Pr +60 2 8 18 22 8 2 钕Nd +61 2 8 18 23 8 2 钷Pm +62 2 8 18 24 8 2 钐Sm +63 2 8 18 25 8 2 铕Eu +64 2 8 18 25 9 2 钆Gd +65 2 8 18 27 8 2 铽Td +66 2 8 18 28 8 2 镝Dy +67 2 8 18 29 8 2 钬Ho +68 2 8 18 30 8 2 铒Er +69 2 8 18 31 8 2 铥Tm +70 2 8 18 32 8 2 镱Yb +71 2 8 18 32 9 2 镥Lu +72 2 8 18 32 10 2 铪Hf

铝合金材料牌号和用途

铝合金材料牌号和用途 点击次数:548 发布时间:2009-9-22 0:14:49 1050食品、化学和酿造工业用挤压盘管,各种软管,烟花粉 1060要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其典型用途 1100用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件部件,例如化工产品、食品工业装置与贮存容器、薄板加工件、深拉或旋压凹形器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具 1145包装及绝热铝箔,热交换器 1199电解电容器箔,光学反光沉积膜 1350电线、导电绞线、汇流排、变压器带材 2011螺钉及要求有良好切削性能的机械加工产品 2014应用于要求高强度与硬度(包括高温)的场合。飞机重型、锻件、厚板和挤压材料,车轮与结构元件,多级火箭第一级燃料槽与航天器零件,卡车构架与悬挂系统零件 2017是第一个获得工业应用的2XXX系合金,目前的应用范围较窄,主要为铆钉、通用机械零件、结构与运输工具结构件,螺旋桨与配件 2024飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件2036汽车车身钣金件 2048航空航天器结构件与兵器结构零件 2124航空航天器结构件 2218飞机发动机和柴油发动机活塞,飞机发动机汽缸头,喷气发动机叶轮和压缩机环 2219航天火箭焊接氧化剂槽,超音速飞机蒙皮与结构零件,工作温度为-270~300摄氏度。焊接性好,断裂韧性高,T8状态有很高的抗应力腐蚀开裂能力 2319焊拉 2219合金的焊条和填充焊料 2618模锻件与自由锻件。活塞和航空发动机零件 2A01工作温度小于等于100摄氏度的结构铆钉 2A02工作温度200~300摄氏度的涡轮喷气发动机的轴向压气机叶片 2A06工作温度150~250摄氏度的飞机结构及工作温度125~250摄氏度的航空器结构铆钉

团簇研究

前言 团簇是指几个乃至上千个原子、分子或离子通过一定的物理或化学结合力组成的相对稳定的微观或亚微观聚集体,团簇是介于原子、分子与宏观固体物质之间的物质结构的新层次,是各种物质由原子分子向大块物质转变的过渡状态。它的很多新的物理、化学现象日益引起人们的兴趣,对团簇的研究是新材料设计以及研究凝聚态物质性质和特征的一项重要课题[1-9],在大块凝聚态物质的特征、化学吸附以及固体表面反应、燃烧机理、晶体生长、催化等领域的研究中被广泛应用[2-16]。 团簇科学起源于19世纪中叶人们对烟雾、云以及碰撞等现象的研究和后来对成核现象的研究。 目前团簇科学研究的几个主要方向是: (1)研究团簇的组成及电子构型的规律、幻数和几何结构、稳定性的规律; (2)研究团簇的成核和形成过程及机制,研究团簇的制备方法、尤其是获取尺寸均一与可控的团簇束流; (3)研究金属、半导体及非金属和各种化合物团簇的光、电、磁、力学、化学等性质,它们与结构和尺寸的关系,及向大块物质转变的关节点; (4)研究团簇材料的合成和性质; (5)探索新的理论,不仅能解释现有团簇的效应和现象,而且能解释和预知团簇的结构,模拟团簇动力学性质,指导实验; (6)发展新的方法对团簇表面进行修饰和控制。 团簇的研究方法有很多,既有基础实验方法又有理论计算方法。 早期实验方面利用蒸发和热解的方法形成团簇,利用溅射或喷雾的方法可以从表面或凝聚相中获得团簇离子,离子的缔合和生长形成团簇,超声分子束的方法产生团簇。 现在主要通过直接激光气化法来形成团簇;利用团簇的丰度分布来推测团簇结构,偏离丰度分布的结构为“幻数”结构;实验上还采用离子色谱、团簇的光解离或碰撞解离以及团簇与气态小分子的吸附反应等方法来探究团簇的结构以及增长过程。 理论计算方法,基于经验势的,基于半经验方法的,基于量子计算方法的(不带任何经验参数)。经验势方法是用一组含有参数的解析表达式来描述原子间的相互作用。近年来提出的势能函数有:嵌入原子模型(EAM)势,Gupta势等。半经验方法又可分为紧束缚近似(Tight Binding Approximation)和半经验量子化学(Semi-Empirical Quantum Chemistry)方法。量子计算方法主要包括:Hartree-Fock方法、分子轨道法、密度泛函理论(DFT)等。 从1980年开始,氧簇分子被高度重视,基于作为高能量密度材料良好性能,主要借助量子力学计算手段对分子的结构和性质进行研究。 2007年凌琳等人已经通过实验的方法研究了Mn2Ca双金属簇合物研究表明其具有明显的恢复去锰PSII 的电子传递和放氧活性的能力, 并且比MnCl2更高的光组装效率。 Mn2Ca双金属簇合物中Ca与Mn原子之间的羧酸酯桥的连接方式可能有利于水氧化复合物(WOC)的光组装及锰簇的稳定。 2011年盖志刚等人,选择B3L YP/6-311G*的方法和基组研究了Si n C2N(n=2~6)基态和亚稳态团簇的几何结构、自选多重态及基态能量和热力学性质。振动频率和振动强度被用来判

九年级化学原子结构示意图怎么画,有什么规律

原子的定义 原子结构示意图: 由原子构成的物质: 绝大多数的单质是由原子构成的,如金属单质、稀有气体均是由原子直接构成的,碳、硫、磷等大多数的非金属单质也是由原子直接构成的。 原子的定义: 原子是化学变化中最小的粒子。例如,化学变化中,发生变化的是分子,原子的种类和数目都未发生变化。 对原子的概念可从以下三个方面理解: ①原子是构成物质的基本粒子之一。 ②原了也可以保持物质的化学性质,如由原子直接构成的物质的化学性质就由原子保持。

③原子在化学变化中不能再分,是“化学变化中最小的粒子”,脱离化学变化这一条件,原子仍可再分。 原子的性质: ①原子的质量、体积都很小; ②原子在不停地运动; ③原子之间有一定的间隔; ④原子可以构成分子,如一个氧分子是由两个氧原子构成的;也可以直接构成物质,如稀有气体、铁、汞等都是由原子直接构成的; ⑤化学反应中原子不可再分。 原子的表示方法—元素符号: 原子可用元索符号表示:如O既可表示氧元素,也可表示1个氧原子。 分子和原子的联系与区别:

道尔顿的原子模型: 英国自然科学家约翰·道尔顿将古希腊思辨的原子论改造成定量的化学理论,提出了世界上第一个原子的理论模型。他的理论主 要有以下四点: ①所有物质都是由非常微小的、不可再分的物质微粒即原子组成 ②同种元素的原子的各种性质和质量都相同,不同元素的原子,主要表现为质量的不同 ③原子是微小的、不可再分的实心球体 ④原子是参加化学变化的最小单位,在化学反应中,原子仅仅是重新排列,而不会被创造或者消失。虽然,经过后人证实,这是一个失败的理论模型,但道尔顿第一次将原子从哲学带入化学研究中,明确了今后化学家们努力的方向,化学真正从古老的炼金术中 摆脱出来,道尔顿也因此被后人誉为“近代化学之父”。 分子和原子怎么区分 分子和原子都是能够直接构成物质的微粒,特点是“小、空、动”。分子和原子可以从表观上和本质上来区分。

结构用铝合金材料力学性能

附录A 结构用铝合金材料力学性能 常见结构用铝合金板、带材力学性能(标准值)可按表A-1采用,结构用铝合金棒、管、型材力学性能(标准值)可按表A-2采用。结构用铝合金板、带、棒、管、型材的化学成分可按表A-3采用。 表A-1 结构用铝合金板、带材力学性能标准值

注:1. 伸长率标准值中,A适用于厚度不大于12.5mm的板材,A适用于厚度大于12.5mm的板材。502. 表中焊接折减系数的数值适用于材料焊接后存放的环境温度大于10℃,存放时间大于3d(6XXX系列)或30d(7XXX系列)的情况。 3. 表中焊接折减系数的数值适用于厚度不超过15mm的MIG焊,以及3xxx系列、5xxx系列合金和8011A合金厚度不超

过6mm的TIG焊。对于6xxx系列和7xxx系列合金厚度不超过6mm的TIG焊,焊接折减系数的数值必须乘以0.8。当厚度超过上述规定,如无试验结果或国内外相关规范规定,3xxx系列、5xxx系列合金和8011A合金焊接折减系数的数值必须乘以0.9,6xxx系列和7xxx系列合金焊接折减系数的数值必须乘状态不需进行上述折减。O焊)。对于TIG(0.64焊)或MIG(0.8以. 表A-2 结构用铝合金棒、管、型材力学性能标准值

适用于厚度(或直的板(或棒)材,A注:1. 伸长率标准值中,A适用于厚度(或直径)不大于12.5mm50 12.5mm的板(或棒)材。径)大于系6XXX(2. 表中焊接折减系数的数值适用于材料焊接后存放的环境温度大于10℃,存放时间大于3d 系列)的情况。列)或30d(7XXX8011A系列合金和MIG焊,以及3xxx系列、5xxx3. 表中焊接折减系数的数值适用于厚度不超过15mm的焊接折减系数的7xxx系列合金厚度不超过6mmTIG焊,合金厚度不超过6mm的TIG焊。对于6xxx系列和系列合。当厚度超过上述规定,如无试验结果或国内外相关规范规定,3xxx系列、5xxx的数值必须乘以0.8系列合金焊接折减系数的数值必须乘0.9,6xxx系列和7xxx金和8011A合金焊接折减系数的数值必须乘以TIG焊)。对于O状态不需进行上述折减。以0.8(MIG焊)或0.64(

原子结构示意图大全

+19 2 8 8 1 钾 K +20 2 8 8 2 钙 Ca +21 2 8 9 2 钪 Sc +22 2 8 10 2 钛 Ti +23 2 8 11 2 钒 V +24 2 8 13 1 铬 Cr +25 2 8 13 2 锰 Mn +26 2 8 14 2 铁 Fe +27 2 8 15 2 钴 Co +28 2 8 16 2 镍 Ni +29 2 8 18 1 铜 Cu +30 2 8 18 2 锌 Zn +31 2 8 18 3 镓 Ga +32 2 8 18 4 锗 Ge +33 2 8 18 5 砷 As +34 2 8 18 6 硒 Se +35 2 8 18 7 溴 Br +36 2 8 18 8 氪 Kr +37 2 8 18 8 1 铷 Rb +38 2 8 18 8 2 锶 Sr +39 2 8 18 9 2 钇 Y +40 2 8 18 10 2 锆 Zr +41 2 8 18 12 1 铌 Nb +42 2 8 18 13 1 钼 Mo +43 2 8 18 13 2 锝 Tc +44 2 8 18 15 1 钌 Ru +45 2 8 18 16 1 铑 Rh +46 2 8 18 18 钯 Pd +47 2 8 18 18 1 银 Ag +48 2 8 18 18 2 镉 Cd +49 2 8 18 18 3 铟 In +50 2 8 18 18 4 锡 Sn +51 2 8 18 18 5 锑 Sb +52 2 8 18 18 6 碲 Te +53 2 8 18 18 7 碘 I +54 2 8 18 18 8 氙 Xe +55 2 8 18 18 8 1 铯 Cs +56 2 8 18 18 8 2 钡 Ba +57 2 8 18 18 9 2 镧 La +58 2 8 18 19 9 2 铈 Ce +59 2 8 18 21 8 2 镨 Pr +60 2 8 18 22 8 2 钕 Nd +61 2 8 18 23 8 2 钷 Pm +62 2 8 18 24 8 2 钐 Sm +63 2 8 18 25 8 2 铕 Eu

原子结构示意图大全

+19 2 8 8 1 钾K+20 2 8 8 2 钙Ca+21 2 8 9 2 钪Sc +22 2 8 10 2 钛Ti+23 2 8 11 2 钒V+24 2 8 13 1 铬Cr +25 2 8 13 2 锰Mn+26 2 8 14 2 铁Fe+27 2 8 15 2 钴Co +28 2 8 16 2 镍Ni+29 2 8 18 1 铜Cu+30 2 8 18 2 锌Zn +31 2 8 18 3 镓Ga+32 2 8 18 4 锗Ge+33 2 8 18 5 砷As +34 2 8 18 6 硒Se+35 2 8 18 7 溴Br+36 2 8 18 8 氪Kr +37 2 8 18 8 1 铷Rb+38 2 8 18 8 2 锶Sr+39 2 8 18 9 2 钇Y +40 2 8 18 10 2 锆Zr+41 2 8 18 12 1 铌Nb+42 2 8 18 13 1 钼Mo +43 2 8 18 13 2 锝Tc+44 2 8 18 15 1 钌Ru+45 2 8 18 16 1 铑Rh +46 2 8 18 18钯Pd+47 2 8 18 18 1 银Ag+48 2 8 18 18 2 镉Cd +49 2 8 18 18 3 铟In+50 2 8 18 18 4 锡Sn+51 2 8 18 18 5 锑Sb +52 2 8 18 18 6 碲Te+53 2 8 18 18 7 碘I+54 2 8 18 18 8 氙Xe+55 2 8 18 18 8 1 铯Cs+56 2 8 18 18 8 2 钡Ba+57 2 8 18 18 9 2 镧La +58 2 8 18 19 9 2 铈Ce+59 2 8 18 21 8 2 镨Pr+60 2 8 18 22 8 2 钕Nd +61 2 8 18 23 8 2 钷Pm+62 2 8 18 24 8 2 钐Sm+63 2 8 18 25 8 2 铕Eu +64 2 8 18 25 9 2 钆Gd+65 2 8 18 27 8 2 铽Td+66 2 8 18 28 8 2 镝Dy +67 2 8 18 29 8 2 钬Ho+68 2 8 18 30 8 2 铒Er+69 2 8 18 31 8 2 铥Tm +70 2 8 18 32 8 2 镱Yb+71 2 8 18 32 9 2 镥Lu+72 2 8 18 32 10 2 铪Hf

原子结构示意图大全38700教学内容

精品文档 +19 2 8 8 1 钾K +20 2 8 8 2 钙Ca +21 2 8 9 2 钪Sc +22 2 8 10 2 钛Ti +23 2 8 11 2 钒V +24 2 8 13 1 铬Cr +25 2 8 13 2 锰Mn +26 2 8 14 2 铁Fe +27 2 8 15 2 钴Co +28 2 8 16 2 镍Ni +29 2 8 18 1 铜Cu +30 2 8 18 2 锌Zn +31 2 8 18 3 镓Ga +32 2 8 18 4 锗Ge +33 2 8 18 5 砷As +34 2 8 18 6 硒Se +35 2 8 18 7 溴Br +36 2 8 18 8 氪Kr +37 2 8 18 8 1 铷Rb +38 2 8 18 8 2 锶Sr +39 2 8 18 9 2 钇Y +40 2 8 18 10 2 锆Zr +41 2 8 18 12 1 铌Nb +42 2 8 18 13 1 钼Mo +43 2 8 18 13 2 锝Tc +44 2 8 18 15 1 钌Ru +45 2 8 18 16 1 铑Rh +46 2 8 18 18 钯Pd +47 2 8 18 18 1 银Ag +48 2 8 18 18 2 镉Cd +49 2 8 18 18 3 铟In +50 2 8 18 18 4 锡Sn +51 2 8 18 18 5 锑Sb +52 2 8 18 18 6 碲Te +53 2 8 18 18 7 碘I +54 2 8 18 18 8 氙Xe +55 2 8 18 18 8 1 铯Cs +56 2 8 18 18 8 2 钡Ba +57 2 8 18 18 9 2 镧La +58 2 8 18 19 9 2 铈Ce +59 2 8 18 21 8 2 镨Pr +60 2 8 18 22 8 2 钕Nd +61 2 8 18 23 8 2 钷Pm +62 2 8 18 24 8 2 钐Sm +63 2 8 18 25 8 2 铕Eu +64 2 8 18 25 9 2 钆Gd +65 2 8 18 27 8 2 铽Td +66 2 8 18 28 8 2 镝Dy +67 2 8 18 29 8 2 钬Ho +68 2 8 18 30 8 2 铒Er +69 2 8 18 31 8 2 铥Tm +70 2 8 18 32 8 2 镱Yb +71 2 8 18 32 9 2 镥Lu +72 2 8 18 32 10 2 铪Hf 精品文档

所有原子结构示意图

H +1)1 He +2)2 Li +3)2)1 Be +4)2)2 B +5)2)3 C +6)2)4 N +7)2)5 0 +8)2)6 F +9)2)7 Ne +10)2)8 Na +11)2)8)1 Mg +12)2)8)2 Al +13)2)8)3 Si +14)2)8)4 P +15)2)8)5 S +16)2)8)6 Cl +17)2)8)7 Ar +18)2)8)8 K +19)2)8)8)1 Ca +20)2)8)8)2 Sc +21)2)8)9)2 Ti +21)2)8)10)2 V +22)2)8)11)2 Cr +24)2)8)13)1 Mn +25)2)8)13)2 Fe +26)2)8)14)2 Co +27)2)8)15)2 Ni +28)2)8)16)2 Cu +29)2)8)18)1 Zn +30)2)8)18)2 Ga +31)2)8)18)3 Ge +32)2)8)18)4 As +33)2)8)18)5 Se +34)2)8)18)6 Br +35)2)8)18)7 Kr +36)2)8)18)8 +19 2 8 8 1 钾K +20 2 8 8 2 钙Ca +21 2 8 9 2 钪Sc +22 2 8 10 2 钛Ti +23 2 8 11 2 钒V +24 2 8 13 1 铬Cr +25 2 8 13 2 锰Mn +26 2 8 14 2 铁Fe +27 2 8 15 2 钴Co +28 2 8 16 2 镍Ni +29 2 8 18 1 铜Cu +30 2 8 18 2 锌Zn +31 2 8 18 3 镓Ga +32 2 8 18 4 锗Ge +33 2 8 18 5 砷As +34 2 8 18 6 硒Se +35 2 8 18 7 溴Br +36 2 8 18 8 氪Kr +37 2 8 18 8 1 铷Rb +38 2 8 18 8 2 锶Sr +39 2 8 18 9 2 钇Y +40 2 8 18 10 2 锆Zr +41 2 8 18 12 1 铌Nb +42 2 8 18 13 1 钼Mo +43 2 8 18 13 2 锝Tc +44 2 8 18 15 1 钌Ru +45 2 8 18 16 1 铑Rh +46 2 8 18 18 钯Pd +47 2 8 18 18 1 银Ag +48 2 8 18 18 2 镉Cd +49 2 8 18 18 3 铟In +50 2 8 18 18 4 锡Sn +51 2 8 18 18 5 锑Sb +52 2 8 18 18 6 碲Te +53 2 8 18 18 7 碘I +54 2 8 18 18 8 氙Xe +55 2 8 18 18 8 1 铯Cs +56 2 8 18 18 8 2 钡Ba +57 2 8 18 18 9 2 镧La +58 2 8 18 19 9 2 铈Ce +59 2 8 18 21 8 2 镨Pr +60 2 8 18 22 8 2 钕Nd +61 2 8 18 23 8 2 钷Pm +62 2 8 18 24 8 2 钐Sm +63 2 8 18 25 8 2 铕Eu +64 2 8 18 25 9 2 钆Gd +65 2 8 18 27 8 2 铽Td

江苏集创原子团簇科技研究院有限公司_中标190920

招标投标企业报告 江苏集创原子团簇科技研究院有限公司

本报告于 2019年9月19日 生成 您所看到的报告内容为截至该时间点该公司的数据快照 目录 1. 基本信息:工商信息 2. 招投标情况:中标/投标数量、中标/投标情况、中标/投标行业分布、参与投标 的甲方排名、合作甲方排名 3. 股东及出资信息 4. 风险信息:经营异常、股权出资、动产抵押、税务信息、行政处罚 5. 企业信息:工程人员、企业资质 * 敬启者:本报告内容是中国比地招标网接收您的委托,查询公开信息所得结果。中国比地招标网不对该查询结果的全面、准确、真实性负责。本报告应仅为您的决策提供参考。

一、基本信息 1. 工商信息 企业名称:江苏集创原子团簇科技研究院有限公司统一社会信用代码:91320111MA1YFHX83Y 工商注册号:/组织机构代码:MA1YFHX83 法定代表人:/成立日期:2019-05-28 企业类型:/经营状态:在业 注册资本:1000万人民币 注册地址:南京市浦口区桥林街道步月路29号12幢-500 营业期限:2019-05-28 至 / 营业范围:原子团簇科技、新材料技术研发;建筑材料、装饰材料、金属材料、磁性材料、石墨烯材料、纳米材料研发、销售;冶金技术开发、技术服务、技术推广、技术咨询、技术转让;机械设备、仪器仪表、矿产品、化工产品销售;工程技术研发;环保技术服务、技术咨询、技术转让;会议服务;展览展示服务;道路货物运输;货物或技术的进出口(国家禁止或涉及行政审批的货物和技术进出口除外)。(依法须经批准的项目,经相关部门批准后方可开展经营活动) 联系电话:*********** 二、招投标分析 2.1 中标/投标数量 企业中标/投标数: 个 (数据统计时间:2017年至报告生成时间)

所有原子结构示意图

所有原子结构示意图 +1 1 氢H +2 2 氦He +3 2 1 锂Li +4 2 2 铍Be +5 2 3 硼B +6 2 4 碳C +7 2 5 氮N +8 2 6 氧O +9 2 7 氟F +10 2 8 氖Ne +11 2 8 1 钠Na +12 2 8 2 镁Mg +13 2 8 3 铝Al +14 2 8 4 硅Si +15 2 8 5 磷P +16 2 8 6 硫S +17 2 8 7 氯Cl +18 2 8 8 氩Ar +19 2 8 8 1 钾K +20 2 8 8 2 钙Ca +21 2 8 9 2 钪Sc +22 2 8 10 2 钛Ti +23 2 8 11 2 钒V +24 2 8 13 1 铬Cr +25 2 8 13 2 锰Mn +26 2 8 14 2 铁Fe +27 2 8 15 2 钴Co +28 2 8 16 2 镍Ni +29 2 8 18 1 铜Cu +30 2 8 18 2 锌Zn +31 2 8 18 3 镓Ga +32 2 8 18 4 锗Ge +33 2 8 18 5 砷As +34 2 8 18 6 硒Se +35 2 8 18 7 溴Br +36 2 8 18 8 氪Kr +37 2 8 18 8 1 铷Rb +38 2 8 18 8 2 锶Sr +39 2 8 18 9 2 钇Y +40 2 8 18 10 2 锆Zr +41 2 8 18 12 1 铌Nb +42 2 8 18 13 1 钼Mo +43 2 8 18 13 2 锝Tc +44 2 8 18 15 1 钌Ru +45 2 8 18 16 1 铑Rh +46 2 8 18 18 钯Pd +47 2 8 18 18 1 银Ag +48 2 8 18 18 2 镉Cd +49 2 8 18 18 3 铟In +50 2 8 18 18 4 锡Sn +51 2 8 18 18 5 锑Sb +52 2 8 18 18 6 碲Te +53 2 8 18 18 7 碘I +54 2 8 18 18 8 氙Xe +55 2 8 18 18 8 1 铯Cs +56 2 8 18 18 8 2 钡Ba +57 2 8 18 18 9 2 镧La +58 2 8 18 19 9 2 铈Ce +59 2 8 18 21 8 2 镨Pr +60 2 8 18 22 8 2 钕Nd +61 2 8 18 23 8 2 钷Pm +62 2 8 18 24 8 2 钐Sm +63 2 8 18 25 8 2 铕Eu +64 2 8 18 25 9 2 钆Gd +65 2 8 18 27 8 2 铽Td +66 2 8 18 28 8 2 镝Dy +67 2 8 18 29 8 2 钬Ho +68 2 8 18 30 8 2 铒Er +69 2 8 18 31 8 2 铥Tm +70 2 8 18 32 8 2 镱Yb +71 2 8 18 32 9 2 镥Lu +72 2 8 18 32 10 2 铪Hf +73 2 8 18 32 11 2 钽Ta +74 2 8 18 32 12 2 钨W +75 2 8 18 32 13 2 铼Re +76 2 8 18 32 14 2 锇Os +77 2 8 18 32 15 2 铱Ir +78 2 8 18 32 17 1 铂Pt +79 2 8 18 32 18 1 金Au +80 2 8 18 32 18 2 汞Hg +81 2 8 18 32 18 3 铊Tl +82 2 8 18 32 18 4 铅Pb +83 2 8 18 32 18 5 铋Bi +84 2 8 18 32 18 6 钋Po +85 2 8 18 32 18 7 砹At +86 2 8 18 32 18 8 氡Rn

团簇的研究现状及展望

团簇的研究现状及展望 班级 13光电学号 1395121002 姓名白志辉摘要:概述团簇当前的发展现状,总结了团簇发展这么多年来取得的一些进步和团簇研究过程中遇到的一些有待解决的难题并对团簇的发展前景和方向作了展望。 关键词:团簇,微观结构,尺寸,性能特征 1.前言 团簇研究正在迅速发展,是跨越原子、分子物理、固体物理、表面物理、量子化学等诸多学科的一个交叉学科。从E.M.Beck等于1956年在喷嘴束中发现氢分子的冷凝即氢分子的团簇形成算起,将近已有40年的历史。但团簇研究在国际上的迅速发展还是最近一二十年的事情。与国际的团簇研究步伐相比,国内的土作起步较晚。从80年代中期开始,国内一些单位陆续开展了团簇的实验和理论研究。 2.团簇介绍 原子和分子团簇,简称团簇(Cluster)或微团簇(microclusters),是几个乃至上千个原子、分子或离子通过物理或化学结合力组成相对稳定的微观和亚微观聚集体,其物理和化学性质随所包含的原子数目而变化。团簇的空间尺度是几人至几百人的范围,用分子描述显得太大,用小块固体描述又显得太小,许多性质既不同于单个原子分子,又不同于固体或液体,也不能用两者性质作简单线性外延和内插得到。因此,人们把团簇看作是介于原子分子和宏观固体之间物质结构的新层次,有人称之为物质的“第五态”[1]。正因为如此,团簇可作为各种物质由原子分子向大块物质转变过程中的特殊物相,或者说它代表了凝聚态物质的初始状态,象胚胎学以其特殊的、许多情况下甚至是唯一的方式说明生物学规律一样,团簇的研究有助于我们认识大块凝聚物质的某些性质和规律[2,3]。 团簇科学是研究团簇的原子组态和电子结构、物理和化学性质及其向大块物质演化过程中与尺寸的关联,团簇同外界环境的相互作用规律等。团簇科学处于多学科交叉的范畴。从原子分子物理、凝聚态物理、量子化学、表面科学、材料科学甚至核物理学引入的概念和方法交织在一起,构成当前团簇究的中心议题,并逐

铝合金的材质

根据合金元素含量不同铝板可以分为8个系列分别为1***,2***,3***, 4***.5***.6***.7***.8*** 根据加工工艺不同又可分为冷轧和热轧。 根据厚度不同可以分为薄板和中厚板。GB/T3880-2006标准中规定厚度0.2毫米一下的称为铝箔。 比较常用的牌号: 纯铝板1060 板.带材。箔材。厚板,拉伸管。挤压管。型。棒。冷加工棒材主要用于要求耐蚀性于成形性比较高的场合,但对强度不高的零部件,如化工设备,船舶设备,铁道油罐车,导电体材料,仪器仪表材料,焊条等。 3003:板.带材。箔材。厚板,拉伸管。挤压管。型。棒。线材。冷加工棒材,冷加工线材,铆钉线材,锻件,箔材,散热片料主要用于加工需要良好的成型性能,高的抗蚀性能,或可焊性好的零部件,或既要求有这些性能的有需要比1***系合金强度高的工件,如运输液体的槽和罐,压力罐,储存装置,热交换器,化工设备,飞机油箱,油路导管,反光板,厨房设备,洗衣机缸体,铆钉,焊丝。 包铝3003合金板材,厚板,拉伸管。挤压管房屋隔断,顶盖,管路等 3004板材,厚板,拉伸管。挤压管只要用于全铝易拉罐罐身,要求要比3003合金更高的零部件,化工产品生产与储存装置,薄板加工件,建筑挡板,电缆管道,下水道,各种灯具零部件。 包铝的3004合金板材,厚板主要用于房屋隔断,挡板,下水道,工业厂房房屋顶盖5052板材,厚板,板材,箔材,拉伸管,冷加工棒材,冷加工线材,铆钉线材,此合金有良好的成型加工性能,抗腐蚀性,可焊性,疲劳强度与中等的静态强度,用于制造飞机油箱,油管,以及交通车辆,船舶的钣金件,仪表,街灯支架与铆钉线材等。 6061板材,厚材,拉伸管。挤压管,棒材,型材,线材,导管,轧制或挤压结构型材,冷加工棒材,冷加工线材,铆钉线材,锻件。要求有一定的强度,抗腐蚀性,可焊性高的各种工业结构件,如制造卡车,塔式建筑,船舶,电车,铁道车辆,家具等用的管,棒材,型材。 一.1000系列代表1050 1060 1070 1000系列铝板又被称为纯铝板,在所有系列中1000系列属于含铝量最多的一个系列。纯度可以达到99.00%以上。由于不含有其他技术元素,所以生产过程比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。目前市场上流通的大部分为1050以及1060系列。1000系列铝板根据最后两位阿拉伯数字来确定这个系列的最低含铝量,比如1050系列最后两位阿拉伯数字为50,根据国际牌号命名原则,含铝量必须达到99.5%以上方为合格产品。我国的铝合金技术标准(gB/T3880-2006)中也明确规定1050含铝量达到99.5%.同样的道理1060系列铝板的含铝量必须达到99.6%以上。 二2000系列铝板代表2A16(LY16)2A06(LY6)2000系列铝板的特点是硬度较高,其中以铜原属含量最高,大概在3-5%左右。2000系列铝板属于航空铝材,目前在常规工业中不常应用。我国目前生产2000系列铝板的厂家较少。质量还无法与国外相比。目前进口的铝板主要是由韩国和德国生产企业提供。随着我国航空航天事业的发展,2000系列的铝板生产技术将进一步提高。 三3000系列铝板代表3003 3003 3A21为主。又可以称为防锈铝板我国3000系列铝板生产工艺较为优秀。3000系列铝板是由锰元素为主要成分。含量在1.0-1.5之间。是一款防锈功能较好的系列。常规应用在空调,冰箱,车底等潮湿环境中,价格高于1000系列,是一款较为常用的合金系列。

铝及铝合金材料简介

第三章铝及铝合金材料 第一节铝及铝合金材料应用领域 铝是地球上存储量最丰富的金属元素,自1808年被发现以来,已经广泛用于工业、农业、造船、航天、航空、轨道车辆等领域,铝元素主要用于下列领域: 电力传输工业 铝合金散热器制造业 飞机、航空、航天设备 汽车工业 高速铁路轨道车辆、地铁 造船 场馆建筑 门窗结构 金属铝及铝合金不同于钢材,当报废时,可再次熔化使用,对环境破坏最小,同时新型铝合金材料和热处理方法不断出现,铝合金材料强度越来越高,因此,铝合金的应用将越来越广泛。 第二节铝及铝合金材料的物理特性 铝及铝合金具有如下物理特点: -比重低(2.7g/cm3),强度高(最高可达450MPa) -耐大气腐蚀性比钢高 -在零度以下温度时,具有良好韧性 -非常适于铸造工艺 对于纯铝,其物理特性和钢相比具有如表3-1的内容: 表3-1 铝与钢物理特性比较表 性能Al Fe 原子重量(g/mol)26.98 55.84

对于铝及铝合金,物理特性如表3-2。 表3-2 铝及铝合金的物理特性表 第三节铝及铝合金材料的分类

一、铝及铝合金材料分类表 铝及铝合金材料按时效方式可分为可时效硬化铝合金、非时效硬化铝合金、铸造铝合金三类。非时效强化铝合金具有良好的耐腐蚀性,时效强化铝合金耐腐蚀性相对较差,铸造铝合金耐腐蚀性介于两者之间,图3-1表明了三类铝合金之间的关系。 图3-1 铝合金材料分类表 二、时效硬化铝合金 时效硬化铝合金指的是含有镁、硅、锌或铜的铝合金通过退火、淬火和时效可以获得较高的抗拉强度的铝合金。这些材料可在室温状态下通过数天的时间自然时效,也可在80°C和 160°C之间的温度下加快时效,例如60 °C时,时效60小时,120 °C时,时效24小时,可以得到相同的时效效果。人工时效还取决于焊件的大小,越大的焊件,时效时间越长。 由于焊接热输入的原因,时效硬化铝合金在热影响区损失了时效强度。焊接热影响区强度只有母材强度的60-70%,焊接时输入的热量越高,就有更多的焊接热量将改变原来的强度。后来的热处理可使它们返回到其原来的强度值。7系列铝合金自然时效明显,如AlZn 4.5 Mg在焊后通过简单的自然时效就可回复到其原来的强度值。在铝合金车辆工业,大部分使用的是时效强化型铝合金,由于焊接接头强度的降低,在设计结构上,在接头区要加强,以保证结构等强要求。 三、非时效硬化铝合金 非时效硬化铝合金在热处理后不硬化。它们从固溶处理中得到较高的强度(与纯铝相比)。AL—Mg和Al-Mn合金是典型的非时效强化铝合金。 四、铸造铝合金 通过向铝中添加硅可得到铸铝合金。铸铝合金在修补时,焊接材料通常使用与基材相同成分的母材进行这些修焊工作,特别是焊缝与母材有相同物理、化学特性要求时更是如此。用于这些合金的焊接材料不得有较高的含氢量。抛光后,焊缝的颜色要与母材相同。

元素周期表各原子结构示意图

第1周期各原子核外电子排布情况 [1] K氢核外电子数依次是:1 [2]He氦核外电子数依次是:2 第2周期各原子核外电子排布情况 [3Li锂核外电子数依次是:2 1 [4Be铍核外电子数依次是:2 2 [5] B硼核外电子数依次是:2 3 [6] C碳核外电子数依次是:2 4 [8] O氧核外电子数依次是:2 6 [9] F氟核外电子数依次是:2 7 [10]Ne氖核外电子数依次是:2 8 第3周期各原子核外电子排布情况 [11]Na钠核外电子数依次是:2 8 1 [12]Mg镁核外电子数依次是:2 8 2 [13]Al铝核外电子数依次是:2 8 3 [14]Si硅核外电子数依次是:2 8 4 [15] P磷核外电子数依次是:2 8 5 [16] S硫核外电子数依次是:2 8 6 [17]Cl氯核外电子数依次是:2 8 7 [18]Ar氩核外电子数依次是:2 8 8 第4周期各原子核外电子排布情况

[20]Ca钙核外电子数依次是:2 8 8 2 [21]Sc钪核外电子数依次是:2 8 9 2 [22]Ti钛核外电子数依次是:2 8 10 2 [23]V钒核外电子数依次是:2 8 11 2 *[24]Cr铬核外电子数依次是:2 8 13 1 [25]Mn锰核外电子数依次是:2 8 13 2 [26]Fe铁核外电子数依次是:2 8 14 2 [27]Co钴核外电子数依次是:2 8 15 2 [28]Ni镍核外电子数依次是:2 8 16 2 *[29]Cu铜核外电子数依次是:2 8 18 1 [30]Zn锌核外电子数依次是:2 8 18 2 [31]Ga镓核外电子数依次是:2 8 18 3 [32]Ge锗核外电子数依次是:2 8 18 4 [33]As砷核外电子数依次是:2 8 18 5 [34]Se硒核外电子数依次是:2 8 18 6 [35]Br溴核外电子数依次是:2 8 18 7 [36]Kr氪核外电子数依次是:2 8 18 8 第5周期各原子核外电子排布情况 [37]Rb铷核外电子数依次是:2 8 18 8 1 [38]Sr锶核外电子数依次是:2 8 18 8 2

铝合金作为主要结构材料

各种飞机都以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。飞机依用途的不同,铝的用量也不一样。着重于经济效益的民用机因铝合金价格便宜而大量采用,如波音767客机采用的铝合金约占机体结构重量81%。军用飞机因要求有良好的作战性能而相对地减少铝的用量,如最大飞行速度为马赫数 2.5的F-15高性能战斗机仅使用35.5%铝合金。有些铝合金有良好的低温性能,在-183~-253[2oc]下不冷脆,可在液氢和液氧环境下工作,它与浓硝酸和偏二甲肼不起化学反应,具有良好的焊接性能,因而是制造液体火箭的好材料。发射“阿波罗”号飞船的“土星”5号运载火箭各级的燃料箱、氧化剂箱、箱间段、级间段、尾段和仪器舱都用铝合金制造。 航天飞机的乘员舱、前机身、中机身、后机身、垂尾、襟翼、升降副翼和水平尾翼都是用铝合金制做的。各种人造地球卫星和空间探测器的主要结构材料也都是铝合金。 以下是各种型号的应用领域: 1050 食品、化学和酿造工业用挤压盘管,各种软管,烟花粉。 1060 要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其典型用途。1100 用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件部件,例如化工产品、食品工业装置与贮存容器、薄板加工件、深拉或旋压凹形器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具。 1145 包装及绝热铝箔,热交换器。 1199 电解电容器箔,光学反光沉积膜。 1350电线、导电绞线、汇流排、变压器带材。 2011 螺钉及要求有良好切削性能的机械加工产品。 2014 应用于要求高强度与硬度(包括高温)的场合。飞机重型、锻件、厚板和挤压材料,车轮与结构元件,多级火箭第一级燃料槽与航天器零件,卡车构架与悬挂系统零件。 2017 是第一个获得工业应用的2XXX系合金,它的应用范围较窄,主要为铆钉、通用机械零件、结构与运输工具结构件,螺旋桨与配件。 2024 飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件。 2036汽车车身钣金件。 2048 航空航天器结构件与兵器结构零件。 2124 航空航天器结构件。 2218飞机发动机和柴油发动机活塞,飞机发动机汽缸头,喷气发动机叶轮和压缩机环。2219 航天火箭焊接氧化剂槽,超音速飞机蒙皮与结构零件,工作温度为-270~300℃。焊接性好,断裂韧性高,T8状态有很高的抗应力腐蚀开裂能力。 2319 焊拉2219合金的焊条和填充焊料。 2618 模锻件与自由锻件。活塞和航空发动机零件。 2A01 工作温度小于等于100℃的结构铆钉。 2A02 工作温度200~300℃的涡轮喷气发动机的轴向压气机叶片。 2A06 工作温度150~250℃的飞机结构及工作温度125~250℃的航空器结构铆钉。 2A10 强度比2A01合金的高,用于制造工作温度小于等于100℃的航空器结构铆钉。 2A11 飞机的中等强度的结构件、螺旋桨叶片、交通运输工具与建筑结构件。航空器的中等强度的螺栓与铆钉。 2A12 航空器蒙皮、隔框、翼肋、翼梁、铆钉等,建筑与交通运输工具结构件。 2A14 形状复杂的自由锻件与模锻件。 2A16 工作温度250~300℃的航天航空器零件,在室温及高温下工作的焊接容器与气密座舱。2A17 工作温度225~250℃的航空器零件。 2A50 形状复杂的中等强度零件。

化学团簇研究

团簇及掺杂团簇的研究现状及意义 原子团簇和分子团簇,简称为团簇(Cluster);团簇这一名词是Cotton在1996年提出的,并认为团簇是具有金属-金属键的多核化合物。团簇由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的微观和亚微观聚集体,团簇的空间尺度大约在几埃至几百埃,其物理以及化学性质随所含原子数的变化而变化。团簇的许多性质不同于单个的原子或分子,也不同于固体或液体,并且也不能从单体和体相材料的性质作简单的线性外延和内插来得到。因此,团簇被看作是介于原子分子以及宏观固体之间物质结构的新层次,称之为物质的“第五态”,它是各种物质由原子分子向体相物质转变的过渡态,也可说它是代表了凝聚态物质的初始状态,团簇的研究有利于我们认识由单个原子向大块凝聚物过渡时性质的变化规律。 团簇广泛存在于自然界与人类的实践活动中,涉及的许多现象如燃烧、晶体生长、催化、成核和凝固、相变与临界现象、薄膜形成、溶胶和溅射等可构成物理和化学的一个交汇点。况且,在团簇中还出现了些新的物理现象,例如壳层结构与幻数、液相与固相并存与转化、表面等离子激发、磁性增强、同位素效应以及金属非金属转变等等。因而对团簇的研究将带动凝聚态物理、表面物理和化学、原子分子物理和化学动力学的发展。团簇作为介于气态与固态之间的一种过渡态,对其形成和运动规律的研究,不仅为发展和完善原子间结合理论以及各种固体和大分子形成规律提供了合适的对象,也是在实验条件下对大气烟雾和溶胶、宇宙分子和尘埃、云层的形成和发展等的一种模拟,可为气侯人工调节、大气污染控制和天体演化的研究提供线索,丰富了生命科学、大气科学和宇宙科学学科的内容。另外,团簇的理论研究也促进了理论物理和计算物理的发展。团簇在空间上是有限尺度的,零维至三维的模型系统可通过对其几何结构的选择来提供。在团簇的理论研究中,所开发出的一些计算方法也可进一步的推广到有机分子、生物大分子以及固体材料等复杂的系统的计算模拟中。 团簇科学起源于19世纪中叶人们对烟雾、云以及碰撞等现象的研究和后来对成核现象的研究。团簇的研究处于多学科交叉的范畴,它同原子核物理、凝聚态物理、量子化学、表面科学、材料科学以及核物理学中引用的概念和方法交织在一起,并逐渐发展成一门介于原子分子物理和固体物理之间的新型学科。 团簇科学是研究团簇的电子结构和原子组态、物理和化学性质及其向大块物质演变过程中与尺寸的关联,还有同外界环境相互作用的特征和规律。由于团簇是介于分子和凝聚态物质之间的一种特殊物质状态,因而具有很多奇特的性质。如气、固、液三相的并存与转化;催化特性、化学活性、量子尺寸效应、极大的表体比效应以及同位素效应等。这些特性使得团簇在原子分子物理、配位化学、结构化学、量子化学和凝聚态物理等方面出现了许多新的现象和规律。通过研究这些现象和规律,从而构成了现代物理学

相关主题
文本预览
相关文档 最新文档