当前位置:文档之家› 铝电解电容器的特性及计算公式

铝电解电容器的特性及计算公式

铝电解电容器的特性及计算公式
铝电解电容器的特性及计算公式

MTBF寿命计算公式

寿命计算公式 MTBF (平均间隔失效时间)预估 概述 MTBF之计算系依据军用手册MIL-HDBK-217F “电子设备之可靠性预估” 来 进行,此部份涵盖了电子零件实际的应力关系、失效率。MIL-HDBK-217 的基 本版本将保持不变,只有失效率的资料会更新。在评估过程之前,应确定各元 器件的相关特性(如基本失效率、质量等级,环境等级等等)。 定义 “MTBF”的解释为“平均间隔失效时间”而MTBF是由MIL-HDBK- 217E.F计算,以25 C环境温度为参考温度。 电解电容寿命预测 Rubycon 品牌的电解电容的寿命计算公式 L X=Lr X2【(T°-Tx)/1°】X2(A r s/Ao- A Tj/A) L X预测寿命(Hr), Lr:制造商承诺的在最高工作温度(To)及额定纹波电流(Io)下的寿命, To:最高工作温度一105C或85C, Tx:实际外壳温度(C), △Ts:额定纹波电流(Io)下的电解电容中心温升「C), △Tj:实际纹波电流(lx)下的电解电容中心温升(C), A: A= 10 —0.25XZTj,(0

Io:额定的纹波电流值(Arms), R:电解电容的等效串连阻抗(Q), S:电解电容的表面积(cm2), S=dDX(D+ 4L)/4 , B:热辐射常数,一般取3= 2.3 X1O-3XS0.2, D:电解电容的截面积的直径(cm), L:电解电容的高度(cm), nichicon品牌的电解电容的寿命计算公式 2 L X= Lr X2【(To-Tx)/10] x21-(Ix/Io )/K, K:温升加速系数,二10—6X(Tx—75 C)/30 (Tx W75C 时,K 值 取 10) 其余字符的表达含意同上。 其余品牌的电解电容的寿命计算公式 2 b= L r X2【(To-Tx)/10]眾1-(Ix/Io ) ] XZTo/10 △To:最高工作温度下的电解电容中心容许温升(取△T o= 5C), K= 2,纹波电流允许的范围内;K= 4,超过纹波电流允许的范围时。

电容器计算公式(2013_04_21)

电容器计算公式 电容器串并联容量 并联:C=C1+C2+…… 串联:2 121C C C C C +?= 电容器总容量 3.0.2 本条是并联电容器装置总容量的确定原则。 如没有进行调相调压计算,一般情况下,电容器容量可按主变压器的容量的10%~30%确定,这就是不具备计算条件时估算电容器安装总容量的简便方法。 谐波 3.0.3 发生谐振的电容器容量,可按下式计算: )1(2K n S Q d cx -= 式中,cx Q ----发生n 次谐波谐振的电容器容量(Mvar)d S ----并联电容器装置安装处的母线短路容量(MVA)n ----谐波次数,即谐波频率与电网基波频率之比K ----电抗率 母线电压升高 5.2.2 本条明确了电容器额定电压选择的主要原则 并联电容器装置接入电网后引起的母线电压升高值可按下式计算: d so s S Q U U =? 式中,s U ?----母线电压升高值(kV) so U ----并联电容器装置投入前的母线电压(kV) Q ---- 母线上所有运行的电容器容量(Mvar) d S ----母线短路容量(MVA) 电容器额定电压 5.2.2 本条明确了电容器额定电压选择的主要原则 电容器额定电压可由公式求出计算值,再从产品标准系列中选取,计算公式如下: )1(305.1K S U U SN CN -= 式中,CN U ----单台电容器额定电压(kV)SN U ----电容器投入点电网标称电压(kV)S ---- 电容器每组的串联段数K ----电抗率

串联电抗器的电抗率 5.5.2 (1)当电网背景谐波为5次及以上时,可配置电抗率4.5%一6%。因为6%的电抗器有明显的放大三次谐波作用,因此,在抑制5次及以上谐波,同时又要兼顾减小对3次谐波的放大,电抗率可选用4.5%。 (2)当电网背景谐波为3次及以上时,电抗率配置有两种方案:全部配12%电抗率,或采用4.5%一6%与12%两种电抗率进行组合。采用两种电抗率进行组合的条件是电容器组数较多,为了节省投资和减小电抗器消耗的容性无功。 电容器对母线短路容量的助增 5.1.2 在电力系统中集中装设大容量的并联电容器组,将会改变装设点的系统网络性质,电容器组对安装点的短路电流起着助增作用,而且助增作用随着电容器组的容量增大和电容器性能的改进(如介质损耗减小、有效电阻降低)、开关动作速度加快而增加。试验研究报告建议:在电容器总容量与安装地点的短路容量之比不超过5%或10%(对应于电抗率K=5%~6%,不超过5%;K=12%~13%,不超过10%),助增作用相对较小,可不考虑。 当K=12%~13%时,%10 d c S Q 式中,c Q ----电容器容量(kVar) d S ----母线短路容量(kVar) 回路导体的额定电流 5.1.3 所以取1.35倍电容器组额定电流作为选择回路设备和导体的条件是安全的也是合理的。 电容器分组原则 3.0.3 变电所装设无功补偿电容器的总容量确定以后,通常将电容器分组安装,分组的主要原则是根据电压波动、负荷变化、谐波含量等因素来确定。

电容计算公式

电容定义式 C=Q/U Q=I*T 电容放电时间计算:C=(Vwork+ Vmin)*l*t/( Vwork2 -Vmin2) 电压(V)= 电流⑴x 电阻(R)电荷量(Q)= 电流⑴x 时间(T)功率(P) = V x I (I=P/U; P=Q*U/T)能量(W) = P x T = Q x V 容量F=库伦(C)/电压(V)将容量、电压转为等效电量电量二电压(V) x 电荷量(C)实例估算:电压5.5V仆(1法拉电容)的电量为5.5C (库伦),电压下限是3.8V,电容放电的有效电压差为5.5-3.8=1.7V ,所以有效电量为1.7C。 1.7C=1.7A*S (安秒)=1700mAS(毫安时)=0.472mAh (安时) 若电流消耗以10mA 计算,1700mAS/10mA=170S=2.83min(维持时间分钟) 电容放电时间的计算 在超级电容的应用中,很多用户都遇到相同的问题,就是怎样计算一定容量的超级电 容在以一定电流放电时的放电时间,或者根据放电电流及放电时间,怎么选择超级电容的容 量,下面我们给出简单的计算公司,用户根据这个公式,就可以简单地进行电容容量、放电电流、放电时间的推算,十分地方便。 C(F):超电容的标称容量; R(Ohms):超电容的标称内阻; ESR(Ohms) 1KZ下等效串联电阻;

Vwork(V):正常工作电压 Vmin(V):截止工作电压; t(s):在电路中要求持续工作时间; Vdrop(V):在放电或大电流脉冲结束时,总的电压降; 1(A):负载电流; 超电容容量的近似计算公式, 保持所需能量=超级电容减少的能量。 保持期间所需能量=1/2l(Vwork+ Vmi n)t ; 超电容减少能量=1/2C(Vwork -Vmin ), 因而,可得其容量(忽略由IR引起的压降) C=(Vwork+ Vmin)*l*t/( Vwork 2 -Vmin 2) 举例如下: 如单片机应用系统中,应用超级电容作为后备电源,在掉电后需要用超级电容维持 100mA的电流,持续时间为10s,单片机系统截止工作电压为4.2V,那么需要多大容量的超级电容能够保证系统正常工作? 由以上公式可知: 工作起始电压Vwork = 5V 工作截止电压Vmin= 4.2V 工作时间t=10s 工作电源I = 0.1A 那么所需的电容容量为:

电容补偿的计算公式

电容补偿的计算公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电容补偿的计算公式未补偿前的负载功率因数为COS∮1。负载消耗的电流值为I1。 负载功率(KW)*1000 则I1=---------------------- √3*380*COS∮1 负载功率(KW)*1000 则I2=---------------------- √3*380*COS∮2 补偿后的负载功率因数为COS∮2,负载消耗的电流值为I2 则所需补偿的电流值为:I=I1-I2 所需采用的电容容量参照如下: 得到所需COS∮2每KW负荷所需电容量(KVAR) 例: 现有的负载功率为1500KW,未补偿前的功率因数为COS∮1=,现需将功率因数提高到COS∮2=。则

1500*1000 则I1=-----------------=3802(安培) √3*380* 1500*1000 则I2=------------------=2376(安培) √3*380* 即未进行电容补偿的情况下,功率因数COS∮1=,在此功率因数的状况下,1500KW负载所需消耗的电流值为I1=3802安培。 进行电容补偿后功率因数上升到COS∮2=,在此功率因数的状况下,1500KW负载所需消耗的电流值为I2=2376安培。 所以功率因数从0.60升到。所需补偿的电流值为I1-I2=1426安培 查表COS∮1=,COS∮2=时每KW负载所需的电容量为,现负载为1500KW,则需采用的电容量为1500*=1560KVAR。现每个电容柜的容量为180KVAR,则需电容柜的数量为 1500÷180=个即需9个容量为180KVAR电容柜。

电容计算公式

电容计算公式 教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己~慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串 联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。

3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法, 答:C,KVar/(U×U×2×π×f×0.000000001) ,30/(450×450×2×3.14×50×0.000000001)?472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大,还有"ε"是什么,与电容有什么关系, 再请问在计算中应注意什么,电容是如何阻直通交的呢, 五一长假除了旅游还能做什么, 辅导补习美容养颜家庭家务加班须知 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电 容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中, 本弱点也可克服。如冰箱电子温控器或遥控电源的开/关等电源都是用电容器降压而制作的。 相对于电阻降压,对于频率较低的50Hz交流电而言,在电容器上产生的热能损耗很小,所以电容器降压更优于电阻降压。

电容器的定义以及相关的公式介绍

[知识学堂] 电容器的定义以及相关的公式介绍 定义 电容(或称电容量)是表征电容器容纳电荷本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容器从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。 电容的符号是C。 C=εS/d=εS/4πkd(真空)=Q/U 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 电容与电池容量的关系: 1伏安时=25法拉=3600焦耳 1法拉=144焦耳 相关公式 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电

容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q(带电量)或U(电压)决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质的介电常数,S 为极板面积,d为极板间的距离。) 定义式C=Q/U 电容器的电势能计算公式:E=CU^2/2=QU/2=Q^2/2C 多电容器并联计算公式:C=C1+C2+C3+…+Cn 多电容器串联计算公式:1/C=1/C1+1/C2+…+1/Cn 三电容器串联C=(C1*C2*C3)/(C1*C2+C2*C3+C1*C3)

铝电解电容寿命计算公式

寿命计算式
改版
铝电容器 推定寿命计算式
http://www.chemi-con.co.jp
上海贵弥功贸易有限公司
1
CONFIDENTIAL(秘密的)

寿命计算式
寿命计算式 目录
? 寿命计算式
A) DC加载保证品 B) 纹波电流加载保证品 C) 螺丝端子型(额定电压350V以上) 螺丝端子型(额定电压 以上) D) 导电性高分子电容器
? 温度测定方法
A) 周围温度测定方法 B) 单元中心发热温度测定方法 1) 单元中心温度测定 2) 周围温度/电容器表面温度测定 3) 纹波电流测定 >>> 发热温度计算
注意事项
纹波电流频率修正系数与温度修正系数使用方法
CONFIDENTIAL(秘密的)
2

寿命计算式
推定寿命计算式
A) DC加载保证品 ) 加载保 品
Lx L = Lo × 2
Tx ? To 10
×2
? ?T 5
Lx (hrs):推定寿命 Lo (hrs):保证寿命 Tx (℃):最大可能周围温度 To (℃):实际使用周围温度 ( ) 纹波电流发热温度 ⊿T (℃):纹波电流发热温度 <应用系列> 贴片型:全般 引钱型:SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ 引钱型 SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ SME-BP/KME-BP/LLA
CONFIDENTIAL(秘密的)
3

电容充放电计算公式

标 签:电容充放电公式 电容充电放电时间计算公式设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)]

再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函 解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感

电解电容寿命分析

电解电容寿命分析 像其它电子器件应用一样 , 电解电容同样遵循一种被称为“Bathtub Curve”的失效率曲线。 其表征的是一种普遍的器件(设备)失效率趋势。但在实际应用中,电解电容的设计可靠性一般以其实际应用中的期望寿命( Expected Life )作为参考。这种期望寿命表达的是一种磨损失效( wear-our failure )。如下图所示,在利用威布尔概率纸( Weibull Probability Paper )对电解电容的失效率进行分析时可看到在某一使用期后其累进失效率曲线 (Accumulated Fallure Rate) 斜率要远大于 1 ,这说明了电解电容的失效模式其实为磨损失效所致。 影响电解电容寿命的因素可分为两大部分: 1) 电容本身之特性。其中包括制造材料(极片、电解液、封口等)选择及配方,制造工艺及技术(封口方式、散热技术等)。 2) 电容设计应用环境(环境温度、散热方式、电压电流参数等)。 电容器件一旦选定,寿命计算其实可归结为自身损耗及热阻参数的求取过程。 1 、寿命评估方式 电解电容生命终结一般定义为电容量 C 、漏电流( I L)、损耗角( tan δ)这三个关键参数之一的衰退超出一定范围的时刻。在众多的寿命影响因素中,温升是最关键的一个。而温升又是使用损耗的表现,故额定寿命测试往往被定为“在最大工作温度条件下(常见的有 85degC 及 105degC ),对电容施以一定的 DC 及 AC 纹波后,电容关键参数电容量 C 、漏电流( IL )、损耗角( tan )的衰竭曲线”。如下图所示: 2 、环境温度与寿命的关系 一般地(并非绝对),当电容在最大允许工作环境温度以下工作时(一般最低到 + 40degC 的温度范围),电解电容的期望寿命可以根据阿列纽斯理论( Arrhenius theory )进行计算。该理论认为电容之寿命会随温度每十摄氏度的上升而减半(每上升十摄氏度将在原基础上衰减一半)。从而可以得到如下寿命曲线以及用于计算寿命的环境温度函数 f(T ): 环境温度函数 f(T ) : 在一些纹波电流很小以致其在 ESR 上损耗引起的温升远远小于环境温度的作用时(例如与几乎无纹波的 DC 电源并联使用),即可认为电容器里面的热点温度与环境温度相等。一般可以按下式进行寿命计算: L OP=LoXf(t)

电容计算公式

教你两条不变应万变得原理: 1.电容器的计算依据是高斯通量定理和电压环流定律; 2.电感的计算依据是诺伊曼公式。要一两个答案查书就够了,要成高手只能靠你自己!慢慢学,慢慢练。 容量是电容的大小与电压没有关系。电压是电容的耐压范围。可变电容一般用在低压电路中电容的计算公式: 平板C=Q/U=Q/Ed=εS/4πkd 1. 所以E=4πkQ/εS即场强E与两板间距离d无关。2.当电容器两端接电时,即电压U一定时,U=Ed,所以U和d成正比。 容抗用XC表示,电容用C(F)表示,频率用f(Hz)表示,那么Xc=1/2πfc 容抗的单位是欧。知道了交流电的频率f和电容C,就可以用上式把容抗计算出来。 感抗用XL表示,电感用L(H)表示,频率用f(Hz)表示,那么XL=2πfL感抗的单位是欧。知道了交流电的频率f和线圈的电感L,就可以用上式把感抗计算出来。 已知容抗与感抗,则对应的电压与电流可以用欧姆定律算出,如果电容与电阻和电感一起使用,就要考虑相位关系了。 2、电容器的计算公式: C=Q\U =S\4*3.1415KD Q为电荷量 U为电势差 S为相对面积 D为距离 3.1415实际是圆周率 K为静电力常数 并联:C=C1+C2 电路中各电容电压相等;总电荷量等于各电容电荷量之和。串联:1/C=1/C1+1/C2 电路中各电容电荷量相等;总电压等于各电容电压之和。 电容并联的等效电容等于各电容之和!电容的并联使总电容值增大。当电容的耐压值符合要求,但容量不够时,可将几个电容并联。 3、Q=UI=I2Xc=U2/Xc 这是单相电容的 Xc=1/2*3.14fc 为什么我看到一个三相电容上面标的额定容量是30Kvar,而额定容量是472微法。额定电压是450伏。额定电流是38.5安三角接法? 答:C=KVar/(U×U×2×π×f×0.000000001) =30/(450×450×2×3.14×50×0.000000001)≈472(μF) 4、我知道电容公式有C=εS/D和C=Q/U,那么他们与电容"C"的关系,我特别想知道:我知道"U"与电容成反比,但是我在听老师讲时,没听到为什么成反比,就像知道"Q"与电容的关系时,就明白,一个电容放得的电荷越多就越大?还有"ε"是什么,与电容有什么关系?再请问在计算中应注意什么?电容是如何阻直通交的呢? 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知 第 2 页共 3 页 答:电容c是常数,只跟自身性质有关,即使没有电压,电荷它也是存在的,ε是介电,跟电介质的性质有关,交流能不停的对电容充电放电(因为交流的方向是变化的),二直流无此性质,所以通交流阻直流,更专业的话,大学物理里面会讲,如果你要求不高的话就不用深究了 5、电容降压 在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。通过电容器把交流电引入负载中,对地有220V电压,人易触电,但若用在不需人体接触的电路内部电路电源中,

MTBF寿命计算公式

寿命计算公式MTBF(平均间隔失效时间)预估 概述 MTBF之计算系依据军用手册MIL-HDBK-217F“电子设备之可靠性预估”来 进行,此部份涵盖了电子零件实际的应力关系、失效率。MIL-HDBK-217的 基本版本将保持不变,只有失效率的资料会更新。在评估过程之前,应确 定各元器件的相关特性(如基本失效率、质量等级,环境等级等等)。 定义 “MTBF”的解释为“平均间隔失效时间”而MTBF是由MIL-HDBK-217E.F 计算,以25℃环境温度为参考温度。 电解电容寿命预测 Rubycon品牌的电解电容的寿命计算公式 L X=Lr×2[(To-Tx)/10]×2(ΔTs/Ao-ΔTj/A), L X:预测寿命(Hr), Lr:制造商承诺的在最高工作温度(To)及额定纹波电流(Io)下的寿命, To:最高工作温度—105℃或85℃, Tx:实际外壳温度(℃), ΔTs:额定纹波电流(Io)下的电解电容中心温升(℃), ΔTj:实际纹波电流(Ix)下的电解电容中心温升(℃), A:A=10-0.25×ΔTj,(0≤ΔTj≤20) Ao:Ao=10-0.25×ΔTs, 其中 ΔTs=α×ΔTco=α×Io2×R/(β×S), ΔTj=α×ΔTcx=α×Ix2×R/(β×S), ΔTco:额定纹波电流(Io)下的电解电容外壳温升(℃), ΔTcx:实际纹波电流(Ix)下的电解电容外壳温升(℃), α:电解电容中心温升与外壳温升的比例系数, Ix:纹波电流的实际测量值(Arms), Io:额定的纹波电流值(Arms), R:电解电容的等效串连阻抗(Ω), S:电解电容的表面积(cm2),S=πD×(D+4L)/4,

电容充放电计算公式

签:电容充放电公式 电容充电放电时间计算公式 设,V0 为电容上的初始电压值; V1 为电容最终可充到或放到的电压值; Vt 为t时刻电容上的电压值。 则, Vt="V0"+(V1-V0)* [1-exp(-t/RC)] 或, t = RC*Ln[(V1-V0)/(V1-Vt)] 例如,电压为E的电池通过R向初值为0的电容C充电 V0=0,V1=E,故充到t时刻电容上的电压为: Vt="E"*[1-exp(-t/RC)] 再如,初始电压为E的电容C通过R放电 V0=E,V1=0,故放到t时刻电容上的电压为: Vt="E"*exp(-t/RC) 又如,初值为1/3Vcc的电容C通过R充电,充电终值为 Vcc,问充到2/3Vcc需要的时间是多少? V0=Vcc/3,V1=Vcc,Vt=2*Vcc/3,故 t="RC"*Ln[(1-1/3)/(1-2/3)]=RC*Ln2 = 注:以上exp()表示以e为底的指数函数;Ln()是e为底的对数函

解读电感和电容在交流电路中的作用 山东司友毓 一、电感 1.电感对交变电流的阻碍作用 交变电流通过电感线圈时,由于电流时刻都在变化,因此在线圈中就会产生自感电动势,而自感电动势总是阻碍原电流的变化,故电感线圈对交变电流会起阻碍作用,前面我们已经学习过,自感电动势的大小与线圈的自感系数及电流变化的快慢有关,自感系数越大,交变电流的频率越高,产生的自感电动势就越大,对交变电流的阻碍作用就越大,电感对交流的阻碍作用大小的物理量叫做感抗,用X L表示,且X L=2πfL。感抗的大小由线圈的自感系数L 和交变电流的频率f共同决定。 2.电感线圈在电路中的作用 (1)通直流、阻交流,这是对两种不同类型的电流而言的,因为恒定电流的电流不变化,不能引起自感现象,所以对恒定电流没有阻碍作用,交流电的电流时刻改变,必有自感电动势产生以阻碍电流的变化,所以对交流有阻碍作用。 (2)通低频、阻高频,这是对不同频率的交变电流而言的,因为交变电流的频率越高,电流变化越快,感抗也就越大,对电流的阻碍越大。 (3)扼流圈:利用电感阻碍交变电流的作用制成的电感线圈。 低频扼流圈:线圈绕在铁芯上,匝数多,自感系数大,电阻较小,具有“通直流、阻交流”的作用。 高频扼流圈:匝数少,自感系数小;具有“通低频、阻高频”的作用。 二、电容 1.电容器为何能“通交流” 把交流电源接到电容器两个极板上后,当电源电压升高时,电源给电容器充电,电荷向电容器极板上聚集,在电路中形成充电电流;当电源电压降低时,电容器放电,原来极板上聚集的电荷又放出,在电路中形成放电电流,电容器交替进行充电和放电,电路中就有了电流,好像是交流“通过”了电容器,但实际上自由电荷并没有通过电容器两极板间的绝缘介质。 2. 电容器对交变电流的阻碍作用是怎样形成的 我们知道,恒定电流不能通过电容器,原因是电容器的两个极板被绝缘介质隔开了。当

电容补偿计算方法

1、感性负载的视在功率S×负载的功率因数COSφ = 需要补偿的无功功率Q: S×COSφ =Q 2、相无功率Q‘ =? 补偿的三相无功功率Q/3 3、因为:Q =2πfCU^2 ,所以: 1μF电容、额定电压380v时,无功容量是Q=0.045Kvar 100μF电容、额定电压380v时,无功容量是Q=4.5Kvar? 1000μF电容、额定电压380v时,无功容量是Q=45Kvar 4、“多大负荷需要多大电容” : 1)你可以先算出三相的无功功率Q; 2)在算出1相的无功功率Q/3; 3)在算出1相的电容C; 4)然后三角形连接! 5、因为:Q =2πfCU^2 ,所以: 1μF电容、额定电压10Kv时,无功容量是Q=31.4Kvar 100μF电容、额定电压10Kv时,无功容量是Q=3140Kvar 6、因为:Q =2πfCU^2 ,所以: 1μF电容、额定电压220v时,无功容量是Q=0.015Kvar 100μF电容、额定电压220v时,无功容量是Q=1.520Kvar? 1000μF电容、额定电压220v时,无功容量是Q=15.198Kvar

提高功率因数节能计算 我这里有一个电机,有功功率 kw 23.3 视在功率 kva 87.2 无功功率 kvar 84.1 功率因数cosφ=0.27 电压是377V 电流是135A 麻烦帮我算一下功率因数提高到0.95所节约的电能,以及需要就地补偿的电容容量,请给出公式和注意事项,感谢! 满意答案 网友回答2014-05-03 有功功率23.3KW是不变的,功率因数提高到0.95以后,无功功率降低为Q=P*tgφ= P*tg(arcosφ)=P*tg(arcos0.95)=23.3*0.33=7.7kvar 需补偿容量为84.1-7.7=76.4kvar 视在功率也减小为P/cosφ=23.3/0.95=24.5kva 所节约的电能是不好计算的,因为电能是以有功电量计算的,但功率因数提高了,你的力率电费会减少,能少交很多电费。 另外,因为视在功率降低了,线路上的电流也就降低了,线路损耗也能相应降低不少,电压也会有所提高。。 电动机无功补偿容量的计算方法 有以下两种: 1、空载电流法 Qc=3(Uc2/Ue2)*Ue*Io*K1。 说明: I0——电动机空载电流; Uc——电容器额定电压(kv); Ue——电动机额定电压; K1——推荐系统0.9。 2、目标功率因数法 Qc=P(1/(cosφe2-1)-1/(cosφ2-1))*K2。 说明:cosφe——电动机额定功率因数; K2——修正系数; cosφ ——电动机补偿后的目标功率因数; P——电动机额定功率; Ue——电动机额定电压; 推荐cosφ在0.95~0.98范围内选取。

电容器电流计算

电容器电流计算 The manuscript was revised on the evening of 2021

电流计算 根据某进口品牌电容器铭牌,参考举例:要达到50Kvar无功输出。需配置电容器为70Kvar电容器。其额定电流为:81.6A,额定电压为:500V,产品型号:7R50+XD70. 根据公式计算: 额定电流 I=Q÷·U)=70÷又根据I=U/Z=U÷(1/wc)=wc·U 故wc=I/U=81÷=162 1、当电容器运行在480V系统电压下时:I=wc·U Q=·I 电流(A) I==≈78A 容量(Kvar) Q=·I= 2、当电容器运行在450V系统电压下时:电流(A) I==≈73A 容量(Kvar) Q=·I= 3、当电容器运行在440V系统电压下时:电流(A) I== 容量(Kvar) Q=·I=、当电容器运行在420V系统电压下时:电流(A) I==≈68A 容量(Kvar) Q=·I= 综上计算公式可知,当系统电压越低,运行电流也变小,其实际输出容量则越小。考虑到一般低压配电系统运行电压为380V±5%。 取其上限计算。U=380+=399≈400V .考虑其加装7%电抗器后电容器端电压被抬高大约28V左右.实际运行电压假定为430V。 电流(A) I==≈70A

容量(Kvar) Q=·I=若实际电流为380V, 考虑其加装7%电抗器后电容器端电压被抬高大约28V左右.实际运行电压假定为410V. 电流(A) I==≈67A 容量(Kvar) Q=·I=下图为某进口电容器铭牌: 根 据 以 上 公 式 来 推算,其铭牌标注容量跟实际计算容量完全吻合。

电容器参数的基本公式

电容器参数的基本公式 1、容量(法拉) 英制:C = ( 0.224 ×K ·A) / TD 公制:C = ( 0.0884 ×K ·A) / TD 2、电容器中存储的能量 E = ? CV2 3、电容器的线性充电量 I = C (dV/dt) 4、电容的总阻抗(欧姆) Z = √[ R S2+ (X C–X L)2] 5、容性电抗(欧姆) X C= 1/(2πfC) 相位角Ф 理想电容器:超前当前电压90o 理想电感器:滞后当前电压90o 理想电阻器:与当前电压的相位相同 7、耗散系数(%) D.F. = tg δ(损耗角) = ESR / X C = (2πfC)(ESR) 8、品质因素 Q = cotan δ= 1/ DF 9、等效串联电阻ESR(欧姆) ESR = (DF) XC = DF/ 2πfC 10、功率消耗 Power Loss = (2πfCV2) (DF) 11、功率因数 PF = sin δ(loss angle) –cos Ф(相位角) 12、均方根 rms = 0.707 ×V p 13、千伏安KVA (千瓦) KVA = 2πfCV2×10-3 14、电容器的温度系数 T.C. = [ (C t–C25) / C25(T t–25) ] ×106

15、容量损耗(%) CD = [ (C1–C2) / C1] ×100 16、陶瓷电容的可靠性 L0/ L t= (V t/ V0) X (T t/ T0)Y 17、串联时的容值 n 个电容串联:1/C T= 1/C1+ 1/C2+ …. + 1/C n 两个电容串联:C T= C1·C2/ (C1+ C2) 18、并联时的容值 C T= C1 + C2+ …. + C n 19、重复次数(Againg Rate) A.R. = % ΔC / decade of time 上述公式中的符号说明如下: K = 介电常数 A = 面积TD = 绝缘层厚度V = 电压t = 时间RS = 串联电阻 f = 频率L = 电感感性系数δ= 损耗角Ф= 相位角L0 =使用寿命Lt = 试验寿命 V t= 测试电压V0 = 工作电压T t= 测试温度T0= 工作温度 X , Y = 电压与温度的效应指数。 电容的等效串联电阻ESR 普遍的观点是:一个等效串联电阻(ESR)很小的相对较大容量的外部电容能很好地吸收快速转换时的峰值(纹波)电流。但是,有时这样的选择容易引起稳压器(特别是线性稳压器LDO)的不稳定,所以必须合理选择小容量和大容量电容的容值。永远记住,稳压器就是一个放大器,放大器可能出现的各种情况它都会出现。 由于DC/DC 转换器的响应速度相对较慢,输出去耦电容在负载阶跃的初始阶段起主导的作用,因此需要额外大容量的电容来减缓相对于DC/DC 转换器的快速转换,同时用高频电容减缓相对于大电容的快速变换。通常,大容量电容的等效串联电阻应该选择为合适的值,以便使输出电压的峰值和毛刺在器件的Dasheet 规定之内。 高频转换中,小容量电容在0.01μF 到0.1μF 量级就能很好满足要求。表贴陶瓷电容或者多层陶瓷电容(MLCC)具有更小的ESR。另外,在这些容值下,它们的体积和BO M 成本都比较合理。如果局部低频去耦不充分,则从低频向高频转换时将引起输入电压降低。电压下降过程可能持续数毫秒,时间长短主要取决于稳压器调节增益和提供较大负载电流的时间。用ESR 大的电容并联比用ESR 恰好那么低的单个电容当然更具成本效益。然而,这需要你在PCB 面积、器件数目与成本之间寻求折衷。

超级电容选用计算

二、超级电容的主要特点、优缺点 尽管超级电容器能量密度是蓄电池的5%或是更少,但是这种能量的储存方式可以应用在传统蓄电池不足之处与短时高峰值电流之中。相比电池来说,这种超级电容器有以下几点优势: 1.电容量大,超级电容器采用活性炭粉与活性炭纤维作为可极化电极,与电解液接触的面积大大增加,根据电容量的计算公式,两极板的 表面积越大,则电容量越大。因此,一般双电层电容器容量很容易超过1F,它的出现使普通电容器的容量范围骤然跃升了3~4个数量级,目前单体超级电容器的最大电容量可达5000F。 2.充放电寿命很长,可达500000次,或90000小时,而蓄电池的充放电寿命很难超过1000次;可以提供很高的放电电流,如2700F的超级电容器额定放电电流不低于950A,放电峰值电流可达1680A,一般蓄电池通常不能有如此高的放电电流,一些高放电电流的蓄电池在如 此高的放电电流下的使用寿命将大大缩短。 3.可以数十秒到数分钟内快速充电,而蓄电池在如此短的时间内充满电将是极危险的或是几乎不可能。 4.可以在很宽的温度范围内正常工作(-40℃~+70℃),而蓄电池很难在高温特别是低温环境下工作;超级电容器用的材料是安全和无毒的,而铅酸蓄电池、镍镉蓄电池均具有毒性;而且,超级电容器可以任意并联使用来增加电容量,如采取均压措施后,还可以串联使用。 因此,可以用简短的词语总结出超级电容的优点: ● 在很小的体积下达到法拉级的电容量; ● 无须特别的充电电路和控制放电电路 ● 和电池相比过充、过放都不对其寿命构成负面影响; ● 从环保的角度考虑,它是一种绿色能源; ● 超级电容器可焊接,因而不存在象电池接触不牢固等问题。 缺点:

电解电容寿命设计

一、电解电容寿命设计 本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。 首先,电容等效成电容、电阻(ESR )和电感(ESL )的串联。关于此请参考其他资料,接下来演示电容寿命计算步骤: 1 、纹波电流计算 纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值: 控制某一纹波电压所需的电容容值为: P: 负载功率(单位W ) 注意:这是应用所需要的最小电容容值。此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。 必须知道主线及负载侧的纹波电流数据。可以首先计算出电容的充电时间。 f main是电网电流的频率。 电容的放电时间则为:

充电电流的峰值为 dU 是纹波电压(U max – U min) 则充电电流有效值: 接下来计算放电电流峰值和有效值。 最后计算得出:整流模块后纹波电流: 这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。 2 、计算功率损耗 在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和: 3 、计算电容中心点温度 得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度:

电容器容量计算

电容器容量Kvar(千乏)与电容量uF(微法)怎样换算 无功功率单位为kvar(千乏)。 电功率分为有功功率和无功功率,有功功率就是指电能转化为热能或者机械能等形式被人们使用或消耗的能量,有功功率单位为kw 。 无功功率指电场能和磁场能相互转化的那部分能量,它的存在使电流与电压产生相位偏差,为了区别于有功功率就用了这么个单位。 电网中由于有大功率电机的存在,使得其总体呈感性,所以常常在电网中引入大功率无功补偿器(其实就是大电容),使电网近似于纯阻性,Kva r就常用在这作为无功补偿器的容量的单位。 kvar(千乏)和电容器容量的换算公式为(指三相补偿电容器): Q=√3×U×I I=0.314×C×U/√3 C=Q/0.314×U×U 上式中Q为补偿容量,单位为Kvar,U为运行电压,单位为KV,I为补偿电流,单位为A,C为电容值,单位为uF。式中0.314=2πf/1000。 例如:一补偿电容铭牌如下: 型号:BZMJ0.4-10-3 (3三相补偿电容器)。 额定电压:0.4KV 额定容量:10Kvar · 额定频率:50Hz 额定电容:199uF (指总电容器量,即相当于3个电容器的容量)。 额定电流:14.4A 代入上面的公司,计算,结果基本相付合。 补偿电容器:主要用于低压电网提高功率因数,电少线路损耗,改善电能质量。 BSMJ型补偿电容器,是国家推荐使用的新型节能产品,使用环境应无谐波冲击。最高允许过电流小于1.30倍额定电流。 ASMJ型滤波电容器:拥有BSMJ所有用途以外,可滤除电路中高次谐波,稳定电路质量,保护用电设备,最高允许电流大于2倍额定电流。 单相电动机电容器的容量选择 小型三相异步电动机作单相运行时,所选电容容量一定要合适,若太小则旋转无力,启动困难;太大则回路电流过大,导致电机过热。一般电容容量值选择按表查得。 如果不查表,也可以按经验公式获得: 当星形连接时,所需电容容量C(Μf)=P(W)/17。 当用作三角形连线时,所选电容容量C(μF)=P(W)/10。 上式中: C的单位是μF,P的单位是W;

纹波电容计算

本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。 首先,电容等效成电容、电阻( ESR )和电感( ESL )的串联。关于此请参考其他资料,接下来演示电容寿命计算步骤: 1 、纹波电流计算,纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值: 控制某一纹波电压所需的电容容值为: P: 负载功率(单位 W ) 注意:这是应用所需要的最小电容容值。此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。 必须知道主线及负载侧的纹波电流数据。可以首先计算出电容的充电时间。 f main是电网电流的频率。 电容的放电时间则为: 充电电流的峰值为 dU 是纹波电压( U max – U min)

则充电电流有效值: 接下来计算放电电流峰值和有效值。 最后计算得出:整流模块后纹波电流: 这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。 2 、计算功率损耗 在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和: 3 、计算电容中心点温度 得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度: 其中: Th 电容为电容中心点温度 , 为电容最高温度,其值直接影响到电容寿命,是电容寿命计算公式中的重要参数。 Rth 为电容的热阻,其值和风速等有关 ,Ta 表示电容表面温度。 P Loss 为纹波电流的中损耗。 4 、计算电容寿命 得到电解电容中心点最高温度后,我们可以计算电容的寿命,各个电容生产厂商会有不同的电容寿命的计算参数,也有不同的电容寿命修正值,现我们介绍阿列纽斯理论来计算电容寿命,其公式是说,电容工作没下降 10 度,其寿命增加一倍,反过来也就是电容温度升高 10 度,电容寿命减小一倍:

相关主题
文本预览
相关文档 最新文档