高中数学 第三章 概率教材习题本(无答案)新人教A版
- 格式:doc
- 大小:30.00 KB
- 文档页数:5
高一数学人教a版必修三练习:第三章_概率3_章末高效整合_word版含解析(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某人在打靶中连续射击两次,与事件“至少有一次中靶”互斥的事件是()A.至多有一次中靶B.两次都中靶C.两次都不中靶D.只有一次中靶解析:连续射击两次,事件“至少有一次中靶”的互斥事件是“两次都不中靶”.答案: C2.下列试验中,是古典概型的有()A.种下一粒种子,观察它是否发芽B.从规格直径为(250±0.6)mm的一批产品中任意抽一根,测量其直径d,检测其是否合格C.抛一枚硬币,观察其出现正面或反面D.某人射击中靶或不中靶解析:只有C具有古典概型的有限性与等可能性.答案: C3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是()A.对立事件B.不可能事件C.互斥但不对立事件D.既不互斥又不对立事件解析:甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.答案: C4.设一元二次方程x2+bx+c=0,若b,c是一枚质地均匀的骰子连续投掷两次出现的点数,则方程有实数根的概率为( )A.112B.736C.1336D.1936解析: 因为b ,c 是一枚质地均匀的骰子连续投掷两次出现的点数,所以一共有36种情况.由方程有实数根知,Δ=b 2-4c ≥0,显然b ≠1.当b =2时,c =1(1种);当b =3时,c =1,2(2种);当b =4时,c =1,2,3,4(4种);当b =5时,c =1,2,3,4,5,6(6种).当b =6时,c =1,2,3,4,5,6(6种).故方程有实数根共有19种情况,所以方程有实数根的概率是1936.答案: D5.有四个游戏盘,如图所示,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖机会大,他应当选择的游戏盘为()解析: A 中P 1=38,B 中P 2=26=13,C 中设正方形边长为2,则P 3=4-π×124=4-π4,D 中设圆直径为2,则P 4=12×2×1π=1π.在P 1,P 2,P 3,P 4中,P 1最大.答案: A6.(2015·石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以710为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品解析: 将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P 1=610,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P 2=310,其对立事件是“至多有一件一等品”,概率为P 3=1-P 2=1-310=710.答案: C7.一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( )A.9100B.350C.3100D.29解析: 任意敲击0到9这十个数字键两次,其得到的所有结果为(0,i )(i =0,1,2,…,9);(1,i )(i =0,1,2,…,9);(2,i )(i =0,1,2,…,9);…;(9,i )(i =0,1,2,…,9).故共有100种结果.两个数字都是3的倍数的结果有(3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9),共有9种.故所求概率为9100.答案: A8.A 是圆上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度大于或等于半径长度的概率为( )A.12B.23C.32D.12解析: 如图,当A ′位于B 或C 点时,AA ′长度等于半径,此时∠BOC=120°,则优弧BC ︵长度为43πR .故所求概率P =43πR 2πR =23.答案: B9.运行如图的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素α,则函数y =x α,x ∈[0,+∞)是增函数的概率为( )A.37B.45C.35D.34解析: 当x 依次取值-3,-2,-1,0,1,2,3时, 对应的y 的值依次为:3,0,-1,0,3,8,15,所以集合A ={-1,0,3,8,15},因为α∈A ,所以使y =x α在x ∈[0,+∞)上为增函数的α的值为3,8,15,故所求概率P =35.答案: C10.为了调查某厂2 000名工人生产某种产品的能力,随机调查了20位工人某天生产该产品的数量,产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35],频率分布直方图如图所示.工厂规定从生产低于20件产品的工人中随机地选取2位工人进行培训,则这2位工人不在同一组的概率是( )A.110B.715C.815D.1315解析: 根据频率分布直方图可知产品件数在[10,15),[15,20)内的人数分别为5×0.02×20=2,5×0.04×20=4,设生产产品件数在[10,15)内的2人分别是A ,B ,设生产产品件数在[15,20)内的4人分别为C ,D ,E ,F ,则从生产低于20件产品的工人中随机地选取2位工人的结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.2位工人不在同一组的结果有(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),共8种.则选取这2人不在同一组的概率为815.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.从4名男生和2名女生中任选3人参加演讲比赛,所选3人中至少有1名女生的概率为45,那么所选3人中都是男生的概率为 W.解析: 设A ={3人中至少有1名女生},B ={3人中都是男生},则A ,B 为对立事件, 所以P (B )=1-P (A )=15.答案: 1512.(2015·潍坊高一检测)口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为 W.解析: 由题可知,白球的个数为100×0.23=23,所以黑球的个数为100-23-45=32,所以概率为P =32100=0.32.答案: 0.3213.已知函数f (x )=log 2x ,x ∈[1,3],若在区间x ∈[1,3]上随机取一点,则使得-1≤f (x 0)≤1的概率为 W.解析: 由函数-1≤f (x 0)≤1得-1≤log 2x 0≤1,解得x 0∈⎣⎡⎦⎤12,2,又函数f (x )的定义域为x ∈[1,3],所以不等式的最终解集为x 0∈[1,2],所以-1≤f (x 0)≤1的概率P =2-13-1=12.答案: 1214.已知集合A ={-1,0,1,3},从集合A 中有放回地任取两个元素x ,y 作为点M 的坐标,则点M 落在x 轴上的概率为 W.解析: 所有基本事件构成集合{(-1,-1),(-1,0),(-1,1),(-1,3),(0,-1),(0,0),(0,1),(0,3),(1,-1),(1,0),(1,1),(1,3),(3,-1),(3,0),(3,1),(3,3)},其中“点M 落在x 轴上”的事件所含基本事件有(-1,0),(0,0),(1,0),(3,0),所以P =416=14.答案: 14三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)某人去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3,0.2,0.1,0.4. (1)求他乘火车或飞机去的概率; (2)求他不乘飞机去的概率.解析: 设“乘火车”“乘轮船”“乘汽车”“乘飞机”分别为事件A ,B ,C ,D ,则P (A )=0.3,P (B )=0.2,P (C )=0.1,P (D )=0.4.(1)P (A ∪D )=P (A )+P (D )=0.3+0.4=0.7.(2)设“不乘飞机”为事件E ,则P (E )=1-P (D )=1-0.4=0.6.16.(本小题满分12分)甲、乙两人做出猜拳游戏(锤子、剪刀、布).求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.解析: 设平局为事件A ,甲赢为事件B ,乙赢为事件C .容易得到如图所示的图形.(1)平局含3个基本事件(图中的△),P (A )=39=13.(2)甲赢含3个基本事件(图中的⊙),P (B )=39=13.(3)乙赢含3个基本事件(图中的※),P (C )=39=13.17.(本小题满分12分)袋中有红、黄、白三种颜色的球各3只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率; (2)3只颜色全相同的概率; (3)3只颜色不全相同的概率; (4)3只颜色全不相同的概率.解析: 从袋中有放回地抽取3次,全部的基本事件用树状图表示为:(1)记“3只球全是红球”为事件A ,则P (A )=127.(2)记“3只球颜色相同”为事件B ,则P (B )=127+127+127=19.(3)记“3只球颜色不全相同”为事件C ,则有24种情况,故P (C )=2427=89.(4)要使3只球颜色全不相同,只可能是红、黄、白球各出现一次,记“3只颜色全不相同”为事件D ,则P (D )=627=29.18.(本小题满分14分)如图,一张圆形桌面被分成了M ,N ,P ,Q 四个区域,∠AOB =30°,∠BOC =45°,∠COD =60°.将一粒小石子随机扔到桌面上,假设小石子不落在线上,求下列事件的概率:(1)小石子落在区域M 内的概率;(2)小石子落在区域M 或区域N 内的概率; (3)小石子落在区域Q 内的概率.解析: 将一粒小石子随机扔到桌面上,它落在桌面上任一点的可能性都是相等的,根据几何概型的概率计算公式,可得:(1)小石子落在区域M 内的概率是S 扇形OAB S 圆O =112.(2)小石子落在区域M 或区域N 内的概率是 S 扇形OAB +S 扇形OBCS 圆O=524. (3)小石子落在区域Q 内的概率是 1-S 扇形OAB +S 扇形OBC +S 扇形OCD S 圆O=58.。
专题:古典概型的概念及概率※知识要点1.基本事件有如下特点:(1)任何两个基本事件是________的.(2)任何事件(除不可能事件)都可以表示成______________.2.一般地,一次试验有下面两个特征:(1) 性:试验中所有可能出现的基本事件只有有限个;(2) 性:每个基本事件出现的可能性相同;具备上述特征的事件概率模型为古典概型.注意:判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:和.3.古典概型的概率公式:P(A)=;.注意:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是_____;若某事件A包括的结果有m个,则事件A的概率P(A)=.4.求古典概型的步骤:(1)判断是否为古典概型;(2)列举的基本事件的总数n;(3)列举事件A所包含的基本事件数m;(4)计算概率:P(A)=________.※题型讲练【例1】判断下面结论是否正确:(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)从市场上出售的标准为500±5 g的袋装食盐中任取一袋,测其重量,属于古典概型.()(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.()(5)从1,2,3,4,5中任取两个不同的数和为5的概率是0.2.() (6)在古典概型中,如果事件A中基本事件构成集合A,且集合A中的元素个数为n,所有的基本事件构成集合I,且集合I中元素个数为m,则事件A的概率为nm.()变式训练1:1.下列试验中,是古典概型有________.①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中任取两个数,其中一个数是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.2.袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?【例2】在一个盒中装有6枝圆珠笔,其中3枝一等品,2枝二等品和1枝三等品,从中任取3枝,求下列事件的概率:(1)恰有一枝一等品;(2)恰有两枝一等品;(3)没有三等品.变式训练2:1.一个盒子里装有标号为1,2,3,4的4张标签,随机地取出两张,根据下列条件求两张标签上的数字为相邻整数的概率::(1)标签的选取是无放回的;(2)标签的选取是有放回的.2.从装有3双不同的鞋柜子里随机取出2只,求下列概率:(1)取出的鞋子都是左脚的;(2)取出的鞋子恰是一双的.【例3】某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:(1)人身高都在1.78以下的概率;(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.变式训练3:1.甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,求乙抽到的牌面数字比3大的概率;(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.2.已知向量a=(x,-1),b=(3,y),其中x随机选自集合{}-1,1,3,y随机选自集合{}1,3,9.(1)求a∥b的概率;(2)求a⊥b的概率.※课后练习1.4张卡上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为()A.12B.13C.23D.342.若某公司从五位毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.23B.25C.35D.9103.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为()A.13B.512C.12D.7124.若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P在直线x+y=5下方的概率为()A.16B.14C.112D.195.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3C.p1<p3<p2D.p3<p1<p26.三张卡片上分别写上字母E,E,B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为________.7.在平面直角坐标系中,从五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,恰好构成三角形的概率是________.8.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目.若选到男教师的概率为920,则参加联欢会的教师共有________人.9.连掷两次骰子分别得到点数m 、n ,则向量(m ,n )与向量(-1,1)的夹角θ>90°的概率是________.10.在集合{x |x =n π6,n =1,2,3,…,10}中任取一个元素,所取元素恰好满足方程cos x =12的概率是________.11.袋子中装有编号为a ,b 的2个黑球和编号为c ,d ,e 的3个红球,从中任意摸出2个球. (1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.12.某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.13.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.14.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):中有A 类轿车10辆. (1)求z 的值;(2)按型号用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.。
3.2.2 (整数值)随机数(random numbers)的产生课时目标 1.了解随机数的意义.2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率.3.理解用模拟方法估计概率的实质.1.随机数要产生1~n(n ∈N *)之间的随机整数,把n 个____________相同的小球分别标上1,2,3,…,n ,放入一个袋中,把它们__________,然后从中摸出一个,这个球上的数就称为随机数.2.伪随机数计算机或计算器产生的随机数是依照__________产生的数,具有________(________很长),它们具有类似________的性质.因此,计算机或计算器产生的并不是______,我们称它们为伪随机数.3.利用计算器产生随机数的操作方法:用计算器的随机函数RANDI(a ,b )或计算机的随机函数RANDBETWEEN(a ,b )可以产生从整数a 到整数b 的取整数值的随机数.4.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel 软件为例,打开Excel 软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter 键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl +C 快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl +V 快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”按Enter 键,在此格中的数是这100次试验中出现1的频率.一、选择题1.从含有3个元素的集合的所有子集中任取一个,所取的子集是含有2个元素的集合的概率是( )A.310B.112C.4564D.382.用计算机随机模拟掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是( )A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计算器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束,出现2点的频率m n作为概率的近似值 3.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( )A .0.50B .0.45C .0.40D .0.354.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.155.从1,2,3,…,30这30个数中任意选一个数,则事件“是偶数或能被5整除的数”的概率是( )A.710B.35C.45D.1106.任取一个三位正整数N ,对数log 2N 是一个正整数的概率为( )A.1B.3C.1D.17.对一部四卷文集,按任意顺序排放在书架的同一层上,则各卷自左到右或由右到左卷号恰为1,2,3,4顺序的概率等于________.8.盒子里共有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,则它们颜色不同的概率是________.9.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 7884 2604 3346 09526807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为________.三、解答题10.掷三枚骰子,利用Excel 软件进行随机模拟,试验20次,计算出现点数之和是9的概率.11.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,那么在连续三次投篮中,三次都投中的概率是多少?能力提升12.从4名同学中选出3人参加物理竞赛,其中甲被选中的概率为( )A.14B.12C.34D .以上都不对 13.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.1.(1)常用的随机数的产生方法主要有抽签法,利用计算器或计算机.(2)利用摸球或抽签得到的数是真正意义上的随机数,用计算器或计算机得到的是伪随机数.2.用整数随机模拟试验时,首先要确定随机数的范围,利用哪个数字代表哪个试验结果:(1)试验的基本结果等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及范围.答案:3.2.2 (整数值)随机数(random numbers )的产生知识梳理1.大小、形状 充分搅拌 2.确定算法 周期性 周期 随机数 真正的随机数 作业设计1.D [所有子集共8个,∅,{a},{b},{c},{a ,b},{a ,c},{b ,c},{a ,b ,c},含两个元素的子集共3个,故所求概率为38.] 2.A [计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数,包括7,共7个整数.]3.A [两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的之一.它们分别是93,28,45,25,73,93,02,48,30,35共10个,因此所求的概率为1020=0.5.] 4.D [由题意知基本事件为从两个集合中各取一个数,因此基本事件总数为5×3=15. 满足b>a 的基本事件有(1,2),(1,3),(2,3)共3个,∴所求概率P =315=15.] 5.B6.C [N 取[100,999]中任意一个共900种可能,当N =27,28,29时,log 2N 为正整数,∴P=1300.] 7.112解析 用树形图可以列举基本事件的总数.①②③④ ②①③④ ③①②④ ④①②③①②④③ ②①④③ ③①④② ④①③②①③②④ ②③①④ ③②①④ ④②③①①③④② ②③④① ③②④① ④②①③①④②③ ②④①③ ③④①② ④③①②①④③② ②④③① ③④②① ④③②①总共有24种基本事件,故其概率为P =224=112. 8.12解析 给3只白球分别编号为a ,b ,c,1只黑球编号为d ,基本事件为ab ,ac ,ad ,bc ,bd ,cd 共6个,颜色不同包括事件ad ,bd ,cd 共3个,因此所求概率为36=12. 9.14解析 由题意四次射击中恰有三次击中对应的随机数有3个数字在1,2,3,4,5,6中,这样的随机数有3013,2604,5725,6576,6754共5个,所求的概率约为520=14. 10.解 操作步骤:(1)打开Excel 软件,在表格中选择一格比如A 1,在菜单下的“=”后键入“=RANDBETWEEN(1,6)”,按Enter 键,则在此格中的数是随机产生的1~6中的数.(2)选定A 1这个格,按Ctrl +C 快捷键,然后选定要随机产生1~6的格,如A 1∶T 3,按Ctrl +V 快捷键,则在A 1∶T 3的数均为随机产生的1~6的数.(3)对产生随机数的各列求和,填入A 4∶T 4中.(4)统计和为9的个数S ;最后,计算概率S /20.11.解 我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到9之间的取整数值的随机数.我们用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%.因为是投篮三次,所以每三个随机数作为一组.例如,产生20组随机数:812 932 569 683 271 989 730 537 925834 907 113 966 191 432 256 393 027556 755这就相当于做了20次试验,在这组数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是113,432,256,556,即共有4个数,我们得到了三次投篮都投中的概率近似为420=20%. 12.C [4名同学选3名的事件数等价于4名同学淘汰1名的事件数,即4种情况,甲被选中的情况共3种,∴P =34.] 13.解 利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数(可借助教材103页的随机数表). 034 743 738 636 964 736 614 698 637162 332 616 804 560 111 410 959 774246 762 428 114 572 042 533 237 322 707 360 751就相当于做了30次试验.如果恰有2个或3个数在6,7,8,9中,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367.。
高一数学人教a 版必修三练习:第三章_概率3.1.1_word版含解析(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分)1.下列事件中,是随机事件的是( )A.长度为3,4,5的三条线段可以构成一个三角形B.长度为2,3,4的三条线段可以构成一个直角三角形C.方程x 2+2x +3=0有两个不相等的实根D.函数y =log a x (a >0且a ≠1)在定义域上为增函数解析: A 为必然事件,B 、C 为不可能事件.答案: D2.下列说法正确的是( )A.某事件发生的概率是P (A )=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然要发生的事件D.某事件发生的概率是随着试验次数的变化而变化的解析: 对于A ,事件发生的概率范围为[0,1],故A 错;对于C ,小概率事件有可能发生,大概率事件不一定发生,故C 错;对于D ,事件的概率是常数,不随试验次数的变化而变化,故D 错. 答案: B3.下列说法一定正确的是( )A.一名篮球运动员,号称“百发百中”,若罚球三次,不会出现三投都不中的情况B.一枚硬币掷一次得到正面的概率是12,那么掷两次一定会出现一次正面的情况 C.如买彩票中奖的概率是万分之一,则买一万元的彩票一定会中奖一元D.随机事件发生的概率与试验次数无关解析: 因为随机事件发生的概率与试验次数无关,概率是事件发生的可能性,但并不能确定在一次试验中事件一定发生或不发生,所以应选D.答案: D4.下列说法中,正确的是( )①频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率m n就是事件A 的概率; ③频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.A.①②④B.①③④C.①②③D.②③④解析: 由频率、概率的相关定义,知①、③和④正确,故选B.答案: B二、填空题(每小题5分,共15分)5.姚明在一个赛季中共罚球124个,其中投中107个,设投中为事件A ,则事件A 出现的频数为 ,事件A 出现的频率为 W.解析: 因共罚球124个,其中投中107个,所以事件A 出现的频数为107,事件A 出现的频率为107124. 答案: 107 1071246.给出下列四个命题:①集合{x ||x |<0}为空集是必然事件;②y =f (x )是奇函数,则f (0)=0是随机事件;③若log a (x -1)>0,则x >1是必然事件;④对顶角不相等是不可能事件.其中正确命题是 W.解析: ∵|x |≥0恒成立,∴①正确;奇函数y =f (x )只有当x =0有意义时才有f (0)=0,∴②正确;由log a (x -1)>0知,当a >1时,x -1>1即x >2;当0<a <1时,0<x -1<1,即1<x <2,∴③正确,④正确.答案: ①②③④7.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率近似为 W.解析: 事件频率为60020 000=0.03,故概率近似为0.03. 答案: 0.03三、解答题(每小题10分,共20分)8.从含有两件正品a 1,a 2和一件次品b 的三件产品中每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有结果;(2)设A 为“取出两件产品中恰有一件次品”,写出事件A ;(3)把“每次取出后不放回”这一条件换成“每次取出后放回”,其余不变,请你回答上述两个问题. 解析: (1)这个试验的所有可能结果Ω={(a 1,a 2),(a 1,b ),(a 2,b ),(a 2,a 1),(b ,a 1),(b ,a 2)}.(2)A ={(a 1,b ),(a 2,b ),(b ,a 1),(b ,a 2)}.(3)①这个试验的所有可能结果Ω={(a 1,a 1),(a 1,a 2),(a 1,b ),(a 2,a 1),(a 2,a 2),(a 2,b ),(b ,a 1),(b ,a 2),(b ,b )}.②A ={(a 1,b ),(a 2,b ),(b ,a 1),(b ,a 2)}.9.假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.解析: (1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以甲品牌产品寿命小于200小时的概率为14. (2)根据抽样结果,寿命大于200小时的产品有75+70=145(个),其中甲品牌产品是75个,所在在样本中,寿命大于200小时的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529.。
学习资料课时分层作业(十七) 概率的基本性质(建议用时:60分钟)一、选择题1.给出事件A与B的关系示意图,如图所示,则()A.A⊆B B.A⊇BC.A与B互斥D.A与B互为对立事件C[由互斥事件的定义知,A、B互斥.]2.某校高三(1)班50名学生参加1 500 m体能测试,其中23人成绩为A,其余人成绩都是B或C.从这50名学生中任抽1人,若抽得B的概率是0.4,则抽得C的概率是()A.0。
14B.0.20C.0。
40D.0.60A[由于成绩为A的有23人,故抽到C的概率为1-错误!-0。
4=0.14。
故选A.]3.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案都不对C[“甲分得红牌”与“乙分得红牌”不会同时发生,但分得红牌的还有可能是丙或丁,所以这两事件互斥但不对立.]4.“二十四节气”是古代农耕文明的产物,表达了人与自然宇宙之间独特的时间观念,是中华民族悠久文化内涵和历史沉淀.根据多年气象统计资料,某地在节气夏至当日下雨的概率为0.45,阴天的概率为0。
20,则该地在节气夏至当日为晴天的概率为()A.0.65B.0.55C.0.35D.0.75C[设事件“某地在节气夏至当日下雨"为事件A,“某地在节气夏至当日阴天"为事件B,“某地在节气夏至当日晴天”为事件C,由题意可得事件A,B,C为互斥事件,所以P(A)+P(B)+P(C)=1,又P(A)=0。
45,P(B)=0。
2,所以P(C)=0.35.]5.某商场为了迎接周年庆开展抽奖活动,奖项设置一等奖、二等奖、三等奖,其他都是幸运奖.设事件A={抽到一等奖},事件B={抽到二等奖},事件C={抽到三等奖},且已知P(A)=0。
1,P(B)=0.25,P(C)=0。
4,则事件“抽到三等奖或者幸运奖”的概率为()A.0。
高中数学人教A版必修3 第三章概率高考复习习题(选择题101-200)含答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题1.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A.B.C.D.2.如图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为.则阴影区域的面积约为( )A.B.C.D.无法计算3.在区间[-2,2]上随机取一个数b,若使直线与圆有交点的概率为,则a =A.B.C.1D.24.某中学有3个社团,每位同学参加各个社团的可能性相同,甲、乙两位同学均参加其中一个社团,则这两位同学参加不同社团的概率为()A.B.C.D.5.已知圆,直线.当实数时,圆上恰有个点到直线的距离为的概率为A.B.C.D.6.、、、四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则的小孩坐妈妈或妈妈的车概率是A.B.C.D.7.将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷2次,记第一次出现的点数为m,记第二次出现的点数为n,向量则和共线的概率为A.B.C.D.8.在区间上随机取一个数,则直线与圆有两个不同公共点的概率为()A.B.C.D.9.向上抛掷一颗骰子1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则( ) A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件10.某单位周一至周六要安排甲、乙、丙、丁四人值班,每人至少值一天班,则甲至少值两天班的概率为A.B.C.D.11.在区间上随机取两个实数,记向量,,则的概率为A.B.C.D.12.有4位游客来某地旅游,若每人只能从此处甲、乙、丙三个不同景录点中选择一处游览,则每个景点都有人去游览的概率为( )A.B.C.D.13.一张储蓄卡的密码共有位数字,每位数字都可以从中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过次就按对的概率为()A.B.C.D.14.如图所示,平面直角坐标系中,阴影部分是由抛物线及线段围成的封闭图形,现在在内随机的取一点,则点恰好落在阴影内的概率为15.如图所示,在椭圆内任取一个点,则恰好取自椭圆的两个端点连线与椭圆围成阴影部分的概率为()A.B.C.D.16.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是()A.B.C.D.17.设随机变量,其正态分布密度曲线如图所示,那么向正方形中随机投掷个点,则落入阴影部分的点的个数的估计值是()注:若,则,.A.B.C.D.18.牡丹花会期间,记者在王城公园随机采访6名外国游客,其中有2名游客来过洛阳,从这6人中任选2人进行采访,则这2人中至少有1人来过洛阳的概率是()A.B.C.D.19.在长为的线段上任取一点,并以线段为边作正方形,这个正方形的面积介于与之间的概率为( )A.B.C.D.20.把一根长为6米的细绳任意做成两段,则稍短的一根细绳的长度大于2米的概率是( )21.将数字1、2、3填入标号为1,2,3的三个方格里,每格填上一个数字,则方格的标号与所填的数字有相同的概率是()A.B.C.D.22.如图,若在矩形中随机撒一粒豆子,则豆子落在图中阴影部分的概率为()A.B.C.D.23.在边长为1的正五边形的五个顶点中,任取两个顶点,则两个顶点间距离大于1的概率为A.B.C.D.24.已知为正方形,其内切圆与各边分别切于,,,,连接,,,.现向正方形内随机抛掷一枚豆子,记事件:豆子落在圆内,事件:豆子落在四边形外,则()A.B.C.D.25.如图,在正六边形内随机取一点,则此点取自阴影部分的概率是()A.B.C.D.26.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( )27.已知 是边长为2的正三角形,在 内任取一点,则该点落在 内切圆内的概率是( )A .B .C .D .28.党的十九大报告指出,建设教育强国是中华民族伟大复兴的基础工程,必须把教育事业放在优先位置,深化教育资源的均衡发展.现有4名男生和2名女生主动申请毕业后到两所偏远山区小学任教.将这6名毕业生全部进行安排,每所学校至少安排2名毕业生,则每所学校男女毕业生至少安排一名的概率为A . 425B . 25C . 1425D . 4529.(辽宁省大连市2018届二模)关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰试验.受其启发,我们也可以通过设计下面的试验来估计的值,试验步骤如下:①先请高二年级 500名同学每人在小卡片上随机写下一个实数对 ;②若卡片上的 能与1构成锐角三角形,则将此卡片上交;③统计上交的卡片数,记为m ;④根据统计数m 估计 的值.假如本次试验的统计结果是 ,那么可以估计 的值约为( )A .B .C .D .30.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现向圆中随机投掷一个点,则该点落在正六边形内的概率为( )A . 2πB . 2C . 2πD . 231.我们可以用随机模拟的方法估计 的值,如下程序框图表示其基本步骤(函数 是产生随机数的函数,它能随机产生 内的任何一个实数),若输出的结果为527, 则由此可估计 的近似值( )A.B.C.D.32.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;红、黑球各一个C.恰有一个白球;一个白球一个黑球D.至少有一个白球;至少有一个红球33.,中,,在线段上任取一点,则的面积小于的概率是( )A.B.C.D.34.五四青年节活动中,高三(1)、(2)班都进行了3场知识辩论赛,比赛得分情况的茎叶图如图所示(单位:分),其中高三(2)班得分有一个数字被污损,无法确认,假设这个数字x具有随机性,那么高三(2)班的平均得分大于高三(1)班的平均得分的概率为()A.34B.13C.35D.2535.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.140 D.12036.AQI是表示空气质量的指数,AQI指数值越小,表明空气质量越好,当AQI指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI指数值的统计数据,图中点A表示4月1日的AQI指数值为201,则下列叙述不正确的是()A.这12天中有6天空气质量为“优良”B.这12天中空气质量最好的是4月9日C.这12天的AQI指数值的中位数是90D.从4日到9日,空气质量越来越好37.“”是计算机软件产生随机数的函数,每调用一次函数,就产生一个在区间内的随机数.我们产生个样本点,其中.在这个样本点中,满足的样本点的个数为,当足够大时,可估算圆周率的近似值为()A.B.C.D.38.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取3个节日来讲解其文化内涵,那么春节被选中的概率是( )A.0.3B.0.4C.0.6D.0.739.已知某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A . 100,8B . 80,20C . 100,20D . 80,840.在区间上随机取一个数x ,cos x 的值介于0到 之间的概率为( ). A . B . C . D . 41.三国时期吴国的数学家赵爽曾创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个全等的直角三角形与中间的小正方形拼成一个大正方形,其中一个直角三角形中较小的锐角 满足 ,现向大正方形内随机投掷一枚飞镖,则飞镖落在小正方形内的概率是A .B .C .D . 42.一个人打靶时连续射击两次,则事件“至多有一次中靶”的互斥事件是( )A . 至少有一次中靶B . 只有一次中靶C . 两次都中靶D . 两次都不中靶43.已知定义在R 上的偶函数()f x 在[)0,+∞上单调递增,若[]3,3x ∈-,则不等式()()1f x f ≤成立的概率是( )A .B .C .D . 44.已知矩形 中, , , 为 的中点,在矩形 内随机取一点,取到的点到 的距离大于1的概率为( )A .B .C .D .45.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2B.3C.10D.1546.(云南省昆明市2018届5月适应性检测)一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“ ”组成.已知在一个显示数字8的显示池中随机取一点,点落在深色区域内的概率为.若在一个显示数字0的显示池中随机取一点,则点落在深色区域的概率为()A.B.C.D.47.如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为A.1-B.C.-1D.48.若在区间上随机取一个数,则“直线与圆相交”的概率为()A.B.C.D.49.在区域,内任意取一点,则的概率是A.0B.C.D.50.袋子中有四个小球,分别写有“美、丽、中、国”四个字,有放回地从中任取一个小球,直到“中”“国”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“中、国、美、丽”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下18组随机数:232 321 230 023 123 021 132 220 001231 130 133 231 031 320 122 103 233由此可以估计,恰好第三次就停止的概率为A.B.C.D.51.假设你家订了一份《都市早报》,快递员可能在早上之间的任一时刻把报纸送到你家,你父亲离开家去上班的事件在之间.问你父亲在离家前能看到报纸的概率是()A.B.C.D.52.某高中在今年的期末考试历史成绩中随机抽取名考生的笔试成绩,作出其频率分布直方图如图所示,已知成绩在中的学生有1名,若从成绩在和两组的所有学生中任取2名进行问卷调查,则2名学生的成绩都在中的概率为()A.B.C.D.53.《中国诗词大会》节目以“赏中华诗词、寻文化基因、品生活之美”为宗旨,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识竞赛,现组委会要从甲、乙等五位候选参赛者中随机选取2人进行比拼,记“甲被选上且乙不被选上” 为事件,则事件的概率为()A.0.3B.0.4C.0.5D.0.654.已知一袋中有标有号码、、的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A.B.C.D.55.在区间[0,2]上随机取一个数x,使的概率为()A.B.C.D.56.从1,2,3,6这4个数中一次随机地取2个数,记所取的这2个数的乘积为m ,则下列说法错误的是( )A . 事件“6m =”B . 事件“2m >”C . 事件“2m =”与事件“6m =”为互斥事件D . 事件“2m =”与事件“2m >”互为对立事件57.57.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是 ( )A . 对立事件B . 不可能事件C . 互斥但不对立事件D . 不是互斥事件58.老师计算在晚修19:00-20:00解答同学甲乙的问题,预计解答完一个学生的问题需要20分钟.若甲乙两人在晚修内的任意时刻去问问题是相互独立的,则两人独自去时不需要等待的概率( )A .B .C .D .59.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定l ,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:907 966 191 925 271 431 932 458 569 683.据此估计,该运动员三次投篮恰有两次命中的概率为A .B .C .D . 60.为了节省材料,某市下水道井盖的形状如图1所示,其外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段圆弧组成的曲边三角形,这个曲边三角形称作“菜洛三角形”.现有一颗质量均匀的弹珠落在如图2所示的莱洛三角形内,则弹珠恰好落在三角形 内的概率为( )A.B.C.D.61.已知圆:,直线:,圆上的点到直线的距离小于2的概率为()A.B.C.D.62.路公共汽车每分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是()A.B.C.D.63.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,在此正方形中任取一点,则此点取自阴影部分的概率是()A.B.C.D.64.如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为()A.B.C.D.65.将长度为1米的绳子任意剪成两段,那么其中一段的长度小于0.3米的概率是A.B.C.D.66.(江西省南昌市2018届二模)在《周易》中,长横“”表示阳爻,两个短横“”表示阴爻,有放回地取阳爻和阴爻三次合成一卦,共有种组合方法,这便是《系辞传》所说:“太极生两仪,两仪生四象,四象生八卦”,有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有四种不同的情况,有放回地取阳爻和阴爻三次有八种不同的情况,即为八卦,在一次卜卦中,恰好出现两个阳爻一个阴爻的概率是()A.B.C.D.67.如图,半径为1的圆内有一阴影区域,在圆内随机撒入一大把豆子,共颗,其中,落在阴影区域内的豆子共颗,则阴影区域的面积约为( )A.B.C.D.68.根据以往数据统计,某酒店一商务房间1天有客人入住的概率为,连续2天有客人入住的概率为,在该房间第一天有客人入住的条件下,第二天也有客人入住的概率为()A.B.C.D.69.襄阳四中、五中属于襄阳市,宜昌一中、夷陵中学属于宜昌市,龙泉中学、钟祥一中属于荆门市,荆州中学属于荆州市,从参加本次七校联考的七所学校中抽取两个学校的成绩进行分析,则抽出来的两所学校属于不同城市的概率为A.B.C.D.70.袋中装有红球个、白球个、黑球个,从中随机摸出个球,则与事件“至少有个白球”互斥但不对立的事件是()A.没有白球B.个白球C.红、黑球各个D.至少有个红球71.将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为()A.B.C.D.72.2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结東,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是()A.B.C.D.米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概73.甲乙等4人参加4100率是()A.B.C.D.74.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、候、公,共五级.现有每个级别的诸侯各一人,共五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多分个(为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是()A.B.C.D.75.在边长为的等边三角形的边上任取一点,使成立的概率为()A.B.C.D.76.在《周易》中,长横“”表示阳爻,两个短横“”表示阴爻.有放回地取阳爻和阴爻三次合成一卦,共有种组合方法,这便是《系辞传》所说“太极生两仪,两仪生四象,四象生八卦”.有放回地取阳爻和阴爻一次有2种不同的情况,有放回地取阳爻和阴爻两次有四种情况,有放回地取阳爻和阴爻三次,八种情况.所谓的“算卦”,就是两个八卦的叠合,即共有放回地取阳爻和阴爻六次,得到六爻,然后对应不同的解析.在一次所谓“算卦”中得到六爻,这六爻恰好有三个阳爻三个阴爻的概率是()A.B.C.D.77.《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为A.B.C.D.78.用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为()A.B.C.D.79.有一个容量为66的样本,数据的分组及各组的频数如下:[10.5,14.5) 2 [14.5,18.5) 4 [18.5,22.5) 9 [22.5,26.5) 18[26.5,30.5) 11 [30.5,34.5) 12 [34.5,38.5) 8 [38.5,42.5) 2根据样本的频率分布估计,数据落在[30.5,42.5)内的概率约是( )A.B.C.D.80.把一枚质地均匀、半径为1的圆形硬币平放在一个边长为8的正方形托盘上,则该硬币完全落在托盘上(即没有任何部分在托盘以外)的概率为()A.B.C.D.81.甲、乙两人各自在400米长的直线型跑道上跑步,则在任一时刻两人在跑道上相距不超过50米的概率是()A.B.C.D.82.一个圆形电子石英钟由于缺电,指针刚好停留在整,三个指针(时针、分针、秒针)所在射线将时钟所在圆分成了三个扇形,一只小蚊子(可看成是一个质点)随机地飞落在圆面上,则恰好落在时针与分针所夹扇形内的概率为()A.B.C.D.83.利用随机模拟方法计算和所围成图形的面积.首先利用计算机产生两组之间的随机数:(),();令;若共产生了个样本点,其中落在所围图形内的样本点数为,则所围成图形的面积可估计为()A .B .C .D .84.甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人的能荣获一等奖的概率等奖的概率为( )A .B .C .D . 85.已知函数()f x 为R 上的奇函数,且在()0,+∞上为增函数,从区间(]5,5-上任取一个数x ,则使不等式()()21220f x f x -+-<成立的概率为( )A .B .C .D . 86.函数()2(0)x f x x =<,其值域为D ,在区间()1,2-上随机取一个数x ,则x D∈的概率是( )A . 12B . 13C . 14D . 2387.从3名男生,2名女生中选3人参加某活动,则男生甲和女生乙不同时参加该活动,且既有男生又有女生参加活动的概率为( )A .B .C .D .88.2018年行平昌冬季奥运会与2月9~2月25日举行,为了解奥运会五环所占面积与单独五个环面积和的比例P ,某学生设计了如下的计算机模拟,通过计算机模拟项长为8,宽为5的长方形内随机取了N 个点,经统计落入五环及其内部的点数为 个,圆环半径为1,则比值 的近似值为( )A .B .C .D .89.(安徽省示范高中(皖江八校)2018届5月联考)2018年1月31日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在19时48分,20时51分食既,食甚时刻为21时31分,22时08分生光,直至23时12分复圆.全食伴随有蓝月亮和红月亮,全食阶段的“红月亮”将在食甚时刻开始,生光时刻结東,一市民准备在19:55至21:56之间的某个时刻欣赏月全食,则他等待“红月亮”的时间不超过30分钟的概率是( )A .B .C .D .90.某产品分为优质品、合格品、次品三个等级. 生产中出现合格品的概率为0.25,出现次品的概率为0.03. 在该产品中任抽一件,则抽得优质品的概率是A.0.28B.0.72C.0.75D.0.9791.若件产品中有件一级品,件二级品.从中任取件,这件中至少有件二级品的概率是()A.B.C.D.92.已知为等腰三角形,,在内随机取一点,则为钝角三角形的概率为()A.B.C.D.93.现采用随机模拟的方法估计某运动员射击次,至少击中次的概率:先由计算机给出到之间取整数值的随机数,指定,表示没有击中目标,,,,,,,,表示击中目标,以个随机数为一组,代表射击次的结果,经随机模拟产生了组随机数:根据以上数据统计该运动员射击次至少击中次的概率为()A.B.C.D.94.94.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中各随机选一匹进行一场比赛,则田忌获胜的概率为( )A.13B.14C.15D.1695.某同学采用计算机随机模拟的方法来估计图(1)所示的阴影部分的面积,并设计了程序框图如图(2)所示,在该程序框图中,表示内产生的随机数,则图(2)中①和②处依次填写的内容是()A.,B.,C.,D.,96.中国古代第一部数学专著《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆内的概率是()A.B.C.D.97.从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为A.B.C.D.98.在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字4是取出的五个不同数的中位数的概率为( )A.B.C.D.99.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )A.0.2B.0.4C.0.5D.0.6100.从装有6个红球和5个白球的口袋中任取4个球,那么下列是互斥而不对立的事件是()A.至少一个红球与都是红球B.至少一个红球与至少一个白球C.至少一个红球与都是白球D.恰有一个红球与恰有两个红球参考答案1.C【解析】选取两支彩笔的方法有种,含有红色彩笔的选法为种,由古典概型公式,满足题意的概率值为.本题选择C选项.考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.2.C【解析】【分析】求出正方形的面积,利用几何概型可求阴影区域的面积.【详解】设阴影区域的面积为,,所以.故选C.【点睛】本题考查几何概型的应用,属基础题.3.B【解析】【分析】由直线与圆有交点可得,利用几何概型概率公式列方程求解即可.【详解】因为直线与圆有交点,所以圆心到直线的距离,,又因为直线与圆有交点的概率为,。
3.1.2概率的意义课时过关·能力提升一、基础巩固1.概率是指()A.事件发生的可能性大小B.事件发生的频率C.事件发生的次数D.无任何意义2.若某篮球运动员的投篮命中率为98%,则估计该运动员投篮1 000次命中的次数为()A.20B.98C.980D.9981000次命中的次数约为1000×98%=980.3.天气预报中预报某地明天降雨的概率为90%,则()A.降雨的可能性是90%B.90%太大,一定降雨C.该地有90%的区域降雨D.降雨概率为90%没有什么意义90%说明明天降雨的可能性是90%.4.已知某学校有教职工400名,从中选举40名教职工组成教职工代表大会,每名教职工当选的概率是110,则下列说法正确的是()A.10名教职工中,必有1人当选B.每名教职工当选的可能性是1 10C.数学教研组共有50人,该组当选教工代表的人数一定是5D.以上说法都不正确5.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品.若用C表示抽到次品这一事件,则下列说法正确的是()A.事件C发生的概率为1 10B.事件C发生的频率为1 10C.事件C发生的概率接近1 10D.每抽10台电视机,必有1台次品6.某医院治疗一种疾病的治愈率为15,若前4位病人都未治愈,则第5位病人的治愈率为()A.1B.4 5C.15D.015,表明每位病人被治愈的可能性均为15,并不是5人中必有1人治愈.故选C.7.在乒乓球、足球等比赛中,裁判员经常用掷硬币或抽签法决定谁先发球,这种方法.(填“公平”或“不公平”),这两种方法都是公平的.因为采用掷硬币得正面、反面的概率相等;采用抽签法,抽到某一签的概率相等.8.某市运动会前夕,质检部门对这次运动会所用的某种产品进行抽检,得知其合格率为99%.若该运动会所需该产品共20 000件,则其中的不合格产品约有件.1-99%=1%,则不合格产品约有20000×1%=200(件).9.某射击教练评价一名运动员时说:“你射中的概率是90%.”则下面两个解释中能代表教练的观点的为.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%90%说明中靶的可能性是90%,所以①不正确,②正确.10.为了估计水库中鱼的尾数,使用以下的方法:先从水库中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出500尾,查看其中有记号的鱼,有40尾.试根据上述数据,估计水库中鱼的尾数.n(n∈N*),每尾鱼被捕到的可能性相等,给2000尾鱼做上记号后,从水库中任捕一尾鱼,带记号的概率为2000n.又从水库中捕500尾鱼,有40尾带记号,于是带记号的频率为40500.则有2000n≈40500,解得n≈25000.所以估计水库中有25000尾鱼.二、能力提升1.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是()A.100个手术有99个手术成功,有1个手术失败B.这个手术一定成功C.99%的医生能做这个手术,另外1%的医生不能做这个手术D.这个手术成功的可能性是99%99%,说明手术成功的可能性是99%.2.根据山东省教育研究机构的统计资料,今在校学生近视率约为37.4%.某眼镜商要到一中学给学生配眼镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为()A.374副B.224.4副C.不少于225副D.不多于225副,该校近视生人数约为37.4%×600=224.4,结合实际情况,眼镜商应带眼镜数不少于225副.3.某套数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是14.某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话() A.正确 B.错误C.不一定D.无法解释,答对的概率是14说明了对的可能性大小是14.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题.也可能都选错,或有1,2,4,…,甚至12个题都选择正确.4.玲玲和倩倩下象棋,为了确定谁先走第一步,玲玲对倩倩说:“拿一个飞镖射向如图所示的靶中,若射中区域所标的数字大于3,则我先走第一步,否则你先走第一步”.你认为这个游戏规则公平吗?.(填“公平”或“不公平”),所标的数字大于3的区域有5个,而小于或等于3的区域只有3个,所以玲玲先走的概率是58,倩倩先走的概率是38.所以不公平.★5.某地区牛患某种病的概率为0.25,且每头牛患病与否是互不影响的,今研制一种新的预防药,任选12头牛做试验,结果这12头牛服用这种药后均未患病,则此药.(填“有效”或“无效”)头牛都在服药后未患病,由极大似然法,可得此药有效.6.试解释下列情况的概率的意义:(1)某商场为促进销售,实行有奖销售活动,凡购买其商品的顾客中奖率是0.20;(2)一生产厂家称:我们厂生产的产品合格率是0.98.解::(1)“中奖率是0.20”是指购买其商品的顾客中奖的可能性是20%.(2)“产品的合格率是0.98”是指该厂生产的产品合格的可能性是98%.★7.某种彩票的抽奖是从写在36个球上的36个号码中随机摇出7个.有人统计了过去中特等奖的号码,声称某一号码在历次特等奖中出现的次数最多,它是一个幸运号码,人们应该买这一号码;也有人说,若一个号码在历次特等奖中出现的次数最少,由于每个号码出现的机会相等,则应该买这一号码.你认为他们的说法对吗?36个号码的36个球大小、质量是一致的,严格地说,为了保证公平,每次用的36个球, ,除非能保证用过一次后,球没有磨损、变形.因此,当把这36个球看成每次抽奖中只用了一次时,不难看出,以前抽奖的结果对今后抽奖的结果没有任何影响,他们的说法都是错误的.。
高中数学第三章概率章末测试新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章概率章末测试新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章概率章末测试新人教A版必修3的全部内容。
高中数学第三章概率章末测试新人教A版必修3(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件是随机事件的是()A.方程x-1=2x有实数根B.若x∈(-1,1),则x>2C.x∈R,x2+3>1D.从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到1号签2.12件同类产品中,有10件是正品,2件是次品,从中任意抽出3件,与“抽得1件次品2件正品”互斥而不对立的事件是( )A.抽得3件正品B.抽得至少有一件正品C.抽得至少有一件次品D.抽得3件正品或2件次品1件正品3.下列说法正确的是( )A.由生物学知道生男生女的概率均约为错误!,一对夫妇生两个孩子,则一定为一男一女B.一次摸奖活动中,中奖概率为错误!,则摸5张票,一定有一张中奖C.10张票中有1张奖票,10人去摸,谁先摸则谁摸到的可能性大D.10张票中有1张有奖,10人去摸,无论谁先摸,摸到有奖票的概率都是错误!4.下列叙述随机事件的频率与概率的关系中,说法正确的是()A.频率就是概率B.频率是客观存在的,与试验次数无关C.随着试验次数的增多,频率越来越接近概率D.概率是随机的,在试验前不能确定5.下列命题不正确的是( )A.根据古典概型概率计算公式P(A)=错误!求出的值是事件A发生的概率的精确值B.根据几何概型概率计算公式P(A)=错误!求出的值是事件A发生的概率的精确值C.根据古典概型试验,用计算机或计算器产生随机整数统计试验次数N和事件A发生的次数N1,得到的值错误!是P(A)的近似值D.根据几何概型试验,用计算机或计算器产生均匀随机数统计试验次数N和事件A发生次数N1,得到的值错误!是P(A)的精确值6.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是( )A.0。
第3课时概率课后篇巩固提升基础巩固1.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是()A.恰有1名男生与恰有2名女生B.至少有1名男生与全是男生C.至少有1名男生与至少有1名女生1名男生与全是女生中的两个事件互斥且不对立符合要求;B中的两个事件之间是包含关系,不符合要求;C 中的两个事件都包含了一名男生一名女生这个事件,故不互斥;D中的两个事件是对立的,不符合要求.故选A.2.《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为()A.18B.14C.38D.12:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C.3.把一枚质地均匀的骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为()A.16B.14C.13D.12(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),共18个.而“在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点”包含的基本事件有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个.∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为918=12.故选D.4.如图,在正方形围栏内均匀撒米粒,一只小鸡在其中随意啄食,此刻小鸡正在正方形的内切圆中的概率是()A.14B.π4C.13D.π3A表示小鸡正在正方形的内切圆中,则事件A的几何区域为内切圆的面积S=πR2(2R 为正方形的边长),全体基本事件的几何区域为正方形的面积,由几何概型的概率公式可得P(A)=πR2(2R)2=π4,即小鸡正在正方形的内切圆中的概率为π4.5.记一个两位数的个位数字与十位数字的和为A.若A是不超过5的奇数,则从这些两位数中任取一个,其个位数为1的概率为.5的两位数有:10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率为29.6.如图,在直角坐标系内,射线OT落在30°角的终边上,任作一条射线OA,则射线OA落在∠yOT 内的概率为.,因为射线OA在坐标系内是等可能分布的,所以OA落在∠yOT内的概率为60360=16.7.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土、土克水、水克火、火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率,有(金,木)、(金,水)、(金,火)、(金,土)、(木,水)、(木,火)、(木,土)、(水,火)、(水,土)、(火,土),共10种等可能发生的结果.其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12.8.某集团公司为了加强企业管理,树立企业形象,考虑在公司内部对迟到现象进行处罚.现在员工中随机抽取200人进行调查,当不处罚时,有80人会迟到,得到如下数据:表中数据所得频率视为概率.(1)当处罚金额定为100元时,员工迟到的概率比不进行处罚时降低多少?(2)将选取的200人中会迟到的员工分为A,B两类:A类员工在罚金不超过100元时就会改正行为;B类是其他员工.现对A类和B类员工按分层抽样的方法抽取4人依次进行深度问卷调查,则前两位均为B类员工的概率是多少?设“当处罚金额定为100元时,迟到的员工改正行为”为事件A,则P(A)=80-40200=15,故当处罚金额定为100元时,员工迟到的概率比不进行处罚时降低15.(2)由题可知,A类员工和B类员工各有40人,故分别从A类员工和B类员工中抽出2人.设从A类员工中抽出的2人分别为A1,A2,从B类员工中抽出的2人分别为B1,B2.设“对A类与B类员工按分层抽样的方法抽取4人依次进行深度问卷调查”为事件M,则事件M中首先抽出A1的事件有(A1,A2,B1,B2),(A1,A2,B2,B1),(A1,B1,A2,B2),(A1,B1,B2,A2),(A1,B2,A2,B1),(A1,B2,B1,A2),共6种,同理首先抽出A2,B1,B2的事件也各有6种.故事件M共有4×6=24(种).设“抽取4人中前两位均为B类员工”为事件N,则事件N有(B1,B2,A1,A2),(B1,B2,A2,A1),(B2,B1,A1,A2),(B2,B1,A2,A1),共4种.所以P(N)=424=16,故抽取的4人中前两位均为B类员工的概率是16.9.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2017年8月18日某省x个监测点数据统计如下:(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;(2)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A“两个都为良”发生的概率是多少?∵0.003×50=15x ,∴x=100. ∵15+40+y+10=100,∴y=35.40100×50=0.008,35100×50=0.007,10100×50=0.002.频率分布直方图如图所示.(2)在空气污染指数为50~100和150~200的监测点中分别抽取4个和1个监测点,设空气污染指数为50~100的4个监测点分别记为a,b,c,d;空气污染指数为150~200的1个监测点记为E,从中任取2个的基本事件分别为(a,b),(a,c),(a,d),(a,E),(b,c),(b,d),(b,E),(c,d),(c,E),(d,E)共10种,其中事件A “两个都为良”包含的基本事件为(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6种,所以事件A “两个都为良”发生的概率是P (A )=610=35. 能力提升1.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.910B.45C.12D.25,得从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲或乙被录用”的所有不同的可能结果有9种,所求概率为910.2.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A.13B.512C.12D.7122名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,共有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(B 1,B 2),(A 2,A 1),(B 1,A 1),(B 2,A 1),(B 1,A 2),(B 2,A 2),(B 2,B 1)12种情况,而星期六安排一名男生、星期日安排一名女生共有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2)4种情况,则发生的概率为412=13,故选A .3.甲乙两个竞赛队都参加了6场比赛,比赛得分情况的茎叶图如图所示(单位:分),其中乙队的一个得分数字被污损,那么估计乙队的平均得分大于甲队的平均得分的概率为( )A.15B.310C.25D.12。
第三章概率P1121.做同时掷两枚硬币的试验,观察试验结果。
(1)试验可能出现的结果有几种?分别把它们表示出来。
(2)做100次试验,每种结果出现的频数、频率各是多少?与其他几名同学的试验结果汇总,你会发现什么?你能估计每种结果出现的概率吗?2.(1)给出一个概率很小的随机事件的例子;(2)给出一个概率很大的随机事件的例子。
P1183.在乒乓球、排球等比赛中,裁判员还用哪些方法决定谁先发球?这些方法公平吗?4.“一个骰子掷一次得到2的概率是1/6,这说明一个骰子掷6次会出现一次2”,这种说法对吗?说说你的理由。
P1211.如果某人在某种比赛(这种比赛不会出现“和”的情况)中获胜的概率是0.3,那么他输的概率是多少?4. 一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A . 至多有一次中靶。
B . 两次都中靶。
C . 只有一次中靶。
D . 两次都不中靶。
5. 把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()A . 对立事件。
B . 互斥但不对立事件。
C . 不可能事件。
D . 以上都不对。
P1231. 若A、B为互斥事件,则()A . P(A)+P(B)<1。
B . P(A)+P(B)>1。
C . P(A)+P(B)=1。
D . P(A)+P(B)≤1。
5. 某人捡到不规则形状的五面体石块,他在每个面上作了记号,投掷了100次,并且记录了每个面落在桌面上的次数(如下表)。
如果再投掷一次,请估计石块的第4面落在桌面上的概率是多少?6.在一个袋子中放了9个白球,1个红球,摇匀后随机摸球:(1)每次摸出球后记下球的颜色然后放回袋中;(2)每次摸出球后不放回袋中。
在两种情况下分别做10次试验,求每种情况下第4次摸到红球的频率,两个频率相差得远吗?两个事件的概率一样吗?第4次摸到红球的频率与第1次摸到红球的频率相差得远吗?请说明原因。
第三章概率
P112
1.做同时掷两枚硬币的试验,观察试验结果。
(1)试验可能出现的结果有几种?分别把它们表示出来。
(2)做100次试验,每种结果出现的频数、频率各是多少?
与其他几名同学的试验结果汇总,你会发现什么?你能估计每种结果出现的概率吗?
2.(1)给出一个概率很小的随机事件的例子;
(2)给出一个概率很大的随机事件的例子。
P118
3.在乒乓球、排球等比赛中,裁判员还用哪些方法决定谁先发球?这些方法公平吗?
4.“一个骰子掷一次得到2的概率是1/6,这说明一个骰子掷6次会出现一次2”,这种说
法对吗?说说你的理由。
P121
1.如果某人在某种比赛(这种比赛不会出现“和”的情况)中获胜的概率是0.3,那么他
输的概率是多少?
4. 一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()
A . 至多有一次中靶。
B . 两次都中靶。
C . 只有一次中靶。
D . 两次都不中靶。
5. 把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()
A . 对立事件。
B . 互斥但不对立事件。
C . 不可能事件。
D . 以上都不对。
P123
1. 若A、B为互斥事件,则()
A . P(A)+P(B)<1。
B . P(A)+P(B)>1。
C . P(A)+P(B)=1。
D . P(A)+P(B)≤1。
5. 某人捡到不规则形状的五面体石块,他在每个面上作了记号,投掷了100次,并且记录了每个面落在桌面上的次数(如下表)。
如果再投掷一次,请估计石块的第4面落在桌面上的概率是多少?
6.在一个袋子中放了9个白球,1个红球,摇匀后随机摸球:
(1)每次摸出球后记下球的颜色然后放回袋中;
(2)每次摸出球后不放回袋中。
在两种情况下分别做10次试验,求每种情况下第4次摸到红球的频率,两个频率相差得远吗?两个事件的概率一样吗?第4次摸到红球的频率与第1次摸到红球的频率相差得远吗?请说明原因。
1. 下列说法正确的是()
A . 事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大。
B . 事件A,B同时发生的概率一定比A,B中恰有一个发生的概率小。
C . 互斥事件一定是对立事件,对立事件不一定是互斥事件。
D . 互斥事件不一定是对立事件,对立事件一定是互斥事件。
P130
1.在20瓶饮料中,有2瓶已过了保质期。
从中任取1瓶,取得已过保质期的饮料的概率
是多少?
2.在夏令营的7名成员中,有3名同学已经去过北京。
从这7名同学中任选2名同学,选
出的这2名同学恰是已经去过北京的概率是多少?
3.5本不同的语文书,4本不同的数学书,从中任意取出2本,取出的书恰好都是数学书
的概率是多少?
P133
3. 盒中仅有4个白球和5个黑球,从中任意取出一个球。
(1)“取出的球是黄球”是什么事件?它的概率是多少?
(2)“取出的球是白球”是什么事件?它的概率是多少?
(3)“取出的球是白球或者黑球”是什么事件?它的概率是多少?
(4)请设计一个用计算机或计算器模拟上面取球的试验。
4. (1)掷两粒骰子,计算出点数总和为7的概率;
(2)利用随机模拟的方法,试验200次,计算出点数总和为7的频率;
(3)所得频率与概率相差大吗?为什么会有这种差异?
P134
2.在所有首位不为0的八位数电话号码中,任取一个电话号码,求:
(1)头两位号码都是8的概率;
(2)头两位号码至少有一个不超过8的概率;
(3)头两位号码不相同的概率。
4. A,B,C,D4名学生按任意次序站成一排,试求下列事件的概率:
(1)A在边上;
(2)A和B都在边上;
(3)A或B在边上;
(4)A和B都不在边上。
5. 一个盒子里装有标号为1,2,3,4,5的5张标签,随机地选取两张标签,根据下列条
件求两张标签上数字为相邻整数的概率:
(1)标签的选取是无放回的;
(2)标签的选取是有放回的;
6. 在一个盒中装有6枝圆珠笔,其中3枝一等品,2枝二等品和1枝三等品,从中任取3枝,问下列事件的概率有多大?
(1)恰有一枝一等品;
(2)恰有两枝一等品;
(3)没有三等品;
P142
3.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒。
当
你到达路口时,看见下列三种情况的概率各是多少?
(1)红灯; (2)黄灯; (3)不是红灯;
1. 甲乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘载停靠泊位时必须等待的概率。
2. 若()()()1P A B P A P B ⋃=+=,则事件A 与B 的关系是( )
A . 互斥不对立。
B . 对立不互斥。
C . 互斥且对立。
D . 以上答案都不对。
P145
1. 甲乙两人下棋,两人下城和棋的概率是1/2,乙获胜的概率是1/3,则乙不输的概率
是 ,甲获胜的概率是 ,甲不输的概率是 .
3. 将一枚质地均匀的硬币连续投掷4次,出现“2次正面朝上,2次反面朝上”和“3次
正面朝上,1次反面朝上”的概率各是多少?
5. 甲袋中有1只白球、2只红球、3只黑球;乙袋中有2只白球、3只红球、1只黑球,现从两袋中各取一球,求两球颜色相同的概率。
6. 有2人在一座7层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的,求2个人在不同层离开的概率。
P146
1. 掷一枚均匀的硬币4次,求出现正面的次数多于反面次数的概率。
2. 某小组有3名男生和2名女生,从中任选2名学生学生参加演讲比赛,判断下列各对事
件是否为互斥是I 教案,并说明理由。
(1)恰有1名男生和恰有2名男生;
(2)至少有1名男生和至少有1名女生;
(3)至少有1名男生和全是男生;
(4)至少有1名男生和全是女生。
3. 柜子里有3双不同的鞋子,随机地取出2只,试求下列事件的概率,并说明它们的关系:
(1)取出的鞋不成对;
(2)取出的鞋都是左脚的;
(3)取出的鞋都是同一只脚的;
(4)取出的鞋一只是左脚的,一只是右脚的,但是它们不成对。