当前位置:文档之家› 磨削裂纹的产生与防止

磨削裂纹的产生与防止

磨削裂纹的产生与防止
磨削裂纹的产生与防止

浅谈磨削裂纹的产生与防止

【摘要】淬火件尤其是渗碳淬火件磨削时常常出现磨削裂纹,它不但影响外观,还直接影响工件的质量。通过长期的尝试与总结,本文将对磨削裂纹的产生及防止作出阐述,并对已出现的磨削裂纹提出行之有效的消除方法。

【关键词】淬火;磨削裂纹;预防措施

1.引言

磨削裂纹的形状很独特,一眼就可以看出,它与一般的淬火裂纹有明显不同,较轻的磨削裂纹呈垂直于磨削方向的平行线,称之为第一类裂纹。较严重的磨削裂纹呈龟甲状,又叫龟裂或者第二类裂纹,其深度大致为0.05~0.2mm,当用酸腐蚀时,裂纹更明显可见,其另一个特点是,磨削时没有任何迹象,用磁力探伤也没有发现任何裂纹存在,它是在磨削过程结束以后才产生的。

2.正文

由于淬火钢的组织是马氏体+残余奥氏体,故处于膨胀状态(未经回火尤为严重),如果将其表面快速加热至100℃左右并迅速冷却时,必然将产生收缩,我们称之为第一次收缩,这种收缩只发生在表面,其基体仍处于原膨胀状态,从而使表面承受拉力而产生微裂纹,这就是第一类裂纹,当温度继续上升至约300℃时,表面再次产生收缩,从而产生第二类裂纹。

马氏体的膨胀收缩随着钢中含碳量的增加而增大,故碳素工具钢如t8~t12和渗碳淬火钢产生磨削裂纹尤为严重。此外,淬火钢中

齿面常见损伤及原因

齿轮常见损伤形式及产生的原因 齿轮常见损伤形式及产生的原因 损伤形式损伤特征损伤原因损伤结果 齿面烧伤有腐蚀性点蚀的特征①齿面剧烈磨损②由磨损引起的局部高温 ③齿隙不足④齿面加工精度达不到要求⑤ 润滑不当⑥超负荷、超速运行 齿面局部软化,疲劳寿 命随之降低 变色齿面有变色现象①齿面硬度低、温度高②润滑状态劣化产生胶合的前兆 初期点蚀发生在轮齿节线附近的齿 根表面上,具有点蚀形貌 ①齿面局部凸起,局部承受较大负荷②受交 变应力作用 对轮齿损坏影响不大 破坏性点 蚀蚀点尺寸大,齿形被破坏 ①由于局部点蚀,引起动态负荷加大②齿面 硬度高③光洁度低④润滑油不良 蚀坑往往成为疲劳源, 最终导致轮齿疲劳断 裂 剥落凹坑比硬坏性点蚀大而深, 断面较为光滑,多发生在齿 顶或齿端部 ①轮齿的表层和次表层缺陷②热处理产生 过大的内应力 产生范围较大的齿面 疲劳损坏 滚轧和缍 击 齿顶或齿端部产生飞边或 齿顶揉圆,主动轮在齿面节 线附近出现凹坑,从动轮产 生凸起 ①受冲击负荷作用②啮合不良致使齿面屈 服和变形③齿面硬度低④润滑油不良 通常在齿面上产生,局 部完全被破坏,然后轮 齿其余部分产生严重 的塑性变形,进而齿轮 报废 中等磨损主动轮发生在齿顶,从动轮 发生在齿根 ①轮齿承受过高载荷②润滑油不良 使用寿命降低,噪声变 大 破坏性磨 损工作恶化,齿形改变①齿轮啮合节圆的滑动受阻②润滑油不良 可能导致点蚀和塑性 变形,寿命显著降低 磨料磨损齿面滑动方向出现彼此独 立的沟纹 ①外界的微粒进入轮齿啮合面②润滑油过 滤网损坏 使用寿命降低,润滑条 件进一步劣化 胶合撕伤 沿齿面的滑动方向形成沟 槽,在齿根和节线附近被挖 成凹坑,使齿形破坏 ①负荷集中于局部的接触齿面上②油膜破 坏③单位接触负荷过大 导致齿轮早期损坏 干涉磨损主动齿轮的齿根被挖伤,从 动齿轮齿顶严重破坏 ①设计、制造不当②组装不良 噪声增大,最终导致一 对啮合齿轮全部报废 腐蚀磨损在齿面上产生腐蚀斑点①由于空气中的潮湿气体、酸或碱性物质造 成润滑油的污染润②滑油中的极压剂添加 不当 降低使用寿命 剥片 小而薄的金属片从齿面剥 不,严重时可在润滑油中看 到大量的金属剥片 ①齿面硬化层过薄或心部硬度低②热处理 工艺不当 噪声增大,导致齿轮损 坏 波纹齿面产生波纹状损伤,以渗 碳的双曲线小齿轮最为常 见 ①润滑不当②高频振动及滑动摩擦促使齿 面屈服 噪声增大

磨床磨削裂纹原因的分析与对策

磨床磨削裂纹的产生原因 分析与对策 分析磨削裂纹的产生原因,与磨削前各加工过程所产生的缺陷,如材料表层中存在网状碳化物、非金属夹杂、组织疏松、成分偏析、晶界上的淬火变形等有关;裂纹通常与烧伤同时出现。当工件表层的残余拉应力超过材料的抗拉强度时,就会产生磨削裂纹。磨削裂纹的产生原因和减小磨削裂纹的方法如下: 1、正确选用砂轮,例如可采用颗粒较粗、较软、组织较疏松的砂轮;保证修整后砂轮的锋利。 2、保证磨削时的冷却条件,设法使冷却液能有效地渗透到工件的磨削区中。 3、合理选择磨削用量,例如提高工件的转速,采用较小的径向进给量等。磨削时如果磨削工艺参数选择或操作不当,工件表面温度达到150~200度时表面因马氏体分解,体积缩小,而中心马氏体不收缩,使表层承受拉应力而开裂,产生的裂纹会与磨削方向垂直,裂纹相互平行。当磨削温度在200度以上时,表面由于产生索氏体或托氏体,这时表层发生体积收缩,而中心则不收缩,使表层拉应力超过脆断抗力而出现龟裂现象。

4、工件表面渗层碳浓度过高,会使工件表面产生过多的残余奥氏体.从而容易导致产生烧伤和裂纹。因此,表面碳浓度增加,则降低了磨削性能,一般表面碳浓度应控制在0.75%-0.95%范围以内。 5、碳化物分布应均匀,粒度平均直径不大于0.001m;碳化物形态应为球状、粉状或细点状沿网分布,不允许有网状或角状碳化物。 6、热处理时.表面或环境保护不当会产生表面氧化,这样在工件上就会产生一层薄的脱碳层,这层软的脱碳层会引起砂轮过载或过热,从而造成表面回火,工件磨削时容易出现裂纹。 7、如果冷却不充分,磨削时零件表面温度有时可能高达820~840度或更高,则由于磨削形成的热量足以使表面薄层重新奥氏体化,并再次淬火而形成淬火马氏体,表面形成二次淬火的金相组织。此外,磨削形成的热量使零件表面温度升高极快,这种组织应力和热应力导致磨削表面出现磨削裂纹。 8、使用金刚滚轮修整砂轮的内滚道磨床加工的零件有裂纹,还与配置的金刚滚转速、转向、金刚石的粒度、磨损情况、修砂轮时电主轴的转速、修砂轮时与滚轮磨合停留的时间等因素有关。

关于高速铣削加工工艺的浅论

高速切削技术论文 机械工程学院 1001011435 张伟

1 关于高速铣削加工工艺的浅论* 张伟 (1. 沈阳理工大学,机械工程学院,机械设计制造及其自动化沈阳201311;) 摘要:传统意义上的高速切削是以切削速度的高低来进行分类的,而削机床则是以转速的高低进行分类。如果从切削变形的机理来看高速切削,则前一种分类比较合适;但是若从切削工艺的角度出发,则后一种更恰当。随着主轴转速的提高,机床的结构,刀具结构,刀具装夹和机床特性都有本质上的改变。高速意味着高离心力,传统的7:24锥柄,弹簧夹头,液压夹头在离心力的作用下,难以提供足够夹持力,同时为避免切削振动要求刀具系统具有更高的动平衡精度。高速切削的最大优势并不在于速度,进给速度提高所导致的效率提高,而由于采用了更高的切削速度和进给速度,允许采用较小的切削用量进行切削加工。由于切削用量的降低,切削力和切削热随之降低,工艺系统变形减小,可以避免铣削振动。利用这一特性可以通过高速铣削工艺加工薄壁结构零件。 关键词:高速铣削加工工艺 中图分类号:TG156 About High Speed Milling Technology Discussion ZHANG Wei (1. Shenyang Li gong University, School of Mechanical Engineering, Mechanical Design, Manufacturing and Automation, Shenyang 201311;) Abstract:Traditional high-speed cutting is to classify the level of cutting , and the cutting speed of the machine is based on the level of classification. If the view of the cutting mechanism of deformation speed cutting, the former is more appropriate classification ; However, if the angle of the cutting process , the latter is more appropriate. As the spindle speed increases , the structure of the machine tool structure , tool clamping and machine characteristics are essentially changed. High speed means high centrifugal force , the traditional 7:24 taper , collet chuck , hydraulic chuck under the effect of centrifugal force , it is difficult to provide sufficient clamping force , as well as to avoid cutting vibration requires balancing tool system has higher precision . The biggest advantage of high-speed cutting is not the speed, feed speed increased efficiency resulting from , but thanks to the higher cutting speed and feed rate, allowing the use of smaller cutting for cutting. Since the reduction cutting , cutting force and cutting heat decreases, reducing deformation process system to avoid vibration milling . Using this feature can speed milling machining thin-walled structural components . Key words:High speed Milling Processing technology 0 前言1 普通铣削加工采用低的进给速度和大的切削参数,而高速铣削加工则采用高的进给速度和小的切削参数,高速铣削加工相对于普通铣削加工具有如下特点: (1)高效高速铣削的主轴转速一般为15000r/min~40000r/min,最高可达100000r/min。 *高速切削技术论文.20131005下载模板.20131101完成初稿.20131127终稿. 在切削钢时,其切削速度约为400m/min,比传统的 铣削加工高5~10倍;在加工模具型腔时与传统的加工方法(传统铣削、电火花成形加工等)相比其效率提高4~5倍。 (2)高精度高速铣削加工精度一般为10μm,有的精度还要高。 (3)高的表面质量由于高速铣削时工件温升小(约为3°C),故表面没有变质层及微裂纹,热变形也小。最好的表面粗糙度Ra小于1μm,减少了后续磨削及抛光工作量。

磨削裂纹产生原因及预防措施

技术讲座二 磨削裂纹产生机理与防止措施 1 磨削裂纹的特征 磨削裂纹形状特别,仅发生在磨削面上,与淬火裂纹在宏观上观察明显不同,且磨削裂纹深度较浅。较轻的磨削裂纹垂直于或接近垂直于磨削方向呈平行分布,称之为第Ⅰ类裂纹。较严重的裂纹呈龟甲状,称之为第Ⅱ类裂纹,习惯上叫做龟裂。其深度大致为0.03-0.20mm。用酸浸蚀后裂纹更加明显易见。 2 磨削裂纹的产生机理 磨削裂纹的产生皆由内部应力诱发所致,磨削裂纹产生的主要原因是磨削热引起的。工件磨削时磨削接触区温度高达400℃,磨削接触点的温度更是高达800℃以上。 磨削热导致工件表面产生热应力和组织相变而引起体积变化的相变应力。 渗碳淬火钢的表面组织是高碳马氏体和一定数量的残余奥氏体,处于膨胀状态(未经回火处理尤为严重);磨削热尤其是砂轮和工件接触区的高热会迅速使接触区表面温度升高,当表面温度升高到100℃~200℃左右离开接触区被冷却液迅速冷却时,必然将产生收缩,这是第一次收缩。这种收缩仅发生在表面,由于其基体马氏体仍处于膨胀状态,从而使表面层承受拉应力而产生微裂纹,这就是第Ⅰ类裂纹。随着磨削加工的继续当表面温度升至300℃~400℃时,表面层发生相引起变体积缩小,导致表面再次产生收缩,从而产生第Ⅱ类裂纹。 由于马氏体的膨胀收缩是随着钢中含碳量的增加而增大,故渗碳淬火钢(高碳工具钢)表面产生磨削裂纹尤为严重和常见。 渗碳淬火工件表面的残余奥氏体,在磨削时受磨削热的影响即发生分解,逐渐转变为马氏体,这种新生的马氏体集中于表面,引起零件局部体积膨胀,加大了零件表面应力,导致磨削应力集中,继续磨削则容易加速磨削裂纹的产生;此外,新生的马氏体脆性较大,继续磨削也容易加速磨削裂纹的产生。另一方面,在磨床上磨削工件时,对工件既是压力,又是拉力,助长了磨削裂纹的形成。 如果在磨削时冷却不充分,则由于磨削而产生的热量,足以使磨削表面薄层重新奥氏体化(727℃以上),随后再次淬火转变为淬火马氏体。因而使表面层产生附加的组织应力,再加上磨削所形成的热量使零件表面的温度升高极快,这种组织应力和热应力的迭加就可能导致磨削表面出现磨削裂纹。 3 磨削裂纹的防止措施 3.1 热处理方面 由于磨削裂纹的产生是由内部应力诱发产生,因此,渗碳淬火后应及时回火消除应力。保证表面硬度前提下回火温度尽量高一些对预防磨削裂纹非常有效,必要时进行二次回火效果更好。我们公司就规定轴类零件每年11月份到第二年

浅论淬火裂纹与非淬火裂纹的鉴别

浅论淬火裂纹与非淬火裂纹的鉴别 摘要:本文说明淬火裂纹形成原因及预防,并阐述淬火裂纹、锻造裂纹、磨削裂纹的特性及区别。 引言:淬火裂纹是常见的淬火缺陷,产生的原因是多方面的。因热处理的缺陷是从产品设计开始的,故预防裂纹产生的工作应该从产品设计抓起。要正确地选择材料、合理地进行结构设计,提出恰当的热处理技术要求,妥善安排工艺路线,选择合理的加热温度、保温时间、加热介质、冷却介质、冷却方法和操作方式等。 一、材料方面 1)碳是影响淬裂倾向的一个重要因素。碳含量提高,MS点降低,淬裂倾向增大。因此,在满足基本性能如硬度、强度的条件下,应尽量选用较低的碳含量,以保证不易淬裂。 2)合金元素对淬裂倾向的影响主要体现在对淬透性、MS点,晶粒度长大倾向、脱碳的影响上。合金元素通过对淬透性的影响,从而影响到淬裂倾向。一般来说,淬透性增加,淬裂性增加,但淬透性增加的同时,却可以使用冷却能力弱的淬火介质以减少淬火变形的方法来防止复杂零件的变形与裂纹。因此,对于形状复杂的零件,为了避免淬火裂纹,选择淬透性好的钢,并用冷却能力弱的淬火介质是一个较好的方案。 合金元素对MS点影响较大,一般来说,MS越低的钢,淬裂倾向越大,当MS点高时,相变生成的马氏体可能立刻被自回火,从而消除一部

分相变应力,可以避免发生淬裂。因此,当碳含量确定后,应选用少量的合金元素,或者含对MS点影响较小的元素的钢种。 3)选择钢材时,应考虑过热敏感性。过热较敏感的钢,容易产生裂纹,所以在选择材料时应引起重视 二、零件的结构设计 1)断面尺寸均匀。断面尺寸急剧变化的零件,在热处理时,由于产生内应力而产生裂纹。故设计时尽量避免断面尺寸突变。壁厚要均匀。必要时可在与用途无直接关系的厚壁部位开孔。孔应尽量做成通孔。对于厚不同的零件,可进行分体设计,待热处理后,再进行组装。2)圆角过渡。当零件有棱角、尖角、沟槽和横孔时,这些部位很容易产生应力集中,从而导致零件淬裂。为此,零件应尽量设计成不发生应力集中的形状,在尖角处和台阶处加工成圆角。 3)形状因素造成的冷却速度差异。零件淬火时冷却速度的快、慢随零件形状的不同而不同。即使在同一零件上不同的部位,也会因各种因素而造成冷却速度的不同。因此要尽量避免过大的冷却差异,以防止淬火裂纹。 三、热处理技术条件 1)尽量采用局部淬火或表面硬化。

磨削裂纹产生的原因是磨削力过大

磨削裂纹产生的原因是磨削力过大、冷却不充分,工件表面温度过高,而导致工件表面烧伤或产生淬火组织,并以下参数选择有关:1.与砂轮的选择有关,渗碳淬火件宜采用硬度较的的磨轮。可选用棕刚玉砂轮,粒度为80-100,硬度为K-M,陶瓷5-6粘结剂。2.冷却必须充分。3.进刀量应尽量小,一般一次磨量不宜超过0.02mm(单边)。 磨削裂纹有两类:一类是磨削热使工件温度升高至180℃左右(与回火第一阶段相对应),裂纹与磨削进给方向垂直且呈平行线状,这种裂纹叫做第一类磨削裂纹;另一类是磨削热使工件温度升高到250~300℃左右(与回火第二阶段相对应),裂纹呈网状,这种裂纹叫做第二类磨削裂纹。检查磨削裂纹可以利用热酸蚀法,这时的显微组织为屈氏体或索氏体。磨削热是在砂轮与钢的接触和挤压摩擦条件下产生的,因此,砂轮的种类和粒度以及钢种均对磨削热产生影响。钢件硬度越高,硬质碳化物数量越多或导热系数越低,越易产生较多的磨削热而使工件温度升高。含碳量高且含有铬和钼的合金钢也易产生大量的磨削热使工件温度升高。 ①材料缺陷:材料本身存在严重的非金属夹杂物(如硫和磷)和碳化物偏析等内部 缺陷(一般不超过2.5级)。例如,硫在钢中以FeS的形式存在,FeS与Fe形成易溶共晶体,其中熔点为985℃,分布与晶界。由于材料局部含硫较多,具有热脆性,当高温淬火时,由于材料热应力和组织应力的变化,则会因这种热脆性而导致开裂。 ②碳和合金元素的影响。淬火马氏体是碳在a铁中的过饱和固溶体,过高的碳量 增加了马氏体组织中碳的过饱和度,增大了马氏体组织应力,降低了组织的塑性,导致淬火层脆性增加,引起工件开裂。试验证明,含碳量不同的材质所制成的试样,经表面淬火后出现以下情况:含碳量0.54~0.46%的50MnSi和5CrMnMo。裂纹敏感性较强,棱角、尖角几乎都有裂纹;含碳量0.45~0.46%的50钢和50Mn要好些,但也有少量裂纹,而含碳量0.38~0.45%的40Cr和42CrMo的试样,经一次淬火均未发现裂纹,仅在重复淬火时才出现裂纹。另外,合金元素Mn、Cr、Mo可显著增加淬透性,同时能增大马氏体相变的组织应力,而且Mn还会使奥氏体晶粒有长大倾向,淬火组织粗大,导致裂纹。 有时,为避免裂纹,常采取减少含碳量,降低一点硬度的办法。 ③过热及过烧。感应加热时,加热温度过高,出现严重的过热和过烧现象,是工 作加热层得到粗大的奥氏体晶粒,淬火后得到粗大的马氏体组织,脆性增大,出现裂纹。 例如,一般感应加热淬火均以静止工件已加热到淬火温度,才开始让工件与感应器作相对移动,结果常在距起始淬火边缘(10~13mm)处产生“起步裂纹”,裂纹附近金相组织为粗针状马氏体,这是明显的过热现象,可采用低温缓淬法加以解决。 ④未经预先热处理。工件毛坯制作后,未经预先热处理(调质、正火或退火等处 理),毛坯内部组织的缺陷和应力未能及时消除,淬火应力更加增大了内部的应力,从而导致开裂。 ⑤激冷。由于淬火介质选择不当,使冷却速度过快(激冷)造成开裂。例如:合 金钢工件不采用缓冷却剂(如油、聚乙烯醇水溶液)而用水淬,致使在热应力和马氏体相变的组织应力的复杂作用下,引起开裂。 ⑥应力集中。工件厚薄差别较大或带有尖角、直角和凹槽处,引起应力集中而导 致淬火工件开裂。 ⑦回火不当。表面淬火后,工件表面得到马氏体组织。这时该层中内应力较大, 如果回火不足或回火不及时,也会因淬火的残余应力作用而导致淬火层内产生显微裂

浅谈高强度螺栓加工工艺

浅谈高强度螺栓加工工艺 刘伟底盘零件厂 摘要 本文所阐述高强度螺栓加工用设备均为普通机床,加工工艺主要指传统典型加工工艺。文章中着重介绍高强度螺栓机械加工工艺,对高强度螺栓的热处理工艺和表面处理工艺只做简要描述。又介绍了在高强度螺栓加工过程中未来的发展方向。 关键词:高强度螺栓、机械加工工艺、未来工艺过程 Abstract The processing equipments of High-intensity Bolts in this article are general machine tools, technology mainly referring to typical traditional technology. Article highlights High-intensity Bolts machining, heat treatment technology and the surface treatment High-intensity Bolts crafts itself a brief description. Key words: High-intensity Bolts、machining、technology processes in the future

浅谈高强度螺栓加工工艺 螺栓类零件是一种重要标准件,用做连接紧固件,在各领域的应用相当广泛,根据其机械和物理性能的不同,分成10种类别,其中机械性能等级大于等于8.8级的螺栓,我们通常称其为高强度螺栓。 一、高强度螺栓主要结构及作用 高强度螺栓种类较多,形状也不尽相同,外部尺寸更是千变万化,但整体上其主要结构和整体外部形状具有一定的相似性。根据这些相似性,我们将其分成三个主要部分:头部、杆部和螺纹部分。如下简图所示: 下面我们简要介绍一下各部分的作用极其重点要素: 1. 头部头部主要作用是在螺母与螺栓配合时施加一个反向力矩,保证螺母有足够拧紧力矩。形式种类较多,主要有方头、半圆头、六角头等形式。另外,一些非标准件高强度螺栓头部形式由设计者根据装配需要特别设计。 2. 杆部杆部主要起导向作用,特别是导径螺栓,装配后承受一定的径向剪切力,要求与孔小间隙配合,对杆部外圆精度和粗糙度要求严格。一些装配后只承受轴向拉伸力的螺栓对杆部要求不是很严格,外圆尺寸公差较大。对高强度螺栓来说,杆部与头部接触部位要求一定圆角,避免承受较大拉力时该部位断裂,同时避免热处理冷却时产生裂纹,是加工重点注意要素。 3. 螺纹部分螺纹部分是螺栓最主要部分,主要起连接紧固作用。可以分成有效螺纹部分,收尾部分(退刀部分)和螺纹末端三部分;螺纹三个主要要素:螺距、牙形半角和螺距,直接影响螺纹配合精度,也是加工重点注意要素。 二、高强度螺栓工艺分析 高强度螺栓机械加工一般不需要精度极高的专用机床,在普通设备上即可完成加工。根据其三个主要部分,我们将其加工工艺分成三部分:头部的加工、杆部加工和螺纹加工。每一部分的加工工艺又因其尺寸形状及技术要求的不同分成若干种类,采用不同的加工方法;虽然我们将其分成了三部分,但三部分的加工是相辅相成的,相互关联的,可能共存于同一工序,也可能共存于同一工步。 1. 头部的加工 ⑴毛坯 毛坯形式:螺栓头部形状直接决定产品毛坯形式。一般来说,方头螺栓毛坯可选用冷拉方钢,六角头螺栓毛坯可选用冷拉六角钢,半圆头螺栓毛坯应选用锻件毛坯;头

磨削裂纹

提高工件转速可以防止烧伤. 烧伤的主要几个原因及解决方法: 1.砂轮太硬选择稍软的砂轮 2.背吃刀量大减少背吃刀量,增加光磨时间 3.切削液不充足切削液要充分 4.粗磨烧伤过深进给量要小,切削液要充分 5.磁力不足,工件停转调整磁力 6.工件转速过低调整工件转速 7.砂轮主轴振摆大检修主轴 8.金刚石不锐利反转金刚石,以锐利尖角修整,或换金刚石 9.砂轮修整不好重新修整,稍放慢修整速度 10.定时支承磨损情况,如果磨损过大,会产生支承烧伤. 11,检查工件和砂轮电机扭矩选用是否足够,不足工件会产生短暂停留,会产生竖条烧伤. 另外提醒一点: 工件转速过高和过低都会产生烧伤,只有在合理范围内才是效果最佳的. 磨削烧伤机理: 当磨削表面产生高温时,如果散热措施不好,很容易在工件表面(从几十um到几百um)发生二次淬火及高温回火。如果磨削工件表面层的瞬间温度超过钢种的AC1点,在冷却液的作用下二次淬火马氏体,而在表层下由于温度梯度大,时间短,只能形成高温回火组织,这就使在表层和次表层之间常山拉应力,而表层为一层薄而脆的二次淬火马氏体,当承受不了时,将产生裂纹。 预防磨削烧伤的措施 1.尽量减少磨削时产生的热量。 2.尽量加速热量的散发。 以上摘自邢镇寰吴宗彦主编的《轴承零件磨削和超精加工技术》。 砂轮工件转速比,最好是在60:1 可以尝试使用大气孔或者小气孔的砂轮。 主要在以下几方面分析调整: 1.磨削回跳时是否可能撞砂轮; 2.磨削进给速度,一般粗磨1.0-1.5MM/MIN.,精磨0.3-0.6mm/min.,光摩0.1mm/min; 3.工件转速,在可能的情况下尽可能快一些,以利于散热; 4.砂轮转速,适当调慢; 5.冷却液的浓度; 6.冷却液的喷溅流量及喷溅部位。

精密磨削

浅谈磨削加工对模具寿命的影响 分析了磨削加工工艺对模具寿命的影响,提出减少磨削缺陷的有效措施,从而保证和提高模具使用寿命。 关键词:磨削加工措施模具寿命 模具制造是模具设计的延续,是验证设计正确性的过程。在现代模具生产中采用了先进、高效、高精密机床和自动化生产技术。磨削加工工作量将占模具总的制造工时的25%~45%。我国模具工业发展到今天取得了巨大的进步,但仍然与国外先进水平有较大的差距,在模具寿命上的比较见附表。模具制造的成品质量与模具制造精度密切相关,特别是与模具型腔面的精度和表面粗糙度有着密切关系。 实际生产中,影响模具失效的因素有:①模具结构;②模具材料;③冷热加工的制造工艺(锻造、热处理、切削加工、磨削加工、电加工等);④模具工作条件。要提高模具寿命,必须对导致模具损伤的原因及各种影响因素进行认真分析,制定克服的办法和措施。 目前,在国际上有两种模具制造工艺路线:一是以提高机械加工与电加工的精度与质量,使手工精加工的工作量降到最低,如高精密机床和高速成型铣床及其加工工艺的发展,为这条工艺路线的发展奠定基础。二是侧重精加工中的抛光和研磨工艺,其

加工工时,与机械加工、电火花加工时间几乎相等。一副模具是由众多的零件组配而成,零件的质量直接影响着模具的质量,而零件的最终质量又是由精加工来保证的。在国内大多数的模具制造企业,精加工阶段采用的方法一般是磨削、电加工及钳工处理。 磨削加工对模具寿命的影响未引起人们的充分重视,由于不正确的磨削工艺,造成工件表面烧伤、磨削裂纹、磨削痕及产生磨削应力,致使后续工序及模具在服役期间的机械疲劳、冷热疲劳产生裂纹的萌生源,严重影响模具的使用寿命。 研究和探讨如何提高磨削加工质量,提高模具使用寿命、延长服役时间,促进采用模具新技术,正是本文的目的。 1 模具的磨削加工 磨削过程的实质是工件被磨削了金属表层,在无数磨粒瞬间的挤压、磨擦作用下产生变形,而后转为磨屑,并形成光洁表面的过程。磨削的全过程表现为力和热的作用。 ①在磨削过程中,加工表面在切削热作用下产生热膨胀,此时基体金属温度较低,因此,表面产生热压应力。当磨削结束时,工件表面温度降低,由于表面已产生热态塑性变形并受到基体的限制,故而表面产生残余拉应力,里层产生残余压应力。 ②磨削时,砂轮与工件为弧面接触,砂轮切削时工件产生塑性变形及砂轮与工件间剧烈的摩擦阻力,从而在砂轮与工件间形成大小相等,方向相反的磨削力,同时由于表层材料塑性变形时使工件材料内部金属分子之间产生相对位移,形成内摩擦而发热,砂

模具钢生产过程中裂纹产生的原因与对策

北京科技大学冶金与生态工程学院 文献综述 模具钢生产过程中裂纹产生的原因与 对策 姓名杨岩 学号41011017 班级冶金E101 2013年4月

目录 摘要 (3) 一、模具钢概述 (3) 二、模具钢常见裂纹 (3) 三、裂纹产生原因分析 (6) 四、模具钢裂纹研究方法与思路 (9) 参考文献 (12)

摘要 模具钢是用来制造冷冲模、热锻模压铸模等模具的钢种,而模具是机械制造、无线电仪表、电机、电器等工业部门中制造零件的主要加工工具。本文对近年来国内企业以及学者对模具钢热处理过程中产生裂纹的研究成果进行梳理,以期更准确的描述国内模具钢生产现状,并为下一步发展提出相应对策。 一、模具钢概述 模具钢大致可分为(冷作模具钢)、(热作模具钢)和(塑料模具钢)3类,用于锻造、冲压、切型、压铸等。由于各种模具用途不同,工作条件复杂,因此对模具用钢,按其所制造模具的工作条件,应具有高的硬度、强度、耐磨性,足够的韧性,以及高的淬透性、淬硬性和其他工艺性能。由于这类用途不同,工作条件复杂,因此对模具用钢的性能要求也不同。模具的质量直接影响着压力加工工艺的质量、产品的精度产量和生产成本、而模具的质量与使用寿命除了靠合理的结构设计和加工精度外,主要受模具材料和热处理的影响。 在模具钢热处理中,淬火是常见工序。然而,因种种原因,有时难免会产生淬火裂纹,致使前功尽弃,造成巨大经济损失。分析裂纹产生原因,进而采取相应预防措施,具有显著的技术经济效益。 二、模具钢常见裂纹 在目前的模具钢生产过程中,出现的裂纹种类如下所述: 1、纵向裂纹 裂纹呈轴向,形状细而长。当模具完全淬透即无心淬火时,心部转变为比容最大的淬火马氏体,产生切向拉应力,模具钢的含碳量愈高,产生的切向拉应力愈大,当拉应力大于该钢强度极限时导致纵向裂纹形成。以下因素又加剧了纵向裂纹的产生: (1)钢中含有较多S、P、***、Bi、Pb、Sn、As等低熔点有害杂质,钢锭轧制时沿轧制方向呈纵向严重偏析分布,易产生应力集中形成纵向淬火裂纹,或原材料轧制后快冷形成的纵向裂纹未加工掉保留在产品中导致最终淬火裂纹扩大

热处理缺陷裂纹产生原因分析

热处理缺陷裂纹产生原因的分析 -------------------------------------------------------------------------------- 作者:张丽更新时间:2008-2-13 江苏盐城纺织职业技术学院 摘要:主要分析各种热处理方法及其他因素使金属零件产生裂纹的原因 关键词:热处理缺陷裂纹因素 热处理是通过加热和冷却,使零件获得适应工作条件需要的使用性能,达到充分发挥材料潜力,提高产品使用寿命和提高效能的重要的工艺方法。如果出现热处理缺陷,热处理就无法达到预期的目的,零件将成为不合格品或废品,从而造成经济损失。热处理缺陷一般按缺陷性质分类,主要包括裂纹、变形、残余应力、组织不合格、性能不合格、脆性及其他缺陷等七类。其中最危险的热处理缺陷是裂纹,一般将之称为第一类热处理缺陷,它属于不可挽救的缺陷;最常见的热处理缺陷是变形,一般称之为第二类热处理缺陷;其余缺陷如残余应力,组织不合格等属于第三类,一般统称为第三类热处理缺陷。 下面着重讨论有关热处理第一类热处理缺陷――裂纹。 一、金属零件的淬火裂纹 影响钢件淬火裂纹形成的因素众多,主要包括冶金因素、结构因素、工艺因素等。掌握各种因素作用,各因素对淬火裂纹影响的规律,对防止淬火裂纹的发生,提高成品率有重要的意义。 (1)钢件的冶金质量与化学成分的影响 钢件可用锻件、铸件、冷拉钢材、热轧钢材等加工而成,各种毛坯或材料生产过程中均可能产生冶金缺陷,或者将原料的冶金缺陷遗留给下道工序,最后这些缺陷在淬火时可扩展成淬火裂纹,或导致裂纹的发生。如铸钢件在热加工工艺过程中因加工工艺不当,在内部或表面可能形成气孔、疏松、砂眼、偏析、裂痕等缺陷;在锻件毛坯中,有可能形成缩孔、偏析、白点、夹杂物、裂纹等。这些缺陷对钢的淬火裂纹有很大的影响。一般说来,原始缺陷越严重,其淬火裂纹的倾向性越大。 钢的含碳量和合金元素对钢的淬裂倾向有重要影响。一般说来,随着马氏体中含碳量的增加,增大了马氏体的脆性,降低了钢的脆断强度,增大了淬火裂纹倾向。在含碳量增加时,热应力影响减弱,组织应力影响增强。水中淬火时,工件的表面压应力变小,而中间的拉应力极大值向表面靠近。油中淬火时,表面拉应力变大。所有这些都增加了淬火开裂倾向。而合金元素对淬裂的影响是复杂的,合金元素增多时,钢的导热性降低,增大了相变的不同时性;同时合金含量增大,又强化了奥氏体,难以通过塑性变形来松弛应力,因而增大热处理内应力,有增加淬裂的倾向。然而合金元素含量增加,提高了钢的淬透性,可用较缓和的淬火介质淬火,可以减少淬裂倾向。此外有些合金元素如钒、铌、钛等有细化奥氏体晶粒的作用,减少钢的过热倾向,因而减少了淬裂倾向。 (2)原始组织的影响 淬火前钢件的原始组织状态和原始组织对淬裂的影响很大。片状珠光体,在加热温度偏高时易引起奥氏体晶粒长大,容易过热,所以对原始组织为片状珠光体的钢件,必须严格控制淬火加热温度和保温时间。否则,将因钢件过热导致淬火开裂。具有球状珠光体原始组织的钢件,在淬火加热时,因为球状碳化物比较稳定,在向奥氏体转变的过程中,碳化物的溶解,

磁痕特征

磁痕分析 一、基本概念 磁痕:磁粉检测中能观察到的不连续性或缺陷导致磁粉聚集的图像,叫磁痕。简称显示或磁粉显示。这种显示的宽度为真实不连续性宽度数倍,即磁痕对缺陷有放大作用。 相关显示:被检测产品上由于材料缺陷的漏磁场形成的显示称为相关显示。也称为缺陷显示。 非相关显示:由于工件截面和材料磁导率差异等产生的漏磁场形成的磁粉显示。 伪显示:不是漏磁场形成的显示(假显示)。 非缺陷显示:非相关显示和伪显示产生的磁粉显示称为非缺陷显示。 二、非相关显示和伪显示 1、显示特点 非相关显示和伪显示是一种非缺陷显示,它们干扰了对相关显示的磁痕判断,应予以排除。非相关显示和伪显示特点:磁痕图像一般显示浅谈、沉积稀薄,堆集疏散,外缘模糊,磁痕不清晰。它的出现有一定的规律性,特别是成批工件检验中。伪显示磁痕受到工件外形、结构、材料、工艺等方面影响,可以找到影响因素予以排除。 2、产生原因 A、工件几何形状引起的非相关显示 比较复杂形状工件,如小孔、键槽、螺纹、齿根尖角及断面突变等形状,引起工件局部漏磁场并产生磁粉显示。特征:磁痕分布不集中,松散宽大不浓密,轮廓不清晰。减小磁化场时磁粉堆集减小或不显示。 B、机械加工和机械创伤引起非相关显示 工件机械加工中,若表面较深刀痕,划痕、局部撞击,以及滑移等压力变形等都可以产生局部漏磁场,形成磁痕显示。特征:磁痕呈规则线状、较宽而直,磁粉图像不清晰。重复磁化时图像再现性差。降低磁化场,磁痕不明显。擦去磁痕肉眼或放大镜可以看到划痕或刀痕底部。 C、工件材质本身引起的非相关显示 材料金相组织的变化,工件间磁导率的差异、局部淬火、局部冷作硬化、原始组织不均匀等; 金相组织变化多发生焊接工件上;磁导率差异多发生在不同材料焊接处;局部淬火和局部冷作硬化多发生在工件加工过程中。 D、检测工艺不适当引起的非相关显示 外磁场过大、电极处磁极干扰、磁写处;工件预处理不当;使用触头磁化时,电极处电流过大形成磁粉堆集。 三、相关显示 1、常见缺陷分类 A、原材料本身潜藏的缺陷 材料冶炼、轧制等工序产生的缺陷。如中心疏松、气泡、金属夹杂物、发纹、夹层、分层、白点等。 B、热加工过程中产生的缺陷 锻造缺陷:锻造裂纹、锻造折叠、锻造过烧;铸造缺陷:铸造裂纹、缩孔、疏松、气孔、冷隔;焊接缺陷:裂纹、未焊透、气孔、夹渣等;热处理缺陷:淬火裂纹、电镀裂纹、腐蚀裂纹、酸洗裂纹等; C、冷加工过程产生的缺陷 机械加工、精加工再常温下进行。磨削裂纹、矫正裂纹、过盈裂纹等。 D、使用过程中产生的缺陷 疲劳裂纹、磨损裂纹、腐蚀疲劳裂纹等。 2、裂纹及其磁痕 A、热加工裂纹-------铸造裂纹、锻造裂纹、焊接裂纹、淬火裂纹; 特征:呈连续或半连续曲折线状、龟裂状,起始部位较宽,尾部纤细,有时呈条状或树枝状,粗细均匀显示强烈,磁粉堆集浓密,轮廓清晰重复性好。

齿轮齿面裂纹产生原因的分析及应对措施

2018/ 8 收稿日期:2018年3月 1裂纹情况 齿轮作为一种常见的机械传动方式,在各行各业有着广泛应用,具有传动可靠性与效率高、速比恒定等特点。笔者公司专业制造煤矿输送机减速器,齿轮采用低碳铬镍合金钢材料,经渗碳淬火磨齿得到高精度硬齿面齿轮。齿轮齿面裂纹在生产制造中时有产生,近期在一批次齿轮制造中发生了严重的齿面裂纹质量问题。笔者针对这一问题进行分析研究,并提出针对性的解决方案。 某型号减速机齿轮经渗碳淬火磨削后,在整机装配试车过程中发生异响,经拆机检查发现代号为M718.1.1.16.15的齿轮齿面产生不同程度的裂纹,有的 已经大面积凸起,有的分布数道横向裂纹,齿面有变色状况,齿轮端面目测可见黑色附着物,如图1和图2所示。 2裂纹原因分析 该齿轮模数为10mm ,齿数为31。材料为 20Cr2Ni4A 合金钢,热处理工艺为渗 碳淬火,表面洛氏硬度(HRC )要求为58~62,淬硬层深度为2.1~2.5mm [1]。 工艺路线为锻造、粗车、预热处理、半精车、精车、滚齿、渗碳、去碳层、淬火、喷砂、磨端面和外圆、磨齿。 齿轮齿面裂纹往往由多方面原因导致,以下逐一进行分析。 (1)原材料。原材料的化学成分 对材料机械性能及热处理质量有直接影响,不同牌号合金钢有不同的热处理工艺,如果合金元素不符合标准规定,会导致材料在热处理过程中产生硬度值偏差、开裂等问题[2]。另外原材料中的碳含量过高或磷、硫、氧、氢杂质超标,以及锻造过程中形成的白点、气孔、夹杂等因素也会导致齿轮开裂。 (2)热处理。材料热处理分为预热处理和最终热 处理,预热处理形成的基体组织对最终热处理有较大影响。热处理环节中容易引起齿面开裂的因素有碳势分布、表面碳浓度、碳化物级别等[3]。本案例中最终热处理为渗碳淬火,根据标准表面碳浓度应控制在0.8% ~1%之间。根据国内有关研究,并结合笔者公司多年实际经验,碳浓度在0.7%~0.8%之间将得到较理想的表面硬度及均匀的金相组织[4]。如果在热处理中表面碳浓度过高或者形成带状、网状等形态的碳化物,这些碳化物极易导致齿面开裂。 (3)磨削加工。齿轮在磨削过程中会产生大量的 磨削热,如果热量不能够及时散发,将在齿轮表面形成 较大的拉应力。如果应力值超过材料的抗拉强度,将会 齿轮齿面裂纹产生原因的分析及应对措施 □ 王伟 太重煤机有限公司重型减速机公司太原 030032 摘 要:齿轮齿面裂纹是齿轮加工中经常出现的质量问题,基于一起实例对裂纹产生的原因进行了 分析和检验。通过研究得出了齿轮齿面裂纹产生的主要原因,并提出应对措施。 关键词:齿轮 裂纹分析检验 中图分类号:TH132.41 文献标志码:B 文章编号:1000-4998(2018)08-0072-03 Abstract :Cracks at flank of tooth are a common quality problem in gear machining.Based on an example ,the causes of cracks were analyzed and tested.Through research ,the main causes of cracks at flank of tooth were obtained ,and specific countermeasures were proposed. Key Words :Gear Crack Analyses Inspection 制造·材料

压铸模型腔龟裂失效分析

压铸模型腔龟裂失效分析 ——张年 随着现代工艺技术水平的发展,少,无切削加工已经成为现代成形加工的一个发展趋势。压铸就是一种高效率的少、无切削金属热加工成形方法。近十几年来这项技术发展的十分迅速。现在压铸模件已广泛地应用许多工业产品中。但由于压铸模工作在极其恶劣的环境下,从而易产生型腔表面龟裂导致模具失效。根据调查,压铸模的失效中大约有70%以上是龟裂失效。那么型腔表面龟裂是怎样产生的呢?它与那些因素有关?本文运用热疲劳理论对其进行探讨,并提出相应是压铸模增寿措施。 一、表面是工作环境: 在压铸过程中模腔表面直接与高温高压的金属相接触,它一方面要受到金属液的直接冲刷产生磨损,高温氧化和各种腐蚀,使型腔表面损坏而导致模具失效。另一方面由于压铸生产时不停地浇铸和开模,使型腔表面温度周期性地剧烈上升、下降而导致热疲劳产生龟裂失效。 一般地说来压铸不同熔点的合金金属液时型腔表面的热冲击是大不相同的。锌合金熔化温度大约为400℃,型腔表面的最高温度不会太高,她的失效主要取决于金属液对型腔表面的冲刷和腐蚀。而在压铸高熔点合金时,由于合金的熔化温度较高,从而导致型腔表面的最高温度也高(铝合金熔化温度为600—700℃,型腔表面最高温度达600℃以上,铜合金熔化温度为900—1000℃,型腔表面最高温度达800℃以上,黑色金属熔化温度为1200—1600℃,压铸模型腔表面最高温度达1000℃以上),模具的寿命主要取决于热龟裂。 二、热疲劳的产生 在压铸时由于压铸的时间很短,金属液进入型腔的先后不一致,流过的金属数量也各不相同,因此成型部分各零件的不同部位也各不相同,而且型腔还要受到金属液的冲刷、腐蚀以及周围气氛的氧化等腐蚀作用,因此其龟裂机理更加复杂。 1、循环热应力在压铸过程中,压铸模型腔直接受到高温、高压、高速合金液流的激烈冲刷和冲压作用,使部分动能转化为热能,以及本身的热量,致使型腔、型芯与液流接触的表面温度迅速升高,而内部温度相对较低,导致型腔表面由于热膨胀差而形成压应力,当开型后型腔与空气接触和喷刷涂料时,有激冷作用,型腔表面温度低于内部温度致使型腔表面产生拉应力.在周期性的热冲击作用下,型腔表面承受交变热应力作用。某一瞬时的热应力

磨削烧伤、工件裂纹

磨削烧伤 1. 磨削烧伤的分类 磨削时,由于磨削区域的瞬时高温(一般为900-1500℃)形成零件层组织发生局部变化,并在表面的某些部分出现氧化变色,这种现象称为磨削烧伤。磨削烧伤对零件质量性能影响很大,在实际加工过程中应尽量避免。 磨削烧伤有多种不同的分类方法。根据烧伤外观不同,可分为全面烧伤(整个表面被烧伤)、斑状烧伤(表面上出现分散的烧伤斑点)、均匀线条状烧伤、周期线条状烧伤;按表层显微组织的变化可分为回火烧伤、淬火回火烧伤;还可根据烧伤深度分为浅烧伤(烧伤厚度<0.05mm)、中等烧伤(烧伤层厚度在0.005~0.01mm之间)、深度烧伤(烧伤层厚度>0.01mm)。在生产中,最常见的是均匀的或周期的线条状烧伤。 由于在磨削烧伤产生时往往伴有表面氧化作用,而在零件表面生成氧化膜。又因为氧化膜的厚度不同而使其反射光线的干涉状态不同;因此呈现出多种颜色。所以,人们通常用磨削表面的颜色来判断烧伤的程度。对钢件来说,随烧伤的加强,颜色一般呈现白、黄、褐、紫、兰(青)的变化。不同磨削深度下,加工表面的烧伤颜色和氧化膜厚度。 值得注意的是:烧伤颜色仅反映了较严重的烧伤现象,而当零件表面颜色不变时,其表面组织也可能已发生了烧伤变化,这类烧伤通常不易鉴别,所以对零件使用性能危害更大。目前,人们为了更好地控制烧伤的程度,已根据表面组织的变化时烧伤进行了分级,一般从0-8共分九级,其中,0级最轻,8级烧伤最严重。 1.烧伤产生机理 轴承套圈在磨加工中,由于磨粒对工件的切削、刻划和摩擦作用,使金属表面产生塑性变形,由工件内部金属分子间相对位移产生内摩擦而发热;砂轮切削时,相对于工件的速度很高,与工件表面产生剧烈的外摩擦而发热,又因为每颗磨料的切削都是瞬间的,其热量生成也在瞬间,又不能及时传散,所以在磨削区域的瞬时温度较高,一般可达到800~1500℃,如果散热措施不好,很容易造成工件表面的烧伤,也就是在工件的表层(一般有几十微米到击败微米)发生二次淬火及高温回火,破坏了工件表面的组织,肉眼可以看出严重的烧伤。表面出现严重的焦黄色或黑色氧化膜,轻微的烧伤则要用稀释的酸性溶液来浸蚀才能观察出来,烧伤部位呈黑色。烧伤会降低工件的使用寿命。 2.预防烧伤方法 由于烧伤是磨削区域产生大量的热量而又未及时散发造成的,因此避免烧伤必须减小热量的产生,加速热量的散发,也就是减小磨削时的内、外摩擦,且使工件得到充分有效的冷却。对冷却液来讲,其成分浓度要合适,流量、压力要充分,确实起到清洗作用(冲刷砂轮及工件的摩擦,冷却和润滑作用)。 减少摩擦热的产生,终究是要减少磨削时的内、外摩擦,这要综合考虑以下几方面的因素:减小磨削厚度,使金属塑性变形减小,内摩擦减小,从而减少磨削热;提高工件转速,工件磨削表面通过磨削区域的时间缩短,可减少磨削热的聚积,从砂轮特性来讲,磨料硬度高,则切削性能好,可减少发热,但磨料硬度不可太硬,组织不能太细,否则磨钝的磨料不易脱落,磨料间微孔易塞实而使砂轮降低切削性能,并增加工件与砂轮的接触面积,在工件表面强烈挤压,摩擦导致温度增高。因此为避免烧伤且保证磨料效率、工件精度,在粗磨时刻采用硬度低、组织号大的砂轮,选用较大的磨削厚度;在终磨时选用较硬的,组织号较小的砂轮,保证有效修整砂轮,并选用较小的磨削厚度;对于磨削强度高、硬度高和导热性差的材料,易采用较小的进给量,提高工件转速,可有效避免烧伤。 3.烧伤种类 在实际生产中有以下具体因素可造成烧伤: (1)工艺系统振动、机床振动和液压系统压力不稳。在振动瞬间会增大磨削量,造成烧伤,此时烧伤沿工件表面呈振纹分布,也叫振纹烧伤。

相关主题
文本预览
相关文档 最新文档