当前位置:文档之家› 铸铁的显微组织分析

铸铁的显微组织分析

铸铁的显微组织分析
铸铁的显微组织分析

铸铁的显微组织分析

储万熠

冶金1302

实验材料及方法

一、实验目的

1.各种类型铸铁的纤维组织观测,并画出石墨的基本形貌。

2.学会如何辨别白扣铸铁,灰口铸铁,球墨铸铁,可锻铸铁(展性铸铁,玛钢),

麻口铸铁。

3.学会如何利用Fe-C和Fe-Fe3C相图理解铸铁的显微组织,包括石墨的形状,基体

显微组织的类型(Ferrite铁素体,珠光体,贝氏体等)。显微组织与性能之间的

关系。

4.独立撰写,提交实验报告,讨论部分必须包括以下主题:不同类型铸铁的显微组

织,以及如何得到这些显微组织;石墨化势,微量元素(Ce/Mg),变质处理,在

共析间隙的冷速,和石墨化退火对铸铁显微结构的影响。

二、实验设备与材料

1.光学显微镜

2.

三、分析讨论

墨,其基体组织为铁素体,灰口铸铁的化学成分主要是

内的基本相主要有两种,即铁素体和石墨。

从组织可以看出灰口铸铁中的碳大部或全部以片状石墨形式存在,

基体上加上片状石墨。

较慢的冷却(相较于白口铸铁的获得)会得到灰铸铁。

体中许多小的裂纹。

体的连续性,减少基体受力的有效面积,而且很容易在石墨片的尖端形成应力集中,材料形成脆性断裂,所以灰铸铁的抗拉强度、塑性和韧性比钢低得多。但也有许多钢没有的优良性能:良好的切削加工性,良好的铸造性能,良好的减磨性,较低的缺口敏感性。

保留相当一部分莱氏体。

分主要是

的基本组织主要有三种,即珠光体、变态莱氏体和石墨。

亮的游离渗碳体和暗黑色的石墨。

较慢的冷却(相较于白口铸铁的获得)或者只进行孕育处理会得到麻口铸铁。

片状的石墨,其基体组织为铁素体,变质灰口铸铁的化学成分主要是

等。灰口铸铁内的基本相主要有两种,即铁素体和石墨。

色。

全部以细小片状石墨形式存在,

当于钢基体上加上片状石墨。

较慢的冷却(相较于白口铸铁的获得)并加入孕育剂进行孕育处理会得到变质灰口铸铁。

体中许多小的裂纹。

体的连续性,减少基体受力的有效面积,而且很容易在石墨片的尖端形成应力集中,材料形成脆性断裂,所以灰铸铁的抗拉强度、塑性和韧性比钢低得多。但也有许多钢没有的优良性能:良好的切削加工性,良好的铸造性能,良好的减磨性,较低的缺口敏感性。

铸铁,

成的。

生分解,形成团絮状石墨。

体,富碳相为石墨,石墨为团絮状存在。

比片状石墨的轻,所以,可锻铸铁的强度和范性与灰口铸铁的相比有明显提高。

基体可锻铸铁虽然在范性、

铁素体可锻铸铁,

高,耐磨性好。

口效应的大小来看,它不仅远优于片状石墨,而且也比团絮状石墨好。因此,球墨铸铁具有比灰口铸铁高得多的强度、性。优异特性,如,耐磨、消震、易切削加工,容易铸造等。锻铸铁,同时,生产球墨铸铁也比生产可锻铸铁方便、便宜,因为不需要进行耗费大的可锻化退火处理。相为珠光体和铁素体,富碳相为球状石墨。墨铸铁的化学成分中碳含量和硅含量较高,含锰量较低,对硫、磷的限制较严,同时要求含有一定量的残余镁和残余稀土元素。

口效应的大小来看,它不仅远优于片状石墨,而且也比团絮状石墨好。因此,球墨铸铁具有比灰口铸铁高得多的强度、性。优异特性,如,耐磨、消震、易切削加工,容易铸造等。锻铸铁,同时,生产球墨铸铁也比生产可锻铸铁方便、便宜,因为不需要进行耗费大的可锻化退火处理。

左图为珠光体基球墨铸铁,主要相为珠光体,富碳相为球状石墨。由于影响球墨铸铁基体组织的因素较多,球铁的基本组织,所以,通常是在铸后还要对球铁进行适当的热处理,机体组织以达到性能要求。与灰口铸铁的化学成分相比,铁的化学成分中碳含量和硅含量较高,量较低,对硫、磷的限制较严,同时要求含有一定量的残余镁和残余稀土元素。

四、总结

通过这次实验,我观察分析了各种不同种类铸铁的组织形貌,学习到了各种

不同形状的石墨,学习了成分,组织对性能的影响,对各种铸铁性能组织结

构进行了系统性的学习,学到了很多知识。

参考文献

[1]材料科学基础(第二版),余永宁等,高等教育出版社

[2]金属学(第2版),宋维锡等,冶金工业出版社

常用金属材料的显微组织观察

工程材料学实验(常用金属材料的显微组织观察) 何艳玲编写 机电工程学院材料系

常用金属材料的显微组织观察 一、实验目的 1.观察各种常用合金钢,有色金属和铸铁的显微组织。 2.分析这些金属材料的组织和性能的关系及应用。 二、概述 1.几种常用合金钢的显微组织 合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。 1)一般合金结构钢、合金工具钢都是低合金钢。由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。例如16Mn淬火后为马氏体组织,40Cr钢经调质处理后的显微组织是回火索氏体,如图1、2所示。GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织,如图3所示。 图1 16Mn淬火组织图2 40Cr钢调质后的组织 图3 GCr15钢淬火低温回火后组织图4 W18Cr4V淬火三次回火后的组织

2)高速钢是一种常用的高合金工具钢,例如W18Cr4V。因为它含有大量合金元素,使铁碳相图中的E点大大向左移,以致它虽然只含有0.7~0.8%的碳,但也已经含有莱氏体组织,所以称为莱氏体钢。 高速钢的铸造状态下与亚共晶白口铸铁的组织相似。其中莱氏体由合金碳化物和马氏体或屈氏体组成。莱氏体沿晶界呈宽网状分布,莱氏体中的碳化物粗大,有骨架状,不能靠热处理消除,必须进行锻造打碎。锻造退火后高速钢的显微组织是由索氏体和碳化物所组成的。 高速钢优良的热硬性及高的耐磨性,只有经淬火及回火后才能获得。它的淬火温度较高,为1270~1280℃,以使奥氏体充分合金化,保证最终有高的热硬性。淬火时可在油中或空气中冷却。淬火组织为马氏体、碳化物和残余奥氏休。由于淬火组织中存在有较大量(25~30%)的残余奥氏体,一般都进行三次约560℃的回火。经淬火和三次回火后,高速钢的组织为回火马氏体、碳化物和少量残余奥氏体(2~3%)(图4)。 3)不锈钢是在大气、海水及其它浸蚀性介质条件下能稳定工作的钢种,大都属于高合金钢,例如应用很广的1Crl8Ni9即18-8钢。它的碳含量较低,因为碳不利于防锈;高的铬含量是保证耐蚀性的主要因素;镍除了进一步提高耐蚀能力以外,主要是为了获得奥氏体组织。这种钢在室温下的平衡组织是奥氏体十铁素体+(Cr,Fe)23C6。为了提高耐蚀性以及其它性能,必须进行固溶处理。为此加热到1050~1150℃,使碳化物等全部溶解,然后水冷,即可在室温下获得单一的奥氏体组织,如图5所示。 但是1Crl8Ni9在室温下的单相奥氏体状态是过饱和的,不稳定的,当钢使用时温度到达400~800℃的范围或者从较高温度,例如固溶处理温度下冷却较慢时,(Cr,Fe)23C6会从奥氏体晶界上析出,造成晶间腐蚀,使钢的强度大大降低。目前,防止这种晶间腐蚀的途经有两条:一是尽量降低碳含量,但有限度;二是加入与碳的亲和力很强的元素Ti,Nb等。因此出现了1Crl8Ni9Ti、0Crl8Ni9Ti 等及更复杂的牌号的奥氏体镍铬不锈钢。 200× 500× 图5 1Crl8Ni9钢固溶处理后的组织 2.几种常用有色金属的显微组织 1)铝合金应用十分广泛的铝合金主要分变形铝合金和铸造铝合金两类。依照热处理效果又可分为能热处理强化的铝合金及不能热处理强化的铝合金。

铸铁的分类及特性

铸铁的分类及特性 从铁碳相图中知道,含碳量大于 2.06%的铁碳合金称为铸铁 尽管铸铁强度、塑性、韧性较差,不能进行锻造,但它具有优良的铸造性、减摩性、切削加工等一系列性能特点;另外其生产设备和工艺简单、价格低廉,因此得到了广泛的应用。 1.铸铁的分类 铸铁的常用分类方法有两种:一是按石墨化程度;二是按石墨结晶形态。 按石墨化程度可分为: ①灰口铸铁:即在第一和第二阶段石墨化过程中都得到了充分石墨化的铸铁,其断口呈暗灰色。 ②白口铸铁:即第一、二和三阶段的石墨化全部被抑制,完全按Fe—Fe s C相图进行结晶而得到的铸铁。 ③麻口铸铁:即在第一阶段的石墨化过程中便未得到充分石墨 化的铸 铁。 按石墨结晶形态分: ①灰口铸铁:铸铁组织中的石墨形态呈片状结晶。 ②可锻铸铁:铸铁组织中的石墨形态呈固絮状。 ③球墨铸铁:铸铁组织中的石墨形态呈球状。 2.铸铁的编号基本性能及用途

(1)灰口铸铁:根据GB976 —67所规定的编号、牌号用“HT 表示灰口铸铁,后面两项数字分别表示其抗拉和抗弯强度的最低值。女口HT20 —40表示抗拉强度和抗弯强度最低值为200MN/m2 和 400MN/m2。 灰口铸铁具有优良的铸造性、切削加工性,优良的减摩性。 良好的消震性和缺口敏感性,故而灰口铸铁主要用于制造各种承受压力和要求消震性的床身、机架、复杂的箱体、壳体和经受磨擦的导轨、罐体等。 (2)可锻铸铁:按GB978 —67规定牌号以“ KT”和 “ KTZ ” 表示可锻铸铁,其中“ KT”表示铁素体可铸铸铁, “ KTZ ”表示珠光体可锻铸铁,牌号中的两项数字表示其最低抗拉强度和延伸率。 可锻铸铁的机械性能,特别是冲击韧性普遍较灰口铸铁高,但由于其成本高,故而应用不是很广泛,主要用于制造一些小型铸铁。 (3)球墨铸铁:按GB1348—78规定,球墨铸铁以“ QT” 表示,后面数字同可锻铸铁一样。 球墨铸铁不仅具有远远超过灰铁的机械性能,而且同样也具有灰铁的优点,如良好的减摩性、切削加工性及低的缺口敏感性,甚至可与锻钢媲美,如疲劳强度大致与中碳钢相近,耐磨性优于表面淬火钢等。此外,球墨铸铁还可适应各种热处理,使其机械性能提高到更高的水平。 球铁主要用来代替钢,如铁素体球墨铁可代替35、40#钢,珠 35CrMo、40CrMnMo 及20CrMnTi。 光体铸铁可代替

铸铝箱体和铸铁箱体的优劣点对比分析

铸铝箱体和铸铁箱体的优劣点对比分析 1)重量: 铝的比重比铸铁要轻,铸铁的密度为7.8g/cm3,铸铝的密度为2.7g/cm3,比如同等结构的情况下铝制壳体要比铸铁制壳体轻很多。所以在重量这一点上铝制壳体要比铸铁壳体占很大优势。铸铁的强度高.常用的铝合金强度如下表: 铸铁一般在200~~400MPa的样子,但是铝合金重量轻,很多产业都用铝合金代替铸铁了。但是铸铁还是有它的优势,比如灰铁的消振性,抗性变能力好,球铁的耐磨性、塑性和强韧性综合较好。 例如:我们BQ435联泵壳体为铸铁时联泵总重量大约280kg,如果壳体为铸铝经过估算联泵总重量大约为160kg,质量减轻了120kg。 2)体积: 同样的原因,铝比重轻,单位体积的铝结构强度要小于铸铁,所以同等强度下铝制壳体体积会比铸铁制壳体大一些。所以在体积这一点上铝制壳体要比铸铁制壳体有一些劣势。同等体积的情况下,铸铝的强度要小于铸铁。

3)成本: 现在铝锭的市场价格是17000元/吨;铸铝毛坯(含热处理)价格为:38000元/吨;铝制壳体在成本上大大高于铸铁制成本。所以在成本上铸铝制壳体要比铸铁制壳体有很大的劣势。根据三维软件的估算铸铁壳体的重量大约为200kg,铸铝壳体的重量大约为85kg。 例如:BQ450联泵铸铁壳体铸造成本=6000(根据项目成本资金计划所得) BQ450联泵铸铁壳体铸造成本=6778(根据采购估算所得)4) 散热性:铝是热的良导体,它的导热能力比铁大3倍,工业上可用铝制造各种热交换器、散热材料和炊具等。如果用铝制壳体的话可以充分保证箱体的散热性。 例如:在相同的散热面积下Q=mcΔt,m为质量、c为比热容 5)耐腐蚀性和强度:铝的表面因有致密的氧化物保护膜,不易受到腐蚀,常被用来制造化学反应器、医疗器械、冷冻装置、石油精炼装置、石油和天然气管道等。铸铁在耐腐蚀性方面远不及铸铝。 6)膨胀系数:从设计手册上查铸铝的线形膨胀系数为:(18.44~24.5)*10-6/℃轴承钢(用碳钢替代)为:(10.6~12.2)*10-6/℃

铸铁的显微组织分析

铸铁的显微组织分析 储万熠 冶金1302 实验材料及方法 一、实验目的 1.各种类型铸铁的纤维组织观测,并画出石墨的基本形貌。 2.学会如何辨别白扣铸铁,灰口铸铁,球墨铸铁,可锻铸铁(展性铸铁,玛钢), 麻口铸铁。 3.学会如何利用Fe-C和Fe-Fe3C相图理解铸铁的显微组织,包括石墨的形状,基体 显微组织的类型(Ferrite铁素体,珠光体,贝氏体等)。显微组织与性能之间的 关系。 4.独立撰写,提交实验报告,讨论部分必须包括以下主题:不同类型铸铁的显微组 织,以及如何得到这些显微组织;石墨化势,微量元素(Ce/Mg),变质处理,在 共析间隙的冷速,和石墨化退火对铸铁显微结构的影响。 二、实验设备与材料 1.光学显微镜 2. 三、分析讨论

墨,其基体组织为铁素体,灰口铸铁的化学成分主要是 内的基本相主要有两种,即铁素体和石墨。 从组织可以看出灰口铸铁中的碳大部或全部以片状石墨形式存在, 基体上加上片状石墨。 较慢的冷却(相较于白口铸铁的获得)会得到灰铸铁。 体中许多小的裂纹。 体的连续性,减少基体受力的有效面积,而且很容易在石墨片的尖端形成应力集中,材料形成脆性断裂,所以灰铸铁的抗拉强度、塑性和韧性比钢低得多。但也有许多钢没有的优良性能:良好的切削加工性,良好的铸造性能,良好的减磨性,较低的缺口敏感性。 保留相当一部分莱氏体。 分主要是 的基本组织主要有三种,即珠光体、变态莱氏体和石墨。 亮的游离渗碳体和暗黑色的石墨。 较慢的冷却(相较于白口铸铁的获得)或者只进行孕育处理会得到麻口铸铁。

片状的石墨,其基体组织为铁素体,变质灰口铸铁的化学成分主要是 等。灰口铸铁内的基本相主要有两种,即铁素体和石墨。 色。 全部以细小片状石墨形式存在, 当于钢基体上加上片状石墨。 较慢的冷却(相较于白口铸铁的获得)并加入孕育剂进行孕育处理会得到变质灰口铸铁。 体中许多小的裂纹。 体的连续性,减少基体受力的有效面积,而且很容易在石墨片的尖端形成应力集中,材料形成脆性断裂,所以灰铸铁的抗拉强度、塑性和韧性比钢低得多。但也有许多钢没有的优良性能:良好的切削加工性,良好的铸造性能,良好的减磨性,较低的缺口敏感性。 铸铁, 成的。 生分解,形成团絮状石墨。 体,富碳相为石墨,石墨为团絮状存在。 比片状石墨的轻,所以,可锻铸铁的强度和范性与灰口铸铁的相比有明显提高。 基体可锻铸铁虽然在范性、 铁素体可锻铸铁, 高,耐磨性好。

合金钢、铸铁与有色合金的显微组织分析

合金钢、铸铁、有色合金的显微组织观察 一、实验目的 1. 观察和研究各种不同类型合金材料的显微组织特征。 2. 了解这些合金材料的成分、显微组织对性能的影响。 二、观察下列合金试样的组织 编 号 钢号处理过程显微组织腐蚀剂 1 W18Cr4V 铸造屈氏体+莱氏体4%硝酸酒精 2 W18Cr4V 退火碳化物+索氏体∥ 3 W18Cr4V 1280℃油淬马氏体+初生碳化物+A,∥ 4 W18Cr4V 1280℃油淬560℃ 回火 回火马氏体+碳化物∥ 5 1Cr18Ni9Ti 1100℃固溶处理奥氏体(内有孪晶)王水 6 灰口铸铁(基P)铸造4%硝酸酒精P+片状石墨 7 可锻铸铁(F基)可锻化退火4%硝酸酒精F+团絮石墨 8 球墨铸铁(F+P 基) 铸造4%硝酸酒精牛眼睛 9 硅铝明(ZL102)铸造未变质0.5HF水溶液(Si +α)共晶1 硅铝明(ZL102)铸造变质0.5HF水溶液α+(Si+α) 1 1 单相黄铜(H70)冷加工退火 3%FeCl3+10%HCl 水溶液 单相α(孪晶) 1 2 两相黄铜(H63)铸造退火 3%FeCl3+10%HCl 水溶液 α+β′ 1 3 锡基巴比合金 ZChSnSb11—6 铸造4%硝酸酒精 α(黑基体)+ β′(方块) +Cu3Sn星状 三、实验内容讨论(一)合金钢

合金钢的显微组织比碳钢复杂,在合金钢中存在的基本相有:合金铁素 体、合金奥氏体、合金碳化物(包括合金渗碳体、特殊碳化物)及金属间化 合物等。其中合金铁素体与合金渗碳体及大部分合金碳化物的组织特征与碳 钢中的铁素体和渗碳体无明显区别,而金属间化合物的组织形态则随种类不 同而各异,合金奥氏体在晶粒内常常存在滑移线和孪晶特征。 1.高速钢 高速碳是高合金工具钢,具有良好的红硬性,即使工作温度达到600℃ 时,仍保持高的硬度和切削性能。经常用它来制造各种刀具。这里以典型的 W18Cr4V (简称18—4—1)钢为例加以分析研究。 W18Cr4V 的化学成分为:0.7~0.8%C ,17.5~19%W ,3.8~4.4%Cr , 1.0~1.4%V ,﹤0.3%Mo 。由于钢中存在大量合金元素(大于20%),因此除 了形成合金铁素体与合金渗碳体外,还会形成各种合金碳化物(如Fe 4W 2C 、 VC 等),这些组织特点决定了高速钢具有优良的切削性能。 A.高速钢的铸态组织:按组织特点分类,高速钢属莱氏体钢,在一般铸造 条件下存在以具有鱼骨状碳化物为特征的共晶莱氏体组织。图1所示为 W18Cr4V 钢的铸态组织。在显微镜下观察时,除共晶莱氏体外还有部分呈 暗黑色的δ共析体组织和少量马氏体(呈亮白色部分)。 B.高速钢的退火组织:高速钢铸态组织极不均匀,特别是共晶组织中粗大 碳化物的存在,使钢的性能显著降低,因此,高速钢铸造后必须经过锻造、 退火,以改善碳化物的分布状况。图2所示为W18Cr4V 钢经锻造及退火后 的显微组织,组织中呈亮白色较大块状为一次碳化物,较细小块状为二次碳化物,基体组织是索氏体。 C.高速钢淬火组织:高速钢优良的热硬性及高的耐磨性,只有经淬火及 回火后才能获得。W18Cr4V 钢通常采用较高的淬火温度(1270~1280℃) , 图1 W18Cr4V 钢铸造状态的 显微组织(800X ) 浸蚀剂:4%硝酸酒精溶液 图2W18Cr4V 钢经锻造及退火后 的显微组织(500X ) 浸蚀剂:4%硝酸酒精溶液

铸铁牌号对照表及性能

铸铁 牌 号 (白心)可锻铸铁性能及相关数据 '); //--> 材料名称:(白心)可锻铸铁 牌号:KTB450-07

标准:GB 9440-88 ●特性及适用范围: 坯料在氧化性介质中进行脱碳退火,焊接性较好,只适宜铸造壁厚在15mm以下的铸件。国内应用较少,国外有用作水暖管件的 ●化学成份:wC=2.2%~2.8%,wSi=1.0%~1.8%,wMn=0.3%~0.8%,wS≤0.2%,wP≤0.1%. ●力学性能: (1)抗拉强度σb (MPa) 当试棒直径:d=9mm时,≥400;d=12mm时,≥450;d=15mm时,≥480 (2)条件屈服强度σ0.2 (MPa) 当试棒直径:d=9mm时,≥230;d=12mm时,≥260;d=15mm时,≥280 (3)伸长率δ (%) 当试棒直径:d=9mm时,≥10;d=12mm时,≥7;d=15mm时,≥4 (4)硬度:≤220HB (5)试样尺寸,试棒直径:d=9mm;d=12mm;d=15mm ●热处理规范及金相组织: 热处理规范:(由供方定) 金相组织:小断面尺寸:铁素体。大断面尺寸:表面区域--铁素体;中间区域--珠光体+铁素体+退火碳;心部区域--珠光体+退火碳 中日美部分不锈钢化学成分对比表 '); //-->

球墨铸铁性能及相关数据 '); //--> 材料名称:球墨铸铁 牌号:QT600-3 标准:GB 1348-88 ●特性及适用范围: 为珠光体型球墨铸铁,具有中高等强度、中等韧性和塑性,综合性能较高,耐磨性和减振性良好,铸造工艺性能良好等特点。能通过各种热处理改变其性能。主要用于各种动力机械曲轴、凸轮轴、连接轴、连杆、齿轮、离合器片、液压缸体等零部件 ●化学成份: 碳 C :3.56~3.85 硅 Si:1.83~2.56 锰 Mn:0.49~0.70 硫 S :0.016~0.045 磷 P :0.035~0.058 镁 Mg:0.041~0.067 注:RxOy:0.033~0.049 ●力学性能: 抗拉强度σb (MPa):≥600 条件屈服强度σ0.2 (MPa):≥370 伸长率δ (%):≥3 硬度:190~270HB ●热处理规范及金相组织: 热处理规范:(由供方定,以下为某试样的热处理规范,供参考) 930℃,2h正火空冷, 600℃,2h,回火空冷 金相组织:珠光体+铁素体

金相组织观察报告

实验二金相常识简介和铁碳合金平衡组织观察 一、目地要求 1 、了解试样制备过程、金相显微镜基本构造和原理等金相常识。 2 、研究和了解铁碳合金在平衡状态下的显微组织。 3 、分析成分对铁碳合金显微组织的影响,从而加深理解成分、组织和性能之间的相互关系。 二、实验内容:将制好的样品放在显微镜上观察,注意显微镜的正确使用,并分析样品制备的质量好坏,初步认识显微镜下的组织特征并分析成分对铁碳合金显微组织的影响。 三、实验设备:金相显微镜,抛光机易耗品:吹风器、样品、不同号数的砂纸、玻璃板,抛光粉悬浮液、4%的硝酸酒精溶液、酒精、棉花等 四、实验步骤: 1.金相样品的制备方法。 2、样品硝酸酒精溶液腐蚀(即浸蚀)。

实验结论: 1画组织示意图 (1)画出下列试样的组织示意图 1)亚共析纲 2)过共析钢 3)亚共晶白口铸铁 4)过共晶白口铸铁 (2)画图方法要求如下 1)应画岩石记录表中的30—50直径的圆内,注明:材料名称、含碳量、 腐蚀剂和放大倍数。并将组织组成物用细线引出标明。如下图: 2.回答以下问题 (1)分析所画组织的形成原因。

(2)分析碳钢(任选一种成分)或白口铸铁(任选一种成分)凝固过程。

教学及实验方法: 1 、教师讲述和演示阶段: 用 1 5 分钟时间讲解试样制备、显微镜结构、反射原理和黑白成像等金相常识,用 2 0 分钟时间联系铁碳平衡图讲解、分析本次实验的 7 种铁碳合金在平衡状态下的显微组织,用电视显微镜向全体学生展示所有显微组织,用 5 分钟时间讲解绘制显微 组织的有关技巧。 2 、学生动手实验阶段: 学生用 5 0 分钟时间对 7 种铁碳合金平衡组织进行观察和分析,进一步建立成分和组织之间相互关系的概念,绘出所观察到的显微组织图,用箭头标明各显微组织,并在相应图下标出成分,确立组织和成分之间的关系。

常用球墨铸铁的性能和特点

常用球墨铸铁的性能和特点 ①灰口铸铁。灰口铸铁的组织由石墨和基体两部分组成。基体可以是铁素体、珠光体或铁素体加珠光体,相当于钢的组织。因此铸铁的组织可以看成是钢基体上分布着石墨。 灰口铸铁包括普通灰FI铸铁和孕育铸铁两种。灰口铸铁价格便宜、应用最广泛,在各类铸铁的总产量中,灰口铸铁占 80.o%以上。影响灰口铸铁组织和性能的因素主要是化学成分和冷却速度。灰口铸铁中的碳、硅含量一般控制在碳 2.5%~ 4.0%,硅 1.0%~ 3.0%。 ②球墨铸铁管。球墨铸铁是20世纪50年代发展起来的一种高强度铸铁材料,其综合机械洼能接近于钢,因铸造性能很好、成本低廉、生产方便,在工业中得到了广泛的应用。 球墨铸铁的成分要求比较严格,与灰口铸铁相比,它的含碳量较高,通常在 4.5%~ 4.7%范围内变动,以利于石墨球化。 球墨铸铁的抗拉强度远远超过灰口铸铁,而与钢相当。因此对于承受静载的零件,使用球墨铸铁比铸钢还节省材料,而且重量更轻。不同基体的球墨铸铁,性能差别很大,球墨铸铁具有较好的疲劳强度,实验表明,球墨铸铁的扭转疲劳强度甚至超过459钢。

在实际应用中,大多数承受动载的零件是带孔或带台肩的,囡此用邀墨铸铁来岱益钢制造某些重要零件,如曲轴、连杆和凸轮轴等。 ③焉基铸铁。蠕墨铸铁是近十几年来发展起来的一种新型高强铸铁材料。它的强度接近于球墨铸铁,并具有一定的韧性和较高的耐磨性;同时又有灰口铸铁良好的铸造性能和导热性。蠕墨铸铁是在一定成分的铁水中加入适量的蠕化剂经处理而炼成的。蠕化剂目前主要采用镁钛合金、稀土镁钛合金或稀土镁钙合金等。蠕墨铸铁在生产中主要用于生产汽缸盖、汽缸套、钢锭模和液压阀等铸件。 ④可锻铸铁。可锻铸铁是由白口铸铁通过退火处理得到的一种高强铸铁。它有较高的强度、塑性和冲击韧性,可以部分代替碳钢。按退火方法不同,这种铸铁有黑心和自心两种类型。黑心可锻铸铁依靠石墨化退火来获得;白心可锻铸铁利用氧化脱碳退火来制取。 可锻铸铁常用来制造形状复杂、承受冲击和振动荷载的零件,如管接头和低压阀门等。这些零件用铸钢生产时,因铸造性能不好,工艺上困难较大,而用灰口铸铁时,又存在性能不能满足要求的问题。与球墨铸铁相比,可锻铸铁具有成本低、质量稳定、工 艺处理简单等优点。尤其对于薄壁件,球墨铸铁还容易生成白口,需要进行高温退火,这时采用可锻铸铁更为适宜。 ⑤耐磨铸铁。在铸铁中加入某些合金元素而得到。耐磨铸铁是在磨粒磨损条件下工作的铸铁,应具有高而均匀的硬度。白口铸铁就属这类耐磨铸铁。但白口铸铁脆性较大,不能承受冲击荷载,因此在生产上常采用激冷的办法来获得耐磨铸铁。 ⑥耐热铸铁。耐热铸铁是在高温下工作的铸件,如炉底板、换热器、坩埚、热处理炉内的运输链条等。在灰口铸铁中加入铝、硅和镉等元素,一方面在铸件表面形成致密的氧化膜,阻碍继续氧化;另一方面提高铸铁的临界温度,使基体变为单相铁素体,不发生石墨化过程,因此铸铁的耐热性得到改善。

【精品】灰铸铁焊接性分析

灰铸铁焊接性分析 焊接,铸铁 灰铸铁焊接性分析 灰铸铁在化学成分上的特点是碳高及S、P杂质高,这就增大了焊接接头对冷却速度变化的敏感性及冷热裂纹的敏感性。在力学性能上的特点是强度低,基本无塑性。焊接过程具有冷速快及焊件受热不均匀而形成焊接应力较大的特殊性。这些因素导致焊接性不良。主要问题两方面:一方面是焊接接头易出现白口及淬硬组织。另一方面焊接接头易出现裂纹。(一)焊接接头易出现白口及淬硬组织见P103,以含碳为3%,含硅2。5%的常用灰铸铁为例,分析电弧焊焊后在焊接接头上组织变化的规律。1.焊缝区当焊缝成分与灰铸铁铸件成分相同时,则在一般电弧焊情况下,由于焊缝冷却速度远远大于铸件在砂型中的冷却速度,焊缝主要为共晶渗碳体+二次渗碳铁+珠光体,即焊缝基本为白口铸铁组织。防止措施:焊缝为铸铁①采用适当的工艺措施来减慢焊逢的冷却速度。如:增大线能量。②调整焊缝化学成分来增强焊缝的石墨化能力。异质焊缝:若采用低碳钢焊条进行焊接,常用铸铁含碳为3%左右,就是采用较小焊接电流,母材在第一层焊缝中所占百分比也将为1/3~1/4,其焊缝平均含碳量将为0。7%~1.0%,属于高碳钢(C>0。6%).这种高碳钢焊缝在快冷却后将出现很多脆硬的马氏体。采用异质金属材料焊接时,必须要设法防止或减弱母材过渡到焊缝中的碳产生高硬度组织的有害作用。思路是:改变C的存在状态,使焊缝不出现淬硬组织并具有一定的塑性,例如使焊缝分别成为奥氏体,铁素体及有色金属是一些有效的途径。2.半熔化区

特点:该区被加热到液相线与共晶转变下限温度之间,温度范围1150~1250℃。该区处于液固状态,一部分铸铁已熔化成为液体,其它未熔部分在高温作用下已转变为奥氏体。1)冷却速度对半熔化区白口铸铁的影响V冷很快,液态铸铁在共晶转变温度区间转变成莱氏体,即共晶渗碳体加奥氏体。继续冷却则为C所饱和的奥氏体析出二次渗碳体。在共析转变温度区间,奥氏体转变为珠光体.由于该区冷速很快,在共析转变温度区间,可出现奥氏体→马氏体的过程,并产生少量残余奥氏体.该区金相组织见P104图4—5其左侧为亚共晶白口铸铁,其中白色条状物为渗碳体,黑色点、条状物及较大的黑色物为奥氏体转变后形成的珠光体。右侧为奥氏体快冷转变成的竹叶状高碳马氏体,白色为残余奥氏体。还可看到一些未熔化的片状石墨。当半熔化区的液态金属以很慢的冷却速度冷却时,其共晶转变按稳定相图转变。最后其室温组织由石墨+铁素体组织组成。当该区液态铸铁的冷却速度介于以上两种冷却速度之间时,随着冷却速度由快到慢,或为麻口铸铁,或为珠光体铸铁,或为珠光体加铁素体铸铁。影响半熔化区冷却速度的因素有:焊接方法、预热温度、焊接热输入、铸件厚度等因素。例:电渣焊时,渣池对灰铸铁焊接热影响区先进行预热,而且电渣焊熔池体积大,焊接速度较慢,使焊接热影响区冷却缓慢,为防止半熔化区出现白口铸铁焊件预热到650~700℃再进行焊接的过程称热焊。这种热焊工艺使焊接熔池与HAZ很缓慢地冷却,从而为防止焊接接头白口铸铁及高碳马氏体的产生提供了很好的条件。研究灰铸铁试板焊件、热输入相同时,随板厚的增加,半熔化区冷却速度加快。白口淬硬倾向增大。2)化学成分对半熔化区白口铸铁的影响

各种元素对铸铁组织性能的影响

各种元素对铸铁组织性能的影响 1.C 碳是铸铁的基本组元,在铸铁中的存在形式主要有两种,一种是以游离碳石墨的形式存在,另一种是以化合碳渗碳体的形式存在,也正是碳在铸铁中的这种存在形式可把铸铁分成许多类型可把铸铁分成许多类型,在灰铸铁中,碳的质量分数控制在2.7%-3.8%的范围内,碳主要以片状石墨形式存在,高碳灰铸铁的金相组织为铁素体和粗大的片状石墨,机械强度和硬度较低,但挠度较好;低碳灰铸铁的金相组织为珠光体和细小的片状石墨,有较高的机械强度和硬度,但挠度较差。由于灰铸铁的成分位于共晶点附近,因此具有良好的铸造性能。对于亚共晶范围的灰铸铁,增加碳含量能提高流动性,反之,对于过共晶范围的灰铸铁,只有降低碳含量才能提高流动性。在QT中含C量高,析出的石墨数量多,石墨球数多,球径尺寸小,圆整度增加。提高含C量可以减小缩松体积,减小缩松面积,使铸件致密。但是含C量过高则降低缩松作用不明显,反而出现严重的石墨漂浮,且为保证球化所需要的残余Mg量要增多。 2.Si 硅是铸铁的常存五元素之一,能减少碳在液态和固态铁中的溶解度,促进石墨的析出,因此是促进石墨化的元素,其作用为碳的1/3 左右,故增加硅量会增加石墨的数量,也会使石墨粗大;反之,减少硅量,会使石墨细小。在灰铸铁中,硅的质量分数控制在1.1%-2.7%的范围

内,一般碳硅含量低可获得较高的机械强度和硬度,但流动性稍差;反之,碳硅含量高,流动性好,机械强度和硬度较低。当薄壁铸件出现白口时,可提高碳硅含量使之变灰;当厚壁铸件出现粗大的石墨时,应适当降低碳硅含量,并达到提高机械强度和硬度的目的。Si是Fe-C 合金中能够封闭r区的元素,Si使共析点的含C量降低。Si提高共析转变温度,且在QT中使铁素体增加的作用比HT要大。 HT中C、Si 都是强烈促进石墨化的元素。提高碳当量促使石墨片变粗、数量增多,强度和硬度下降。降低碳当量可以减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而是提高灰铸铁力学性能常采取的措施。但是降低碳当量会导致铸造性能降低、铸件断面敏感性增加,硬度上升加工困难等问题。 3.Mn 锰是铸铁的常存五元素之一,除少量固溶于铁素体以外,大部分溶入共析碳化物和渗碳体中,以复合碳化物的形态存在,加强了碳化物的形成,因此是阻碍石墨化的元素,故增加锰量会增大基体组织中的珠光体数量。在灰铸铁中,锰的质量分数控制在0.5%-1.4%的范围内,主要作用有二,一是中和硫的有害作用,生成MnS及(F e、Mn)S 化合物,以颗粒状分布于机体中。这些化合物的熔点在1600℃以上,不仅无阻碍石墨化的作用,而且还可以作为石墨化非自发性晶核。二是稳定和细化珠光体,在此含量范围内,随锰含量的增加,铸铁的强度、硬度增加,而塑性和韧性降低。 在QT中Mn的作用是形成碳化物和珠光体。对于厚大断面的QT件来

铸铁材料的分类及金相组织

铸铁材料的显微组织及分析 铸铁为含碳量在2%以上的铁碳合金,俗称生铁。工业用铸铁一般含碳量为2%~4%。由于碳在铁中固溶量有限,且渗碳体不稳定,适当条件下即会分解为铁和碳单质即石墨,因此在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。合金铸铁还含有镍、铬、钼、铝、铜、硼、钒等元素。碳、硅是影响铸铁显微组织和性能的主要元素。铸铁材料没有严格的分类,可按铸铁的使用性能、断口特征或成份特征进行分类。较为方便和常用的则是将铸铁分为七大类(见下表)。 铸铁的组织视化学成分和冷却速度而异,当铸铁凝固的冷却速度足够大时,得到白口铸铁组织,随冷却速度减小,铸铁组织依次改变为麻口铸铁、珠光体灰口铸铁、珠光体铁素体灰口铸铁和铁素体灰口铸铁;球墨铸铁是在浇铸前向灰口铸铁加入少量球化剂获得球状石墨的铸铁。球墨铸铁具备优于灰铁的强度、范性和韧性;可锻铸铁又叫可锻铸铁,由白口铸铁经过石墨化退火后制成,是一种强度韧性都较高的铸铁。

以下对生产中应用较多的铸铁成分、显微组织及其性能进行分析。 1、灰口铸铁 灰口铸铁应用最广泛,占铸铁总产量的80%以上。其中碳全部或部分以自由碳-片状石墨形式存在,因此断口呈现灰色。其显微组织根据石墨化程度的不同分为铁素体、珠光体、铁素体+珠光体灰口铸铁。而所有灰口铸铁组织的共同特征是,在这些铸铁的组织总有一个相当于钢的组织的金属基体,在这基体上分布着片状石墨。 由于石墨片对钢基体产生割裂作用,破坏了钢基体的连续性、完整性,减少了钢基体的有效面积,使其抗拉强度低于钢、而塑性和韧性近于零,属于脆性材料。灰口铸铁不能承受加工变形,但是却具有优良的铸造性能,同时切削加工性能也很好。 灰铸铁的化学成分范围一般为:w(C)=2.7%~3.6%,w(Si)=1.0%~2.5%,w(Mn)=0.5%~1.3%,w(P)≤0.3%,w(S)≤0.15%。 (1)未经浸蚀的灰口铸铁 为了研究石墨的形状和分布,一般均先观察未经腐蚀的样品。由于片状石墨无反光能力,故试样未经腐蚀即可看出灰黑色。石墨性脆,在磨制时容易脱落,在显微镜下表现为空洞。 未经腐蚀的基体在显微镜下呈现白亮色,黑色条状物即为石墨。

铸铁组织的显微观察实验报告范文

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-053836 铸铁组织的显微观察实验报告An experimental report on Microstructure of cast iron

铸铁组织的显微观察实验报告范文 兰州理工大学学生实验报告 学院实验室课程名称实验类型实验名称学生姓名学生学号实验日期指导教师 材料科学与工程学院实验中心金属学与热处理验证性合金钢、铸铁、有色金属的 显微组织观察 魏玉鹏 合金钢、铸铁、有色金属的显微组织观察 实验报告 一、实验目的 二、使用的设备仪器 三、实验方法、步骤 四、画出下列材料的显微组织示意图,并用箭头标明示意图中所示组织的名称 1 材料名称:W18C

r4V处理状态:铸造组织:腐蚀剂:放大倍数:材料名称:灰口铸铁处理状态:铸造组织:腐蚀剂:放大倍数: 材料名称:W18Cr4V 处理状态:淬火+高温回火 组织:腐蚀剂:放大倍数: 材料名称:球墨铸铁处理状态:铸造 组织:腐蚀剂:放大倍数: 2 材料名称:ZL102(未变质)材料名称:ZL102(变质)处理状态:处理状态: 组织:组织:腐蚀剂:腐蚀剂:放大倍数:放大倍数: 五、实验结果讨论 1. 根据显微组织观察,试分析高速钢性能和热处理特点,说明为什么? 2.将以上灰口铸铁的组织与性能同球墨铸铁进行比较,说明为什么? 3.试分析变质处理对硅铝明合金的作用。 4. 简述巴氏合金组织与性能的特点。 :常用金属材料显微组织观察实验报告 一、实验目的 1.观察各种常用合金钢,有色金属和铸铁的显微组织。 2.分析这些金属材料的组织和性能的关系及应用。 二、金属材料的显微组织观察及分析 1.几种常用合金钢的显微组织 合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为

低碳钢和铸铁力学性能分析

低碳钢和铸铁力学性能分析 题目:低碳钢和铸铁的力学性能分析 学院:机械工程学院学号:xxxxxxxxxxx 姓名:专业班级:xxx 指导老师:xxx 日期:2019年4月 低碳钢和铸铁的力学性能分析 作者:xxx 作者单位:255000 山东理工大学 摘要:材料的力学性能是指在外力作用下所表现出的抵抗能力。由于载荷形式的不同,材料可表现出不同的力学性能,如强度、硬度、塑形、韧度、疲劳强度等。材料的力学性 能是零件设计、材料选择及工艺评定的主要依据。本文主要讨论低碳钢和铸铁的力学性能 在拉伸和压缩情况下的影响。 关键词:低碳钢、铸铁、拉伸、压缩 (一)材料微观组成分析 材料的微观结构几乎决定了外在性能,所以要了解研究材料的性能必须深入研究材料 的组成成分。而研究材料的组成成分需要从下面这张铁碳合金相图说起。 这张图记录了奥氏体在在不同温度下的恒温转变时组成成份和物质状态的变化。低碳 钢是指碳含量 低于0.3%的碳素钢;铸铁是指碳含量在2.11%-6.69%的金属,其中用于拉伸和压缩试 验的铸铁为灰口铸铁,成分一般范围为Wc=2.5%-4.0% Wsi=1.0%-2.2% Wmn=0.5%-1.3% Ws≤0.15% Wp≤0.3%。低碳钢经过奥氏体转变的基体是铁素体和珠光体,灰口铸铁的基体 是珠光体二次渗碳体和莱氏体。铁素体和工业纯铁相似,塑形韧性较好,强度硬度较低。 渗碳体是一种复 杂的间隙化合物,硬度很高,但塑性和韧性几乎为零,是钢中的主要强化相。珠光体 是铁素体和渗碳体的机械混合物,常见的形态是两者呈片层相间分布,片层越细强度越高。铸铁中的莱氏体是由珠光体和渗碳体组成的机械混合物,其中渗碳体较多,脆性大,硬度高,塑形很差。 1 2 (二)拉伸试验

金相试样的制备及金相组织观察

金相试样的制备及金相组织观察 一、实验目的 1、了解金相显微镜的基本原理、构造,初步掌握显微镜的正确使用。 2、掌握金相显微试样的制备过程和基本方法。 3、了解浸蚀的基本原理,并熟悉其基本操作 4、学习利用金相显微镜进行显微组织观察。通过在显微镜下观察到的金相显微组织初步分析材料类型以及材料可能具备的机械性能等。 二、实验设备和用品 1、金相显微镜 2、不同粗细的金相砂纸一套、玻璃板、侵蚀剂(4%硝酸酒精) 3、抛光机 4、待制备的金相试样 三、金相显微镜的基本原理、构造及使用 1、显微镜的放大倍数 利用透镜可将物体的象放大,但单个透镜或一组透镜的放大倍数是有限的,为此,要考虑用另一组透镜将第一次放大的象再行放大,以得到更高放大倍数的象。金相显微镜就是基于这一要求设计的。显微镜中装有两组放大透镜,靠近物体的一组透镜为物镜,靠近观察 的一组透镜为目镜。Array金相显微镜的光学原理图1如图所示。 物体AB置于物镜的一倍焦距F1与二倍焦距 之间,它的一次象在物镜的另一侧二倍焦距 以外,形成一个倒立、放大的实象A′B′;当 实象A′B′位于目镜的前一倍焦距F2以内时则 目镜复又使映象A′B′放大,而在目镜的前二 倍焦距2 F2以外,得到A′B′的正立虚象A″B″。 因此最后的映象A″B″是经过物镜、目镜两次 放大后所得到的。其放大倍数应为物镜放大 倍数和目镜放大倍数的乘积。 物体AB经物镜第一次放大的倍数: M物= A′B′/ AB=(Δ+f1′ )/ f1 式中f1、f1′——物镜前焦距与后焦距 Δ——显微镜的光学镜筒长 与Δ相比,物镜的焦距f1′很短,可略, 所以M物≈Δ/ f1 象A′B′经目镜第二次放大的倍数: M目= A″B″/A′B′≈D/ f2 式中f2——目镜的前焦距 D——人眼明视距离,D≈250㎜。 图1 显微镜光学原理图 所以显微镜的放大倍数应为: M= M物·M目=(Δ/ f1)·(D/ f2) 当显微镜的机械镜筒长度等于光学镜筒长度时,M= M物·M目;而当这二者不等时,M= M 物·M目·C,C是与机械镜筒长、光学镜筒长有关的系数,一般为1,有时为0.63,其C值标在金相显微镜上。

基于Solidworks simulation的铸铁分析

基于Solidworks simulation的铸铁分析 本文浅谈基于Solidworks simulation的铸铁分析。 一、灰铸铁的成分分析 灰铸铁的石墨化碳在铸铁中以两种状态存在:一种呈化合态,称为渗碳体;另一种呈游离态,称为石墨。灰铸铁中的石墨一般认为通过以下两种方式形成。 一是由渗碳体分解而形成石墨。这是因为处于高温下的渗碳体不大稳定,在缓慢冷却时能分解出石墨。 二是从液体或奥氏体中直接析出石墨。 铸铁中的碳以石墨状态析出的过程称为石墨化。控制石墨化对铸铁的组织和机械性能有很大的影响。影响石墨化有两大因素:化学成分和冷却速度。 二、灰铸铁的硬度和强度分析 第一,灰铸铁的硬度和抗拉强度之间存在一定的对应关系,其经验关系式为: 当σb≥196MPa时,HB=RH(100+O.438σb) (1) 当σb<196MPa时,HB=RH(44+0.724σb) (2) 式中,相对硬度(RH)主要由原材料、熔化工艺、热处理工艺以及铸件的冷却速度决定。 第二,灰铸铁的相对硬度值(RH)的变化范围在0.80~1.20之间。

第三,测定RH值,可用单铸试棒(或铸件上)测定抗拉强度和硬度,由式(1)和式(2)计算灰铸铁的RH值。 第四,根据在铸件上实测得到的HB值,可由式(1)和式 (2)计算出该抗拉强度值。 三、灰铸铁的应力、应变分析 如图1所示,左端平面固定,在上平面施加100N的向下的力,铸铁尺寸规格150mm×30mm×20mm,可以看出,越靠近左端的红色越深,说明危险度越大,容易折断和受损。在加工过程中,类似于此例的铸铁,应该注意,防止在零件加工过程中损坏。 四、灰铸铁的位移分析 如图2所示,左端平面固定,在上平面施加100N的向下的力,最右端的位移最大,变形最大,在装配中应该注意,类似于铸铁的一些零部件的装配中,应该保持一定的间隙,避免变形发生的干涉,影响装配体的功能。 (作者单位:河北省石家庄市高级技工学校)

铸铁组织

组织:铸铁的组织是由钢的基体和石墨组成的。 铸铁的基体组织:珠光体、铁素体、珠光体加铁素体。 铸铁名称与铸铁显微组织: 1.灰口铸铁F+G片,F+P+G片,P+G片 2.球墨铸铁F+G球,F+P+G球,P+G 3.蠕墨铸铁F+G蠕虫,F+P+G蠕虫 4.可锻铸铁F+G团絮,P+G团絮 由于铸铁中的碳主要是以石墨的形态存在,所以铸铁的组织是由金属基体和石墨所组成的。铸铁的金属基体可以是铁素体、珠光体或铁素体加珠光体,经热处理后还可以是马氏体或贝氏体等组织,它们相当于钢的组织,因此可以把铸铁理解为在钢的组织基体上分布有不同形状、大小、数量的石墨。铸铁中石墨的形态可分为6种:片状、蟹状、开花状、蠕虫状、团絮状和球状,如下图所示。 普通灰铸铁的组织是由片状石墨和钢的基体两部分组成的。根据不同阶段石墨化程度的不同金属基体可分为铁素体,铁素体+珠光体和珠光体三种,相应地便有三种不同基体组织的灰铸铁,它们的显微组织如下图所示。

8.2.1 灰铸铁的成分、组织与性能特点 1.灰铸铁的化学成分 ?化学成分范围一般为:w C=2.7%~3.6%,w Si=1.0%~2.5%,w Mn=0.5%~1.3%, w P≤0.3%,w S≤0.15%。 2.灰铸铁的组织 三种不同基体组织的灰铸铁: (1)铁素体灰铸铁 (2)珠光体灰铸铁 (3)珠光体+铁素体灰铸铁 3.灰铸铁的性能特点 (1)力学性能 ?铸铁的强度、塑性与韧性低。 ?灰铸铁的抗压强度σbc、硬度与耐磨性接近钢(主要取决于基体,石 墨的存在对其影响不大)。 (2)其它性能 ?铸造性能良好熔点低,流动性好,收缩率小。 ?减摩性好摩擦系数小。 ?减振性强 ?切削加工性良好 ?缺口敏感性小 8.2.2 灰铸铁的孕育处理 ?孕育处理:向出炉的铁水中加入孕育剂。 ?人工形核:细化晶粒工艺。 ?孕育剂:含硅75%的硅铁。 8.2.3 灰铸铁的牌号和应用 1.灰铸铁的牌号 ?HT100、HT150、HT200等 2.灰铸铁的应用 ?形状复杂,静载荷,减摩的床身、箱体、座架类零件。 8.2.4 灰铸铁的热处理 ?可以进行消除内应力退火、改善切削加工性退火、表面淬火等热处理工艺 改善工艺性能和使用性能。

实验 常用工程材料的显微组织观察

实验5 常用工程材料的显微组织观察 1.实验目的 2.(1)观察几种常用合金钢、有色金属、铸铁和金属陶瓷(硬质合金)及纤维增强树脂的显微组织。 3.(2)分析这些材料的组织和性能的关系及其应用。 4. (1)W18Cr4V是一种高速钢。室温平衡组织由珠光体、碳化物和莱氏体组成。莱氏体沿晶界呈宽网状 分布,莱氏体中的碳化物粗大,呈骨架状,不能靠热处理消除,必须进行锻造打碎。锻造退火后的显微组织由索氏体和碳化物组成。高速钢具有优良的耐热性和高的耐磨性。淬火温度较高,使奥氏体充分合金化,保证最终有高的热硬性。 (2)1Cr18Ni9是不锈钢。在大气、海水及其他浸蚀性介质条件下能稳定工作,属于高合金钢。室温平 衡组织为奥氏体+铁素体+(Cr,Fe)23C6。 (3)灰铸铁中的石墨呈粗大片状,灰铸铁的基体有珠光体、铁素体和珠光体+铁素体三种。铁素体基体 的铸铁韧性最好,珠光体基体的铸铁抗拉强度最高。 (4)球墨铸铁的组织主要有铁素体基体和珠光体基体两种。浇铸后石墨呈球形析出,大大削弱了对基 体的割裂作用,使球墨铸铁的性能显著提高。

(5)可锻铸铁由白口铸铁经石墨化退火处理得到。其中的石墨呈团絮状,也显著的削弱了对基体的割 裂作用,使得可锻铸铁的机械性能比灰铸铁有明显的提高。 (6)未经变质处理的铝硅合金铸造后得到的组织是粗大的硅晶体和α固溶体所组成的共晶体。粗大的硅 晶体很脆,严重的降低了合金的塑性和韧性。 (7)变质处理后的铝硅合金中添加的Na能促进Si的生核,并能吸附在Si表面阻止Si继续长大,使合 金组织大大细化。变质处理后的组织为细小均匀的共晶体+初生α固溶体+二次析出的Si。共晶体中的Si细小,使合金的强度和塑性显著改善。 (8)单相黄铜中的组织为单相α固溶体,其晶粒呈多边形,并伴有大量退火孪晶。单相黄铜具有良好的 塑性,可以进行各种冷变形。 (9)双相黄铜由α相和β相组成。α相呈亮白色,β相呈黑色,是以CuZn电子化合物为基的有序固溶体, 在低温下较脆、硬,但在高温下有良好的塑性,所以双相黄铜可以进行热压力加工。 (10)轴承合金是一种软基体硬质点类型的轴承合金。显微组织为α+β+Cu6Sn5。软基体硬质点混合组织 能保证轴承合金具有必要的强度、塑性和韧性,以及良好的耐磨性。 (11)YG3显微组织由WC+Co相组成。硬质合金熔点高,硬度高,具有良好的耐磨性和热硬性,可用 作道具、耐磨零件或磨具。硬质合金属于颗粒复合材料。 (12)纤维增强树脂是一种纤维复合材料。韧性好的树脂作为基体,可阻碍材料中裂纹的扩展。纤维的 抗拉强度高,主要承受外加载荷的作用。玻璃纤维增强树脂的显微组织为玻璃纤维+树脂。 5.思考题 (1)合金钢与碳钢比较组织上有什么不同,性能上有什么差别,使用上有什么优越性? (2)答:合金钢是在碳钢合金中特意加入一些合金元素所获得的钢。按合金元素质量分数不同可分为 低合金钢(合金元素低于5%)、中合金钢(合金元素5%~1 O%)、高合金钢(合金元素大于10%),还有其他的分类方法。对于低合金钢由于加入合金元素较少,铁碳相图虽发生了一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有太大区别,低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同。但因加入了合金元素使C曲线右移(Co除外),所以在相同的冷却速度下,会出现不同的金相组织,合金钢更容易获得马氏体。 (3)合金钢与碳钢比较,在淬透性、力学性能、回火稳定性等方面得到改善,还可提高钢的抗氧化 性、耐蚀、耐热、耐低温、耐磨损等方面的性能。由于合金钢的强度提高了,在使用时可降低材料的使用量,减轻重量,降低成本。不同的合金钢可以应用于高温、腐蚀、磨损等场合使用。 (4)为什么大型发电机组中汽轮机转子和小板牙都必须采用合金钢制造? (5)答:大型发电机组中的汽轮机转子工作环境恶劣,要承受扭转应力、弯曲应力、热应力,还要承 受振动产生的附加应力和冲击载荷等,而且在高温工作,还要考虑材料的抗蠕变性能、抗腐蚀性能,等等。因此对转子材料要具有良好的综合机械性能、强度高,韧性好。在钢中加入一些合金元素可以提高材料的性能,满足产品要求。如加入Cr、Mo、V元素,可以提高钢的淬透性增加钢

相关主题
文本预览
相关文档 最新文档