当前位置:文档之家› 由2014全国1卷高考压轴题想到函数与导数专题的一种解法

由2014全国1卷高考压轴题想到函数与导数专题的一种解法

由2014全国1卷高考压轴题想到函数与导数专题的一种解法
由2014全国1卷高考压轴题想到函数与导数专题的一种解法

由2014全国1卷高考压轴题想到函数与导数专题的一种解法

一般的函数与导数压轴题常规思路是将所给的函数直接求导,然后根据函数的单调性就可以证明题目要证的式子了。2014年的第21题考查的不是这种思路,而是一种更为复杂的方法。

这道题目如果直接对()f x 求导就会发现很难根据导函数来判断函数的单调性,所以我们采用的是将()f x 分解为()1()()f x g x h x -=-,这样只需要证明min max ()()g x h x >就行了,那么,现在关键的问题就是如何划分()g x 和()h x ,我的方法是试探法,本题的()f x 只有3项,而且还有一项是常数,所以就很容易划分了,常数项放在()g x 或者()h x 都行,如果有更多的项,那就要试探了。

最后需要注意的就是使用这个方法的前提了,那就是常规思路行不通的情况我们才“出此下策”。

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

2014年高考数学压轴题(理科)

2014年包九中数学压轴模拟卷一(理科) (试卷总分150分 考试时间120分钟) 第Ⅰ卷 (选择题 共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的. 1.已知全集{2}x M x y ==,集合2{|lg(2)}N x y x x ==-,则M N =( ) A .(0,2) B .),2(+∞ C .),0[+∞ D .),2()0,(+∞?-∞ 2. 在复平面内,复数311z i i =--,则复数z 对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.关于直线m ,n 与平面 α,β,有下列四个命题: ①m ∥α,n ∥β 且 α∥β,则m ∥n ; ②m ⊥α,n ⊥β 且 α⊥β,则m ⊥n ; ③m ⊥α,n ∥β 且 α∥β,则m ⊥n ; ④m ∥α,n ⊥β 且 α⊥β,则m ∥n . 其中真命题的序号是( ). A .①② B .②③ C .①④ D .③④ 4.已知)(x g 为三次函数cx ax x a x f ++=233 )(的导函数,则函数)(x g 与)(x f 的图像可能是( ) 5.已知数列12463579{}1(),18,log ()n n n a a a n N a a a a a a ++=+∈++=++满足且则等于( ) A .2 B .3 C .—3 D .—2 6.执行右面的程序框图,如果输出的是341a =,那么判断框( ) A .4?k < B .5?k < C .6?k < D .7?k < 7. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓 度在20—80 mg/100ml (不含80)之间,属于酒后驾车,处暂扣一个月以上 三个月以下驾驶证,并处200元以上500元以下 罚款;血液酒精浓度在80mg/100ml (含80)以 上时,属醉酒驾车,处十五日以下拘留和暂扣三 个月以上六个月以下驾驶证,并处500元以上 2000元以下罚款. 据《法制晚报》报道,2013年8月15日至8

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

2014年高考导数压轴题汇编解析

2014年高考导数压轴题汇编 1.[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e = 2.718 28…为自然对数的底数. (1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,求a 的取值范围. 21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b . 所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ]. 当a ≤12 时,g ′(x )≥0,所以g (x )在[0,1]上单调递增, 因此g (x )在[0,1]上的最小值是g (0)=1-b ; 当a ≥e 2 时,g ′(x )≤0,所以g (x )在[0,1]上单调递减, 因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥L . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

2014江苏高考数学压轴题01

2014江苏高考数学压轴题一 1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点. (Ⅰ)求这三条曲线的方程; (Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.

- 2 - 2.(14分)已知正项数列{}n a 中,16a =,点( )1 ,n n n A a a +在抛物线2 1y x =+上; 数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上. (Ⅰ)求数列{}{},n n a b 的通项公式; (Ⅱ)若()()()n n a f n b ??=???, n 为奇数, n 为偶数,问是否存在k N ∈,使()( )274f k f k +=成立,若存在,求出k 值; 若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式 1 1202111111n n n n a a n a b b b +- ≤?????? -++++ ? ??????? ?? 成立,求正数a 的取值范围.

- 3 - 南京清江花苑严老师 3.(本小题满分12分)将圆O: 4y x 22=+上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线C. (1) 求C 的方程; (2) 设O 为坐标原点, 过点)0,3(F 的直线l 与C 交于A 、B 两点, N 为线段AB 的中点, 延长线段ON 交C 于点E. 求证: ON 2OE =的充要条件是3|AB |= .

函数和导数经典例题高考压轴题(含答案解析)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:22 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-= 或 因为0t ≠,以下分两种情况讨论: (1)若0,,t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ???的单调递减区间是,2t t ??- ??? 。 (2)若0,t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表:

所以,()f x 的单调递增区间是(),,,;()2t t f x ??-∞-+∞ ??? 的单调递减区间是,.2t t ? ?- ??? (Ⅲ)证明:由(Ⅱ)可知,当0t >时,()f x 在0,2t ? ? ??? 的单调递减,在,2t ?? +∞ ??? 单调递增,以下分两种情况讨论: (1)当1,22 t t ≥≥即时,()f x 在(0,1)单调递减, 2(0)10,(1)643644230.f t f t t =->=-++≤-?+?+< 所以对任意[2,),()t f x ∈+∞在区间(0,1)均存在零点。 (2)当01,022t t < <<<即时,()f x 在0,2t ?? ???单调递减,在,12t ?? ??? 单调递增,若33177(0,1],10.244t f t t t ?? ∈=-+-≤-< ??? 2(1)643643230.f t t t t t =-++≥-++=-+> 所以(),12t f x ?? ??? 在存在零点。 若()3377(1,2),110.244t t f t t t ??∈=-+-<-+< ??? (0)10f t =-> 所以()0,2t f x ? ? ??? 在存在零点。 所以,对任意(0,2),()t f x ∈在区间(0,1)均存在零点。 综上,对任意(0,),()t f x ∈+∞在区间(0,1)均存在零点。 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---;

高考函数专题:冲刺版(压轴题、函数核心)

函数专题 Part A :基础部分 一、映射f : A →B 的概念。在理解映射概念时要注意: ⑴ A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。 例1、设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合; 例2、点),(b a 在映射f 作用下的象是),(b a b a +-,则在f 作用下点)1,3(的原象为点_ (2,-1); 二、函数f : A →B 是特殊的映射。 特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个。 例1、已知函数()f x ,x F ∈,那么集合{(,)|(),}{(,)|1}x y y f x x F x y x =∈= 中所含元素的个数有 个(答: 0或1); 例2、若函数422 12 +-= x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2) 三、同一函数的概念。 构成函数的三要素是定义域,值域和对应法则。而值域可由定义域和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数。 四、函数的 定义域(研究函数问题时要树立定义域优先的原则,因为此部分内容不太可 能出现在选择题和填空题,它会经常放在19-21大题。): (内容简单,略) 五、求函数值域(最值)的方法:(重点内容,分开先) 六、分段函数的概念。(通常是图像解题) 分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。在求分段函数的值0()f x 时,一定首先要判断0x 属于定义域的哪个子集,然后再代相应的 关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集。 例、已知1(0)()1(0)x f x x ≥?=? -

函数与导数经典例题--高考压轴题(含答案)

函数与导数经典例题--高考压轴题(含答案)

所以对任意[2,),()t f x ∈+∞在区间(0,1)内均存在零 点。 (2)当01,022t t <<<<即时,()f x 在0,2t ?? ??? 内单调递减,在,12t ?? ???内单调递增,若3 3177(0,1],10.244t f t t t ??∈=-+-≤-< ??? 2(1)643643230.f t t t t t =-++≥-++=-+> 所以(),12t f x ?? ??? 在内存在零点。 若()3377(1,2),110.244t t f t t t ??∈=-+-<-+< ??? (0)10f t =-> 所以()0,2 t f x ?? ???在内存在零点。 所以,对任意(0,2),()t f x ∈在区间(0,1)内均存在 零点。 综上,对任意(0,),()t f x ∈+∞在区间(0,1)内均存在 零点。 2. 已知函数21 ()32 f x x =+,()h x =. (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x ) 的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6f n h n h h h n -+++≥. 本小题主要考查函数导数的应用、不等式的证

明、解方程等基础知识,考查数形结合、函数与方程、分类与整合等数学思想方法及推理运算、分析问题、解决问题的能力. 解:(Ⅰ)223()18()[()]129(0)F x f x x h x x x x =-=-++≥, 2()312F x x '∴=-+. 令()0F x '∴=,得2x =(2x =-舍去). 当(0,2)x ∈时.()0F x '>;当(2,)x ∈+∞时,()0F x '<, 故当[0,2)x ∈时,()F x 为增函数;当[2,)x ∈+∞时,()F x 为 减函数. 2x =为()F x 的极大值点,且(2)824925F =-++=. (Ⅱ)方法一:原方程可化为 422 33log [(1)]log ()log (4)24f x h a x h x --=---, 即为4222log (1)log log log x -==,且,14,x a x , 此时3x ==±∵1x a <<, 此时方程仅有一解3x = ②当4a >时,14x <<,由14a x x x --=-,得2640x x a -++=,364(4)204a a ?=-+=-, 若45a <<,则0?> ,方程有两解3x =± 若5a =时,则0?=,方程有一解3x =; 若1a ≤或5a >,原方程无解. 方法二:原方程可化为422log (1)log (4)log ()x h x h a x -+-=-, 即222 1log (1)log log 2x -+,

高考导数压轴题题型

高考导数压轴题题型 远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+ ; (1)求()f x 的解析式及单调区间; 【解析】 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1e x x m -+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1e 1x x - +. 函数f ′(x )=1e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.

(完整)2019-2020年高考数学压轴题集锦——导数及其应用(一).doc

2019-2020 年高考数学压轴题集锦——导数及其应用(一) 1.已知函数f (x) x2 ax ln x(a R) . (1)函数f (x)在 [1,2] 上的性; (2)令函数g( x) e x 1 x2 a f (x) ,e=2.71828?是自然数的底数, 若函数 g (x) 有且只有一个零点m,判断 m 与 e 的大小,并明理由 . 2.已知函数 f (x) x3ax2bx c 在x 2 与x 1都取得极. 3 (1)求 a, b 的与函数f( x)的区; (2)若x [ c,1] ,不等式 f (x) c 恒成立,求 c 的取范 . 2 3.已知函数 f (x) ln(1 x) ln(1x) . (1)明 f '(x) 2 ; (2)如果 f (x) ax x [0,1) 恒成立,求 a 的范 .

x 1 4.已知函数f (x) ( e 自然数的底数) . e x (1)求函数f (x)的区; (2)函数(x) xf (x) tf '(x) 1 x1, x2 [0 ,1] ,使得 2 ( x1 )(x2 ) x ,存在数 e 成立,求数t 的取范 . 5.已知函数 f ( x) kx a x,其中k R,a 0且a 1 . (1)当 a e ( e=2.71 ?自然数的底),f(x)的性;(2)当k 1,若函数f(x)存在最大g(a),求g(a)的最小. 6.已知函数 f x x2ax ln x a R (1)当a 3 ,求函数f(x)在 1 , 2 上的最大和最小; 2 (2)函数 f(x)既有极大又有极小,求数 a 的取范 .

7.已知 f( x)是定义在 R 上的奇函数,当 x 0 时, f x 1 x 3 ax a R ,且曲线 f(x)在 3 x 1 处的切线与直线 y 3 x 1平行 2 4 (1)求 a 的值及函数 f(x)的解析式; (2)若函数 y f x m 在区间 3, 3 上有三个零点,求实数 m 的取值范围 . 8.已知函数 f x x 0 ax, a ln x (1)若函数 y f x 在 1, 上减函数,求实数 a 的最小值; (2)若存在 x 1 , x 2 e,e 2 ,使 f x 1 f x 2 a 成立,求实数 a 的取值范围 . 9.已知函数 f (x) x 3 ax 2 bx 1, a , b R . ( 1)若 a 2 b 0 , ①当 a 0 时,求函数 f(x)的极值(用 a 表示); ②若 f(x)有三个相异零点,问是否存在实数 a 使得这三个零点成等差数列?若存在,试 求出 a 的值;若不存在,请说明理由; ( 2)函数 f( x)图象上点 A 处的切线 l 1 与 f(x)的图象相交于另一点 B ,在点 B 处的切线为 l 2 ,直线 l 1, l 2 的斜率分别为 k 1, k 2 ,且 k 2 =4k 1 ,求 a ,b 满足的关系式.

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. ()221()ln ,R x f x a x x a x -=-+∈()f x 1a =()3()'2 f x f x +>[]1,2x ∈

1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点.

(I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<. 例3.(本小题满分12分)

已知函数f (x )=31,()ln 4 x ax g x x ++=- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{()min (),() (0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数 ,函数 (Ⅰ)讨论 在区间上的单调性; (Ⅱ)若存在两个极值点且求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 22 1)(,求b a )1(+的最大值。

高考函数压轴题练习(精华-内含答案)

高考函数压轴题训练(含详细答案) 1.近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足 (其中,a为正常数).已知生产该产品还需投入成本10+2P万元(不含 促销费用),产品的销售价格定为元/件. (1)将该产品的利润y万元表示为促销费用x万元的函数; (2)促销费用投入多少万元时,厂家的利润最大. 2.已知函数,. (1)若,是否存在、,使为偶函数,如果存在,请举例并证明你的结论,如果不存在,请说明理由; (2)若,,求在上的单调区间; (3)已知,对,,有成立,求的取值范围. 3.已知. (Ⅰ)当时,判断的奇偶性,并说明理由; (Ⅱ)当时,若,求的值; (Ⅲ)若,且对任何不等式恒成立,求实数的取值范围. 4.(本小题满分12分)某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量(单位:微克)与时间(单位:小时)之间近似满足如图所示的曲线.

(Ⅰ)写出第一次服药后与之间的函数关系式; (Ⅱ)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效.问:服药多少小时开始 有治疗效果?治疗效果能持续多少小时?(精确到0.1)(参考数据:). 5.噪声污染已经成为影响人们身体健康和生活质量的严重问题.实践证明,声音强度(分贝) 由公式(为非零常数)给出,其中为声音能量. (1)当声音强度满足时,求对应的声音能量满足的等量关系式; (2)当人们低声说话,声音能量为时,声音强度为30分贝;当人们正常说话, 声音能量为时,声音强度为40分贝.当声音能量大于60分贝时属于噪音,一般人在100分贝~120分贝的空间内,一分钟就会暂时性失聪.问声音能量在什么范围时,人会暂时性失聪. 6.“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为: 且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴. (1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损; (2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

高考导数压轴题---函数与导数核心考点(精编完美版)

导数与函数核心考点 目录 题型一切线型 1.求在某处的切线方程 2.求过某点的切线方程 3.已知切线方程求参数 题型二单调型 1.主导函数需“二次求导”型 2.主导函数为“一次函数”型 3.主导函数为“二次函数”型 4.已知函数单调性,求参数范围 题型三极值最值型 1.求函数的极值 2.求函数的最值 3.已知极值求参数 4.已知最值求参数 题型四零点型 1.零点(交点,根)的个数问题 2.零点存在性定理的应用 3.极值点偏移问题 题型五恒成立与存在性问题 1.单变量型恒成立问题 2.单变量型存在性问题 3.双变量型的恒成立与存在性问题 4.等式型恒成立与存在性问题 题型六与不等式有关的证明问题 1.单变量型不等式证明 2.含有e x与lnx的不等式证明技巧 3.多元函数不等式的证明 4.数列型不等式证明的构造方法

题型一 切线型 1.求在某处的切线方程 例1.【2015重庆理20】求函数f (x )=3x 2 e x 在点(1, f (1))处的切线方程. 解:由f (x )=3x 2e x ,得f ′(x )=6x -3x 2e x ,切点为(1,3e ) ,斜率为f ′(1)=3 e 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=3e ,得切线斜率为3 e ; ∴切线方程为y -3e =3 e (x -1),即3x -ey =0. 例2.求f (x )=e x (1 x +2)在点(1,f (1))处的切线方程. 解:由f (x )=e x (1x +2),得f ′(x )=e x (-1x 2+1 x +2) 由f (1)=3e ,得切点坐标为(1,3e ),由f ′(1)=2e ,得切线斜率为2e ; ∴切线方程为y -3e =2e (x -1),即2ex -y +e =0. 例3.求f (x )=ln 1-x 1+x 在点(0,f (0))处的切线方程. 解:由f (x )=ln 1-x 1+x =ln (1-x )-ln (1+x ),得f ′(x )=-11-x -1 1+x 由f (0)=0,得切点坐标为(0,0),由f ′(0)=-2,得切线斜率为-2; ∴切线方程为y =-2x ,即2x +y =0. 例4.【2015全国新课标理20⑴】在直角坐标系xoy 中,曲线C :y =x 2 4 与 直线l :y =kx +a (a >0)交于M ,N 两点,当k =0时,分别求C 在点M 与N 处的切线方程. 解:由题意得:a =x 2 4,则x =±2a ,即M (-2a ,a ),N (2a ,a ), 由f (x )=x 24,得f ′(x )=x 2, 当切点为M (-2a ,a )时,切线斜率为f ′(-2a )=-a , 此时切线方程为:ax +y +a =0; 当切点为N (2a ,a )时,切线斜率为f ′(2a )=a , 此时切线方程为:ax -y -a =0;

相关主题
文本预览
相关文档 最新文档