当前位置:文档之家› 不等式与一次不等式组全章复习与巩固知识讲解

不等式与一次不等式组全章复习与巩固知识讲解

不等式与一次不等式组全章复习与巩固知识讲解
不等式与一次不等式组全章复习与巩固知识讲解

《不等式与一次不等式组》全章复习与巩固(基础)知识讲解

撰稿:孙景艳责编:赵炜

【学习目标】

1.理解不等式的有关概念,掌握不等式的三条基本性质;

2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;

3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;

4.会根据题中的不等关系建立不等式(组),解决实际应用问题;

5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.

【知识网络】

【要点梳理】

要点一、不等式

1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.

要点诠释:

(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.

(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a

≤等;另一种是

>,x a

用数轴表示,如下图所示:

(3)解不等式:求不等式的解集的过程叫做解不等式.

2. 不等式的性质:

不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c

不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.

用式子表示:如果a>b,c>0,那么ac>bc(或a b

c c >).

不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.

用式子表示:如果a>b,c<0,那么ac<bc(或a b

c c <).

要点二、一元一次不等式

1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,

要点诠释:ax+b>0或ax+b<0 (a≠0)叫做一元一次不等式的标准形式.

2.解法:

解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.

要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.

3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:

(1)审:认真审题,分清已知量、未知量;

(2)设:设出适当的未知数;

(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;

(4)列:根据题中的不等关系,列出不等式;

(5)解:解出所列的不等式的解集;

(6)答:检验是否符合题意,写出答案.

要点诠释:

列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.

要点三、一元一次不等式组

关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.

要点诠释:

(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.?

(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的

公共部分,利用数轴可以直观地表示不等式组的解集.?

(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等

式组的解集及实际意义确定问题的答案.

【典型例题】

类型一、不等式

1.用适当的符号语言表达下列关系.

(1)a与5的和是正数.

(2)b与-5的差不是正数.

(3)x的2倍大于x.

(4)2x与1的和小于零.

(5)a的2倍与4的差不少于5.

【答案与解析】

解:(1)a+5>0;(2)b-(-5)≤0;(3)2x>x;(4)2x+1<0;(5)2a-4≥5. 【总结升华】正确运用不等符号翻译表述一些数学描述是学好不等式的关键,要关注一些常

见的描述语言,如此处:不是、不少于、不大于……

举一反三:

【变式】用适当的符号语言表达下列关系:

(1)y的1

2

与3的差是负数.(2)x的

1

2

与3的差大于2.(3)b的

1

2

与c的和不大于9.

【答案】(1)1

30

2

y-<;(2)

1

32

2

x->;(3)

1

9

2

b c

+≤.

2.用适当的符号填空:

(1)如果a

(2)如果a

11

__

22

a b b -.

【思路点拨】不等式的基本性质1,2,3.

【答案】(1)<; <;>.(2)<;<;<.【解析】

(1)在不等式a

在不等式a

在a

a b -

<. 【总结升华】刚开始在面对不等式的基本变形时,要不断强化在变形上所运用的具体性质,同时也要逐步积累一些运用性质变形后的化简结果,这样学习到的不等式的基本性质才能落在实处. 举一反三:

【变式1】用适当的符号填空:

(1)7a +6__7a -6;(2)若ac >bc ,且c <0,则a b . 【答案】(1)>;(2)>.

【高清课堂:一元一次不等式章节复习 410551 例1】 【变式2】判断:

(1)如果a b >,那么2

2

ac bc >; (2)如果2

2

ac bc >,那么a b >. 【答案】(1)×;(2)√. 类型二、一元一次不等式? ?

3. 解不等式3(1)5

182

x x x +-+

>-

【思路点拨】不等式中含有分母,应先根据不等式的基本性质2去掉分母,再作其他变形.去分母时,不要忘记给分子加括号. 【答案与解析】

解:去分母,得8x +3 (x +1)>8-4(x -5), 去括号,得8x +3x +3>8-4x +20, 移项,得8x +3x +4x >8+20-3,

合并同类项,得15x >25,

系数化为1.得

5

3 x>

∴不等式的解集为

5

3

x>.

【总结升华】解一元一次不等式与解一元一次方程的步骤异同见下表:

ax=b ax>b ax<b 解:当a≠0时,

b

x

a

=;

当a=0,b≠0时,无解;

当a=0,b=0时,x为任意

有理数.

解:当a>0时,

b

x

a

>;

当a<0时,

b

x

a

<;

当a=0,b≥0时,无解;

当a=0,b<0时,x为任意

有理数.

解:当a>0时,

b

x

a

<;

当a<0时,

b

x

a

>;

当a=0,b≤0时,无解;

当a=0,b>0时,x为任意

有理数.

举一反三:

【变式】(湖南益阳)解不等式

51

1

3

x

x

-

->,并把解集在数轴上表示出来.

【答案】

解:去分母得5x-1-3x>3,

移项、合并同类项,得2x>4,

系数化为1,得x>2,

解集在数轴上的表示如图所示.

4.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商店准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品

【思路点拨】利润=售价-进价,售价=进价+利润=进价×(1+利润率).

【答案与解析】

解:设商店降价x元出售该商品,则225x

-≥150(110%)

?+,

解得x≤60.

答:商店最多降价60元出售商品.

类型三、一元一次不等式组

5. 解不等式组: ???

??->+≥--②

①13

215)3(3x x

x x ,并求出正整数解.

【思路点拨】分别解出各不等式,取所有的公共部分. 【答案与解析】

解:由不等式①得x ≤2,

由不等式②得4x <, ∴由①②得?

?

?<≤42

x x ,即2≤x ∴原不等式组的解集是2≤x ,正整数解为1,2.

【总结升华】求不等式(组)的特殊解的一般步骤是先求出不等式(组)的解集,再从中找出符合要求的特殊解. 举一反三:

【变式】求不等式组3(2)42513

x x x x --≥-??

-?<-??的整数解.

【答案】

解:解不等式-3(x -2)≥4-x ,得x ≤1, 解不等式

25

13

x x -<-,得x >-2, 所以该不等式组的解集为:-2<x ≤1, 所以该不等式组的整数解是-1,0,1. 类型四、综合应用

6.若关于x ,y 的方程组3223x y k y x +=??-=?的解满足1

1x y ?

,求k 的整数值.

【思路点拨】从概念出发,解出方程组(用k 表示x 、y ),然后解不等式组. 【答案与解析】

解:解方程组3223x y k x y +=??-+=?43,729.7k x k y -?=???+?=??

∵11x y ?,43

1,7

29 1.

7

k k -???即 解得:512

k -<<

, ∴整数k 的值为0,1,2.

【总结升华】方程组的未知数是x 、y ,k 在方程组里看成常数.通过求解方程组可以用k 表示x 、y .方程组的解满足不等式,那么可以将x 、y 用含k 的式子替换,得到关于k 的不等式组,可以求出k 的取值范围,进而可以求出k 的整数值. 【高清课堂:一元一次不等式章节复习 410551 例3(1)】 举一反三:

【变式】m 为何值时,关于x 的方程:6151

632

x m m x ---=-

的解大于1 【答案】

解:由

6151632x m m x ---=-

,得315m x -=, ∴3115

m ->,解得2m >.

∴当2m >时,关于x 的方程:6151

632

x m m x ---=-

的解大于1. 7.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.

(1)求该校八年级学生参加社会实践活动的人数;

(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满.....).请你计算本次社会实践活动所需车辆的租金.

【思路点拨】(1)设单独租用35座客车需x 辆.根据单独租用35座客车若干辆,则刚好坐满和单独租用55座客车,则可以少租一辆,且余45个空座位,分别表示出总人数,从而列方程求解;(2)设租35座客车y 辆,则租55座客车(4-y )辆.根据不等关系:①两种车坐的总人数不小于175人;②租车资金不超过1500元.列不等式组分析求解. 【答案与解析】

解:(1)设单独租用35座客车需x 辆,由题意得:

3555(1)45x x =--,

解得:5x =.

∴35355175x =?=(人).

答:该校八年级参加社会实践活动的人数为175人.

(2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:

3555(4)175

320400(4)1500y y y y +-??

+-?

≥≤, 解这个不等式组,得111244y ≤≤.

∵y 取正整数,∴y = 2. ∴4-y = 4-2 = 2(辆). ∴320×2+400×2 = 1440(元).

所以本次社会实践活动所需车辆的租金为1440元.

【总结升华】本题考查了一元一次方程的应用和一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.

第九章不等式与不等式组单元教学计划

第九章不等式与不等式组单元教学计划 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第九章不等式与不等式组单元教学计划 教学目标: 知识目标:了解一元一次不等式及其相关概念,了解解一元一次不等式的基本目标(使不等式逐步转化为x>a或x<a的形式),熟悉解一元一次不等式的一般步骤。了解不等式组及其解法。 技能目标:能够“列出不等式活不等式组表示问题中的不等关系”,通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法,掌握一元一次不等式的解法,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。 情感态度价值观目标:经历“把实际问题抽象为不等式”的过程,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型。体会一元一次不等式解法中蕴含的化归思想。 学情分析:我所担任的班共有25名学生,根据上学期期末考试看,学生成绩非常不理想,总及格率只有68%,优秀率为20%,其中最低分只有0分。学生的学习目标不明确,学习习惯较差,学生对数学的基础知识掌握不牢固、数学思维与理解能力较差、特别是数学计算不过关。加之学生由小学升入中学,学习环境的变化,学习内容的增加,学生学习习惯的养成,学习方法的欠缺,这些因素都将影响教学效果和学生学习能力的提高。在今后教学过程中应逐步把握学生的学习状况,通过对学生分层,对于学困生引导其树立积极地学习态度,中间层次的学生巩固基础知识,基础较好学生以提高能力训练为主。 教材分析: 1、指导思想:“逐步培养学生观察、试验、比较、猜想、分析、综合、抽象和概括能力,逐步使学生掌握简单的推理方法,从而提高学生的推理能力”。这是《数学课程标准》对中学数学教学的要求。 2、主要内容及其地位作用本章教材是在学生学习了一元一次方程、二元一次方程组和一次函数基础上才开始研究简单的不等式关系的通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复的.大量的同类量之间最容易想到的就是它们有大小之分,而且学生通过

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

高中不等式知识点总结

1.不等式的解法 (1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解; (2)m f x g x >>0,()()与mf x mg x ()()>同解, m f x g x <>0,()()与mf x mg x ()()<同解; (3) f x g x () () >0与f x g x g x ()()(()?>≠00同解); 2.一元一次不等式 ax b a a a >?>=≠()或ax bx c a 200++<≠?()分a >0 及a <0情况分别解之,还要注意?=-b ac 2 4的三种情况,即?>0或 ?=0或?<0,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0??? ?≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)?()()()11当时,a f x g x >>; ()()()201当时,<<?(1)当a >1时, g x f x g x ()()()>>?? ???0;(2)当01<在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚 线以表示区域不包括边界直线。当我们在坐标系中画不等式

不等式与不等式组全章测试题含答案

第九章 不等式与不等式组 全章测试题 一、选择题 1.下列变形错误的是( ) A .若a -c >b -c ,则a >b B .若12a <12 b ,则a <b C .若-a - c >-b -c ,则a >b D .若-12a <-12 b ,则a >b 2.不等式x 2-x -13 ≤1的解集是( ) A .x≤4 B.x≥4 C .x≤-1 D .x≥-1 3.将不等式组???12x -1≤7-32x ,5x -2>3(x +1) 的解集表示在数轴上,正确的是( ) 4.若关于x 的方程3(x +k)=x +6的解是非负数,则k 的取值范围是( ) A .k≥2 B.k >2 C .k≤2 D.k <2 5.若关于x 的一元一次不等式组???x -1<0,x -a >0 无解,则a 的取值范围是( ) A .a≥1 B.a >1 C .a≤-1 D .a <-1 6.若不等式组???x -b <0,x +a >0 的解集为2<x <3,则a ,b 的值分别为( ) A .-2,3 B .2,-3 C .3,-2 D .-3,2 7.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .34 8.某天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办

法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( ) A .至少20户 B .至多20户 C .至少21户 D .至多21户 9.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的取值范围是 ( ) A .1<x≤11 B.7<x≤8 C .8<x≤9 D .7<x <8 二、填空题 10.已知x 2是非负数,用不等式表示____;已知x 的5倍与3的差大于10,且不大于20,用不等式组表示____________. 11.若|x +1|=1+x 成立,则x 的取值范围是__________. 12.若关于x ,y 的二元一次方程组???3x -2y =m +2,2x +y =m -5 中x 的值为正数,y 的值为负数,则m 的取值范围为____________. 13.在平面直角坐标系中,已知点A(7-2m ,5-m)在第二象限内,且m 为整数,则点A 的坐标为_________. 14.一种药品的说明书上写着:“每日用量60~120 mg ,分4次服用”,则一次服用这种药品的用量x(mg)的范围是____________. 15.按下列程序(如图),进行运算规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行______次才停止;若运算进行了5次才停止,则x 的取值范围是__________. 16.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每一个路口安排8人,那么最后一个路口不足8人,但不少于4人.则这个中学共选派值勤学生_______人,共有______个交通路口安排值勤. 三、解答题 17.解下列不等式(组),并把解集在数轴上表示出来: (1)5x -13-x >1;

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

不等式知识点汇总

不等式知识点汇总 1、不等式的基本性质 ②(传递性),a b b c a c >>?> ①(对称性)a b b a >?> ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑦(开方法则)0,1)a b n N n >>?∈>且 ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性) 0,0a b a b c d c d >>< ⑥(平方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>?<<> 2、几个重要不等式 ②(基本不等式) 2 a b +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”. ⑤3 3 3 3(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ①()2 2 2a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式: 22 .2 a b ab +≤

④()2 2 2 a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ③(三个正数的算术—几何平均不等式) 3 ()a b c R + ∈、、(当且仅当 a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑧220;a x a x a x a x a >>?>?<->当时,或 2 2 .x a x a a x a >>>,,规律:小于1同加则变大, 大于1同加则变小. ⑨绝对值三角不等式.a b a b a b -≤±≤+ 3、几个著名不等式 ①平均不等式: 112a b a b --+≤≤ +()a b R + ∈, (当且仅当a b =时取 ""=号).(即调和平均≤几何平均≤算术平均≤平方平均). 变形公式:2 22 ;22a b a b ab ++??≤≤ ??? 222 ().2a b a b ++≥ ②幂平均不等式:222212121 ...(...).n n a a a a a a n +++≥+++ ③≥1122(,,,).x y x y R ∈ ④二维形式的柯西不等式2 2 2 2 2 ()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当 ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222 123123112233()()().a a a b b b a b a b a b ++++≥++ ⑥一般形式的柯西不等式:222222 1212(...)(...) n n a a a b b b ++++++

必修五-不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式

1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? ②无理不等式:转化为有理不等式求解 ()0()0()()f x g x f x g x ?≥????≥?? ?>? 定义域 ???<≥?????>≥≥?>0 )(0)()] ([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ??? ??<≥≥?<2 )] ([)(0 )(0 )()()(x g x f x g x f x g x f

不等式与不等式组知识点归纳

第九章 不等式与不等式组 一、知识结构图 二、知识要点 (一、)不等式的概念 1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。 2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。 3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。 4、解不等式:求不等式的解集的过程,叫做解不等式。 5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。 ????????????????????????????????与实际问题 组一元一次不等式法 一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321

(二、)不等式的基本性质 不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。 用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。 用字母表示为: 如果0,>>c b a ,那么bc ac >(或c b c a >);如果0,>c b a ,那么bc ac <(或c b c a <);如果0,<(或c b c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形 式。 (注:①传递性:若a >b ,b >c ,则a >c . ②利用不等式的基本性质可以解简单的不等式) (三、)一元一次不等式

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

基本不等式知识点归纳

向量不等式: 【注意】:同向或有; 反向或有; 不共线.(这些和实数集中类似) 代数不等式: 同号或有; 异号或有. 绝对值不等式: 双向不等式: (左边当时取得等号,右边当时取得等号.) 放缩不等式: ①,则. 【说明】:(,糖水的浓度问题). 【拓展】:. ②,,则; ③,; ④,. ⑤,. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0). 基本不等式知识点总结 重要不等式

1、和积不等式:(当且仅当时取到“”). 【变形】:①(当a = b 时,) 【注意】: , 2、均值不等式: 两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均算术平均几何平均调和平均” *.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ); 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) *.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 3、含立方的几个重要不等式(a 、b 、c 为正数): (,); *不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时, ab b a 222≥+同时除以ab 得 2≥+b a a b 或b a a b -≥-11。 *,,b a 均为正数,b a b a -≥22 八种变式: ①222b a ab +≤ ; ②2 )2(b a ab +≤; ③2)2( 222b a b a +≤+ ④)(22 2 b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则b a b a +≥+4 11;⑦若a>0,b>0,则ab b a 4)11( 2≥+; ⑧ 若0≠ab ,则2 22)11(2111b a b a +≥+。 上述八个不等式中等号成立的条件都是“ b a =”。 最值定理 (积定和最小)

第九章不等式与不等式组单元测试题及答案

_ D _ C _ B _ A 第九章 不等式与不等式组单元测试 1.满足不等式45 ) 31(22≤-< -x 的整数是 ( ) A .-1,0,1,2,3 B. 0,1,2,3 C .0,1 D. -3,-2,-1,0,1 2.同时使不等式x x 52)1(3->+-与 x x 2 3 7121-≤-成立的所有整数积是 ( ) A .12 B. 3 C. 7 D. 24 3. 已知x 和y 满足1,243<-=+y x y x ,则 ( ) A .76= x B. 71-=y C. 76 x D.7 1 - y 4. 已知a1. C. 3a>2b. D. 2 a >ab. 5、不等式组 的整数解的和是 ( ) A.1 B.2 C.0 D.-2 6. 若 为非负数,则x 的取值范围是( ) A.x ≥1 B.x ≥-1/2 C.x >1 D.x >-1/2 7.下列各式中是一元一次不等式的是( ) A.5+4>8 B.2x-1 C.2x-5≤1 D.1/x-3x ≥0 8.若│a │>-a,则a 的取值范围是( ) A.a>0 B.a ≥0 C.a<0 D.自然数 9. 不等式组5 3 x x ≤?? >?的解集在数轴上表示,正确的是( ) x A x B x C x D .表示三种不同的物体,用天平比较 10.设它们质量的大小,情况如图, 那么 这三种物体按 质量从大到小的顺序为( )

11.用恰当的不等号表示下列关系: ①a 的5倍与8的和比b 的3倍小:_______________; ②x 比y 大4:______________. 12.不等式3(x+1)≥5x-3的正整数解是_________; 13.若a<1,则不等式(a-1)x>1的解集为___. 14.若x=3是方程 2x a --2=x-1的解,则不等式(5-a)x<1 2 的解集是_______. 15.若不等式组21 23 x a x b -?的解集为-1-?? -?≥?? (3) 1)1(2 2<---x x ,. (4) ??? ??-≤-+>-x x x x 23712 1)1(325 18. 关于x 的不等式a-2x<-1的解集如图所示.求a.

高中数学基本不等式知识点归纳及练习题00294

高中数学基本不等式的巧用 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22 ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽

视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+ 的单调性。例:求函数224y x =+的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=>(2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x = -.;3.203 x <<,求函数(23)y x x =-. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且191x y +=,求x y +的最小值。

最新高中数学不等式知识点归纳汇总

最新高中数学不等式知识点归纳汇总 知识点一:绝对值三角不等式 1.定理1:如果a ,b 是实数,则|a +b|≤|a|+|b|, 当且仅当ab ≥0时,等号成立. 2.定理2:如果a ,b ,c 是实数,那么|a -c|≤ |a -b|+ |b -c|,当且仅当(a-b)(b-c) ≥0时,等号成立.知识点二:绝对值不等式的解法 1.不等式|x|a 的解集: 不等式 a>0a =0a<0|x|a {x|x>a ,或x<-a}{x|x ≠0}R 2.|ax +b|≤c(c>0)和|ax +b|≥c(c>0)型不等式的解法: (1)|ax +b|≤c?-c ≤ax +b ≤c; (2)|ax +b|≥c?ax +b ≤-c 或ax +b ≥c. (3)|x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法: 巩固专区:典例 [例1].函数y=|x+1|+ |x+3|的最小值为___________. 解析:由|x+1|+ |x+3|≥|(x+1)-(x+3)|=2,故y 的最小值2。 [例2].不等式|2x-1|0的解集是________. 解析:∵|x|2-2|x|-15>0,∴|x|>5或|x|<-3(舍去),∴x<-5或x>5. 答案:(-∞,-5)∪(5,+∞) [例4].若存在实数x 满足不等式|x -4|+|x -3|

高中不等式知识点总结(2020年九月整理).doc

1 1.不等式的解法 (1)同解不等式((1)与同解; (2)与同解,与同解; (3)与同解); 2.一元一次不等式 情况分别解之。 3.一元二次不等式 或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0????≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式 0Ax By C ++≥所表示的平面区域时,此区域应包括边界直线,则把 直线画成实线。 说明:由于直线0Ax By C ++=同侧的所有点的坐标(,)x y 代入 Ax By C ++,得到实数符号都相同,所以只需在直线某一侧取一个特 殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直

1 线哪一侧的平面区域。特别地,当0C ≠时,通常把原点作为此特殊点。 (2)有关概念 引例:设2z x y =+,式中变量,x y 满 足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最 小值。 由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些 平面区域的公共区域。由图知,原点(0,0)不在公共区域内,当 0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上, 作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小,所以, max 25212z =?+=,min 2113z =?+=。 在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称 为线性约束条件。2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。又由于2z x y =+是 ,x y 的一次解析式,所以又叫线性目标函数。 一般地,求线性目标函数在线性约束条件下的最大值 或最小值的问题,统称为线性规划问题。满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。在上述问题中,可行域就是阴影部分表示的三角形区域。其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。 O y x A C 430x y -+= 1x = 35250x y +-=

不等式与不等式组全章教案

第九章不等式与不等式组 9.1.1不等式及其解集 教学目标1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上; 2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想; 3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。 教学重点:建立方程解决实际问题,会解“ax +b=cx+d ”类型的一元一次方程 教学难点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。 教学过程 1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢? 2、一辆匀速行驶的汽车在11:20时距离A 地50千米。要在12:00以前驶过A 地,车速应该具备什么条件?若设车速为每小时x 千米,能用一个式子表示吗? 探究新知 (一)不等式、一元一次不等式的概念 1、 在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。 2、下列式子中哪些是不等式? (1)a +b=b+a (2)-3>-5(3)x ≠l (4)x 十3>6(5)2m50的解? 问题4,数中哪些是不等式x 3 2>50的解: 76,73,79,80,74.9,75.1,90,60 你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律? 一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则2 2?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 2 2b a b a ab b a +≤ +≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:2 2 2 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 已知,,a b c R + ∈,且1a b c ++=,求证:1111118a b c ??????---≥ ??????????? 6、选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 2 23322-≥- 题型二:利用不等式求函数值域

文本预览
相关文档 最新文档