当前位置:文档之家› 人教新课标A版高中数学必修5第三章不等式3.4基本不等式同步测试

人教新课标A版高中数学必修5第三章不等式3.4基本不等式同步测试

人教新课标A版高中数学必修5第三章不等式3.4基本不等式同步测试
人教新课标A版高中数学必修5第三章不等式3.4基本不等式同步测试

人教新课标A版高中数学必修5 第三章不等式 3.4基本不等式同步测试

一、单选题(共15题;共30分)

1.若x>0,y>0,且,则xy有()

A. 最小值64

B. 最大值64

C. 最小值

D. 最大值

2.设a>0,b>0,若lga和lgb的等差中项是0,则的最小值是()

A. 1

B. 2

C. 4

D.

3.若,且则的最小值为()

A. 2

B.

C.

D.

4.函数f(x)=2x+ (x>0)有()

A. 最大值8

B. 最小值8

C. 最大值4

D. 最小值4

5.不等式的解集是( )

A. B. C. {x|x>2或x≤} D. {x|x<2}

6.设x>0,y>0,,则的最小值是()

A. B. C. D.

7.已知正数满足,则的最小值为()

A. B. C. D.

8.若,则对说法正确的是( )

A. 有最大值

B. 有最小值

C. 无最大值和最小值

D. 无法确定

9.若正实数a,b满足a+b=1,则+的最小值是( )

A. 4

B. 6

C. 8

D. 9

10.设x ,y为正数,则(x+y)(+ )的最小值为()

A. 6

B. 9

C. 12

D. 15

11.下列各式中,最小值等于2的是()

A. B. C. D.

12.设x,y∈R,且x+y=4,则5x+5y的最小值是()

A. 9

B. 25

C. 162

D. 50

13.若直线+=1(a>0,b>0)过点(1,1),则a+b的最小值等于()

A. 2

B. 3

C. 4

D. 5

14.若a>0,b>0,且a+b=4,则下列不等式中恒成立的是()

A. B. C. D.

15.设a、b是互不相等的正数,则下列不等式中不恒成立的是()

A. a3+b3>a2b+ab2

B.

C. D.

二、填空题(共5题;共5分)

16.已知x>0,y>0,且,则x+2y的最小值是________.

17.已知x>0,y>0且+=1,求x+y的最小值为________

18.若2a=5b=10,则=________

19.(2015重庆)设,则的最大值为________ .

20.若a>0,b>0,且ln(a+b)=0,则+ 的最小值是________.

三、解答题(共5题;共25分)

21.一段长为36m的篱笆围成一个矩形菜园,问这个矩形的长,宽各为多少时,菜园的面积最大.最大面积是多少?

22.建造一个容积为240m3,深为5m的长方体无盖蓄水池,池壁的造价为180元/m2,池底的造价为350元/m2,如何设计水池的长与宽,才能使水池的总造价为42000元?

23.若正数x,y满足x+3y=5xy,求:

(1)3x+4y的最小值;

(2)求xy的最小值.

24.如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠PAQ 始终为45°(其中点P,Q分别在边BC,CD上),设BP=t.

(I)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;

(Ⅱ)设探照灯照射在正方形ABCD内部区域的面积S(平方百米),求S的最大值.

25.设函数f(x)=|x﹣a|+5x.

(1)当a=﹣1时,求不等式f(x)≤5x+3的解集;

(2)若x≥﹣1时有f(x)≥0,求a的取值范围.

答案解析部分

一、单选题

1.【答案】A

【考点】基本不等式

【解析】【分析】和定积最大,直接运用均值不等式2/x+8/y=1≥2=8,就可解得xy的最小值,注意等号成立的条件。

【解答】因为x>0,y>0,所以2/x+8/y=1≥2=8,所以xy≥64当且仅当x=4,y=16时取等号,

故选A。

【点评】本题考查了均值不等式,定理的使用条件为一正二定三相等,利用基本不等式可求最值,和定积最大,积定和最小。

2.【答案】B

【考点】对数的运算性质,基本不等式在最值问题中的应用,等差数列的性质

【解析】【解答】因为和的等差中项是,所以,所以,当且仅当时取等号.

【分析】应用基本不等式求最值时,一定要注意一正二定三相等三个条件缺一不可.

3.【答案】C

【考点】基本不等式在最值问题中的应用

【解析】【解答】∵,∴选C

4.【答案】B

【考点】基本不等式在最值问题中的应用

【解析】【解答】因为均值不等式中,两个数的几何平均数小于等于两个正数的算术平均数,因此得到f(x)=2x+ (x>0)当且仅当时取得等号,故选B.

【分析】解决该试题的函数最值,可以运用函数的单调性,也可以运用均值不等式来得到,属于基础题。

5.【答案】B

【考点】其他不等式的解法

【解析】【分析】由,得,即,所以且,解得.选B。

6.【答案】C

【考点】基本不等式

【解析】【解答】因为x>0,y>0,所以,解不等式可得的最小值是2

-2.

7.【答案】C

【考点】基本不等式在最值问题中的应用

【解析】【解答】根据题意,由于

当且仅当x=时等号成立,故可知答案为C.

8.【答案】B

【考点】基本不等式在最值问题中的应用

【解析】【解答】根据题意,由于,说明x,y同号,则可知,利用基本不等式可知

,当x=y时等号成立,故答案为B.

【分析】主要是考查了均值不等式的运用,属于基础题。

9.【答案】D

【考点】基本不等式

【解析】【解答】由,得,当且公当,即,时,取等号.所以正确答案是D.

10.【答案】B

【考点】基本不等式在最值问题中的应用

【解析】解答:x ,y为正数,(x+y)()≥ ≥1+4+2 =9

当且仅当时取得“=”

∴最小值为9

故选项为B.

分析:函数中含有整式和分式的乘积,展开出现和的部分,而积为定值,利用基本不等式求最值

11.【答案】D

【考点】基本不等式在最值问题中的应用

【解析】【分析】对于A,可正可负,所以当时,,当时,,所以没有最小值;对于B,设,则,所以由在单调递增可知,时取得最小值;对于C,与选项A类似,,所以或,所以没有最小值;对于D,

,当且仅当即时取得等号;综上可知,D选项正确.

12.【答案】D

【考点】基本不等式

【解析】【解答】解: ∵5x>0,5y>0,又x+y=4,

∴5x+5y≥

故选D.

【分析】根据题意可得5x>0,5y>0,利用基本不等式5x+5y≥2即可.

13.【答案】C

【考点】基本不等式在最值问题中的应用

【解析】【解答】∵直线+=1(a>0,b>0)过点(1,1),

∴+=1(a>0,b>0),

所以a+b=(+)(a+b)=2+

当且仅当即a=b=2时取等号,

∴a+b最小值是4,

故选:C.

【分析】将(1,1)代入直线得:+=1,从而a+b=(+)(a+b),利用基本不等式求出即可.14.【答案】D

【考点】基本不等式

【解析】【解答】∵a>0,b>0,且a+b=4,

∴ab故A不成立;

,故B不成立;

,故C不成立;

∵ab≤4,a+b=4,∴16﹣2ab≥8,

∴故D成立.

故选D.

【分析】由题设知ab≤,

由此能够排除选项A、B、C,从而得到正确选项.

15.【答案】C

【考点】基本不等式

【解析】【解答】解:A.∵a、b是互不相等的正数,∴a3+b3﹣a2b﹣ab2=(a﹣b)2(a+b)>0,∴a3+b3>a2b+ab2恒成立;

B.∵a是正数,∴≥2,∴﹣= ﹣>0,因此恒成立;

C.取a=2,b=1,则|a﹣b|+ =1﹣1=0,因此不成立;

D. = ,= ,∵<,∴

<,恒成立.

故选:C.

【分析】A.由于a、b是互不相等的正数,作差a3+b3﹣a2b﹣ab2=(a﹣b)2(a+b)>0,即可判断出正误;B.由a是正数,可得≥2,可得﹣= ﹣>0,即可判断出正误;C.取a=2,b=1,则|a﹣b|+ =1﹣1=0,即可判断出结论;

D. = ,= ,而<,即可判断出正误.

二、填空题

16.【答案】8

【考点】基本不等式

【解析】【解答】解:x+2y=(x+2y)()=2+ + +2≥4+2 =8,

当且仅当= 时,等号成立,

故x+2y的最小值为8,

故答案为:8.

【分析】根据x+2y=(x+2y)()=2+ + +2,利用基本不等式求得它的最小值.

17.【答案】16

【考点】基本不等式

【解析】【解答】∵x>0,y>0,且+=1,

∴x+y=(x+y),当且仅当y=3x=12时取等号.

故答案为:16.

【分析】利用“乘1法”与基本不等式的性质即可得出.

18.【答案】2

【考点】基本不等式在最值问题中的应用

【解析】【解答】解:∵2a=5b=10,

∴a=log210,b=log510,

∴=lg2,=lg5,

∴=2(lg2+lg5)=2,

故答案为:2.

【分析】由已知可得:a=log210,b=log510,根据换底公式的推论,可得=lg2,=lg5,结合对数的运算性质,可得答案.

19.【答案】3

【考点】基本不等式

【解析】【解答】由两边同时加上得两边同时开方即得:(且当且仅当时取“=”成立),故填.

【分析】本题考查应用基本不等式求最值,先将基本不等式转化为

(且当且仅当时取“=”)再利用此不等式来求解。本体属于中档题,注意等号成立的条件。

20.【答案】5+2

【考点】对数的运算性质,基本不等式

【解析】【解答】解:∵a>0,b>0,且ln(a+b)=0,∴a+b=1,

∴+ =(+ )(a+b)=5+ + ≥5+2 =5+2

当且仅当= 时取等号,结合a+b=1可解得a= ﹣2且b=3﹣.

故答案为:5+2

【分析】由题意可得a+b=1,整体代入可得+ =(+ )(a+b)=5+ + ,由基本不等式可得.三、解答题

21.【答案】解:设矩形的长和宽分别为x,y,x>0,y>0,

∴2(x+y)=36,

∴x+y=18,

∵x>0,y>0,

∴矩形的面积,

当且仅当x=y=9时取“=”,

∴当长和宽都为9m时,面积最大为81m2.

【考点】基本不等式在最值问题中的应用

【解析】【分析】设长和宽分别为x,y,根据题意得到x+y=18,面积S=xy,利用基本不等式即可求解.22.【答案】解:设水池的长为xm,由已知得池底的面积为(m2),

∴水池的宽为(m),依题意得:0;

化简得x+=14;

解得x=8或x=6(舍去);

答:当水池的长与宽分别为8m和6m时,水池的总造价为42000元

【考点】基本不等式在最值问题中的应用

【解析】【分析】可设水池的长为xm,从而可以求出水池的底面积为48(m2),水池的宽为(m),这样根据题意即可建立关于x的方程,解方程便可得出使得水池总造价为42000元时的水池的长和宽.23.【答案】解:(1)∵正数x,y满足x+3y=5xy,∴y=>0,解得.

∴3x+4y=3x+=f(x),

f′(x)=3+=,

∴当x>1时,f′(x)>0,此时函数f(x)单调递增;当1>x>时,f′(x)<0,此时函数f(x)单调递减.

∴当x=1时,f(x)取得最小值,f(1)=3+2=5.

∴3x+4y的最小值为1.

(2)∵正数x,y满足x+3y=5xy,

∴5xy≥2,

解得:xy≥,当且仅当x=3y=时取等号.

∴xy的最小值为.

【考点】基本不等式

【解析】【分析】(1)法一:由正数x,y满足x+3y=5xy,可得y=>0,解得.3x+4y=3x+=f (x),利用导数研究函数的单调性极值与最值即可得出.

(2)正数x,y满足x+3y=5xy,利用基本不等式的性质即可得出.

24.【答案】解:(Ⅰ)由BP=t,得CP=1﹣t,0≤t≤1,

设∠PAB=θ,

则∠DAQ=45°﹣θ,

DQ=tan(45°﹣θ)=,CQ=1﹣=,

∴PQ===,

∴l=CP+CQ+PQ=1﹣t++=1﹣t+1+t=2,是定值

(Ⅱ)S=S正方形ABCD﹣S△ABP﹣S△ADQ=1×1﹣×1×t﹣×1×,

=1﹣t﹣?=1﹣t﹣(﹣1+),

=1+﹣﹣,

=2﹣(+),

由于1+t>0,

则S=2﹣(+)≤2﹣2=2﹣,当且仅当=,即t=﹣1时等号成立,

故探照灯照射在正方形ABCD内部区域的面积S最多为2﹣平方百米.

【考点】基本不等式在最值问题中的应用

【解析】【分析】(Ⅰ)由BP=t,得CP=1﹣t,0≤t≤1,设∠PAB=θ,则∠DAQ=45°﹣θ,分别求出CP,CQ,PQ即可得到求出周长l=2,问题得以解决;

(Ⅱ)根据S=S正方形ABCD﹣S△ABP﹣S△ADQ得到S=2﹣(+),根据基本不等式的性质即可求出S的最大值.

25.【答案】解:(1)当a=﹣1时,|x+1|+5x≤5x+3,

故|x+1|≤3,

故﹣4≤x≤2,

故不等式f(x)≤5x+3的解集为[﹣4,2];

(2)当x≥0时,f(x)=|x﹣a|+5x≥0恒成立,

故只需使当﹣1≤x<0时,f(x)=|x﹣a|+5x≥0,

即|x﹣a|≥﹣5x,

即(x﹣a)2≥25x2,

即(x﹣a﹣5x)(x﹣a+5x)≥0,

即(4x+a)(6x﹣a)≤0,

当a=0时,解4x×6x≤0得x=0,不成立;

当a>0时,解(4x+a)(6x﹣a)≤0得,

﹣≤x≤,

故只需使﹣≤﹣1,

解得,a≥4;

当a<0时,解(4x+a)(6x﹣a)≤0得,

≤x≤﹣,

故只需使≤﹣1,

解得,a≤﹣6;

综上所述,a的取值范围为a≥4或a≤﹣6.

【考点】其他不等式的解法

【解析】【分析】(1)当a=﹣1时,|x+1|+5x≤5x+3,从而解得;

(2)当x≥0时,f(x)=|x﹣a|+5x≥0恒成立,从而转化为故只需使当﹣1≤x<0时,f(x)=|x﹣a|+5x≥0,从而化简可得(4x+a)(6x﹣a)≤0,从而分类讨论解得.

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

高二数学必修五不等式测试题

不等式测试题 一、选择题(本大题共12小题,每小题5分,共60分。) 1.设a 1b B .1a-b >1 a C .a b > D .a 2>b 2 2.设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A .0b a -> B .330a b +< C .220a b -< D .0b a +> 3.如果正数a b c d ,,,满足4a b cd +==,那么( ) A .ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B .ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C .ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D .ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 4.已知直角三角形的周长为2,则它的最大面积为( ) A .3-2 2 B .3+2 2 C .3- 2 D .3+ 2 5.已知0,0a b >>,则11 a ++ ) A .2 B . C .4 D .5 6.若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a bb + C .12 21a b a b + D .12 7.当0∣3-x ∣的解集是( ) A .(3,+∞) B .(-∞,-3)∪(3,+∞) C .(-∞,-3)∪(-1,+∞) D .(-∞,-3)∪(-1,3)∪(3,+∞) 11.设y=x 2+2x+5+ 21 25 x x ++,则此函数的最小值为( ) A .174 B .2 C .26 5 D .以上均不对

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

高中数学必修五-不等式知识点精炼总结

高中数学必修五-不等式知识点精炼总结 4.公式: 3.解不等式 (1)一元一次不等式 3.基 本不等式定理 ? ?? ? ? ??????? ? ?????????????????-≤+?<≥+?>≥+ ??? ????+≤+≥+?? ?? ???????? ?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a a b )b a (2b a ab 2 b a 2b a ab 2b a ab )b a (2 1b a ab 2b a 2 22222 2 222倒数形式同号)分式形式根式形式整式形 式11 22a b a b --+≤≤≤+???? ? <<>> ≠>)0a (a b x )0a (a b x )0a (b ax 2.不等式的性质:8条性质.

(2)一元二次不等式: +bx+c x 1 x 2 x y O y x O x 1 y x O

一元二次不等式的求 解流程: 一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式: 高次不等式: (4)解含参数的不等式:(1) (x – 2)(ax – 2)>0 (2)x 2 – (a +a 2)x +a 3>0; (3)2x 2 +ax +2 > 0; 注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有: 1、讨论a 与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小; 二、运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想 (4)含参不等式恒成立的问题: ??????????≠≤??≤>??>0)x (g 0)x (g )x (f 0) x (g )x (f 0)x (g )x (f 0)x (g ) x (f 0 )())((21>---n a x a x a x Λ

人教A版高中数学必修五不等式测试题

不等式测试题 一、选择题(本大题共12小题,每小题5分,共60分。) 1.设a 1b B .1a-b >1 a C .a b > D .a 2>b 2 2.设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A .0b a -> B .330a b +< C .220a b -< D .0b a +> 3.如果正数a b c d ,,,满足4a b cd +==,那么( ) A .ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B .ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C .ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D .ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 4.已知直角三角形的周长为2,则它的最大面积为( ) A .3-2 2 B .3+2 2 C .3- 2 D .3+ 2 5.已知0,0a b >>,则11 a b ++ ) A .2 B . C .4 D .5 6.若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a bb + C .12 21a b a b + D .1 2 7.当0

A.2 B.23 C.4 D.43 8.下列不等式中,与不等式“x <3”同解的是( ) A .x (x +4)2<3(x +4)2 B .x (x -4)2<3(x -4)2 C .x +x-4 <3+ x-4 D .x +21-21x x +<3+21 21 x x -+ 9.关于x 的不等式(x-2)(ax-2)>0的解集为{x ︱x ≠2,x ∈R },则a=( ) A .2 B .-2 C .-1 D .1 10.不等式∣x 2-x-6∣>∣3-x ∣的解集是( ) A .(3,+∞) B .(-∞,-3)∪(3,+∞) C .(-∞,-3)∪(-1,+∞) D .(-∞,-3)∪(-1,3)∪(3,+∞) 11.设y=x 2+2x+5+ 21 25 x x ++,则此函数的最小值为( ) A . 174 B .2 C .26 5 D .以上均不对 12.若方程x 2-2x +lg(2a 2-a)=0有两异号实根,则实数a 的取值范围是( ) A .(12 ,+∞) ∪(-∞,0) B .(0,12 ) C .(-12 ,0) ∪(12 ,1) D .(-1,0) ∪(1 2 ,+∞) 二、填空题:(本大题共4小题,每小题5分,共20分。) 13.0,0,a b >> 则 a b ++ 的最小值为 . 14.当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 . 15.若关于x 的不等式22)12(ax x <-的解集为空集,则实数a 的取值范围是_______. 16.若21m n +=,其中0mn >,则12 m n +的最小值为_______. 三、解答题:(本大题共4小题,共40分。) 17(1)已知d c b a ,,,都是正数,求证:abcd bd ac cd ab 4))((≥++ (2)已知12,0,0=+>>y x y x ,求证:2231 1+≥+y x

必修五不等式单元测试题

人教版必修五《不等式》单元测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x の解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2} D .{x |x ≤0或x ≥2} 2.下列说法正确の是( ) A .a >b ?ac 2>bc 2 B .a >b ?a 2>b 2 C .a >b ?a 3>b 3 D .a 2>b 2?a >b 3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域の是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 4.不等式x -1 x +2 >1の解集是( ) A .{x |x <-2} B .{x |-2N B .M ≥N C .M 2 B .m <-2或m >2 C .-20时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-11 D .0log 1 2(x +13)の解集是_________. 13.函数f (x )=x -2 x -3 +lg 4-x の定义域是__________. 14.x ≥0,y ≥0,x +y ≤4所围成の平面区域の周长是________. 15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份 销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

人教版高中数学必修5不等式练习题及答案

第三章 不等式 一、选择题 1.若a =20.5,b =log π3,c =log πsin 5 2π ,则( ). A .a >b >c B .b >a >c C .c >a >b D .b >c >a 2.设a ,b 是非零实数,且a <b ,则下列不等式成立的是( ). A .a 2<b 2 B .ab 2<a 2b C . 21ab <b a 21 D . a b <b a 3.若对任意实数x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ). A .a <-1 B .|a |≤1 C .|a |<1 D .a ≥1 4.不等式x 3-x ≥0的解集为( ). A .(1,+∞) B .[1,+∞) C .[0,1)∪(1,+∞) D .[-1,0]∪[1,+∞) 5.已知f (x )在R 上是减函数,则满足f (11 -x )>f (1)的实数取值范围是( ). A .(-∞,1) B .(2,+∞) C .(-∞,1)∪(2,+∞) D .(1,2) 6.已知不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为图中( ). A B C D 7.设变量x ,y 满足约束条件?? ? ??y x y x y x 2++- 则目标函数z =5x +y 的最大值是( ). A .2 B .3 C .4 D .5 8.设变量x ,y 满足?? ? ??5 --31+-3-+y x y x y x 设y =kx ,则k 的取值范围是( ). A .[ 21,3 4 ] B .[ 3 4 ,2] C .[ 2 1 ,2] D .[ 2 1 ,+∞) ≥0 ≤1 ≥1 ≥0 ≥1 ≤ 1 (第6题)

最新高一下学期期末复习之——必修五不等式知识点及主要题型-讲义含解答

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、, ac b 42-=?, 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2

一元二次方程 ()的根 2 > = + + a c bx ax 有两相异实根 ) ( , 2 1 2 1 x x x x< 有两相等实根 a b x x 2 2 1 - = =无实根的解集 )0 ( 2 > > + + a c bx ax{} 2 1 x x x x x> <或 ? ? ? ? ? ? - ≠ a b x x 2 R 的解集 )0 ( 2 > < + + a c bx ax{} 2 1 x x x x< ?>≥?? ≠ ? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f>在区间D上恒成立,则等价于在区间D上() min f x A >若不等式()B x f<在区间D上恒成立,则等价于在区间D上() max f x B < (三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax+By+C=0同一侧的所有点(y x,),把它的坐标(y x,)代入

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

高中数学必修5(人教A版)第三章不等式3.3知识点总结含同步练习及答案

描述:例题:高中数学必修5(人教A版)知识点总结含同步练习题及答案 第三章 不等式 3.3 二元一次不等式(组)与简单的线性规划问题 一、学习任务 1. 能从实际情景中抽象出二元一次不等式组;了解二元一次不等式组的集合意义,能用平面区 域表示二元一次不等式组. 2. 能从实际情景中抽象出一些简单的二元线性规划问题,并能加以解决. 二、知识清单 平面区域的表示 线性规划 非线性规划 三、知识讲解 1.平面区域的表示 二元一次不等式表示的平面区域 已知直线 :,它把坐标平面分为两部分,每个部分叫做开半平面,开半平面 与 的并集叫做闭半平面.以不等式解 为坐标的所有点构成的集合,叫做不等式表示的 区域或不等式的图象. 对于直线 : 同一侧的所有点 ,代数式 的符号相同,所 以只需在直线某一侧任取一点 代入 ,由 符号即可判断 出 (或)表示的是直线哪一侧的点集.直线 叫做这 两个区域的边界(boundary). 二元一次不等式组表示的平面区域 二元一次不等式组所表示区域的确定方法:①直线定界②由几个不等式组成的不等式组所表示的 平面区域,是各个不等式所表示的平面区域的公共部分. l Ax +By +C =0l (x ,y )l Ax +By +C =0(x ,y )Ax +By +C (,)x 0y 0Ax +By +C A +B +C x 0y 0A +B +C >0x 0y 0<0Ax +By +C =0画出下列二元一次不等式表示的平面区域. (1) ;(2). 解:(1)① 画出直线 ,因为这条直线上的点不满足 ,所以画 成虚线. ② 取原点 ,代入 ,所以原点在不等式 所表示的平 面区域内,不等式表示的区域如图. 3x +2y +6>0y ?3x 3x +2y +6=03x +2y +6>0(0,0)3x +2y +6=6>03x +2y +6>0

高中数学必修五教案-基本不等式

第一课时 3.4基本不等式 2a b +≤(一) 教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 教学重点: 2 a b +≤的证明过程; 教学难点:理解“当且仅当a=b 时取等号”的数学内涵 教学过程: 一、复习准备: 1. 回顾:二元一次不等式(组)与简单的线形规划问题。 2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 二、讲授新课: 1. 教学:基本不等式 2a b +≤ ①探究:图形中的不等关系,将图中的“风车”抽象成如图,在 正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。(教师提问→学生思考→师生总结) ②思考:证明一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a ③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2a b +≤ 2 a b +≤ : 用分析法证明:要证 2a b +≥, 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 ⑤练习:已知x 、y 都是正数,求证:(1)y x x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8 x 3y 3.

必修五不等式大复习-知识点加练习-适合整章复习

必修五不等式综合 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若 ,a b c d ><,则a c b d ->-) ,但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除, 但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 练习一、: (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 1 1,0<<<则若; ⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c -> ->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______ 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。 练习二;(1)设0,10>≠>t a a 且,比较21 log log 21+t t a a 和的大小 (2)设2a >,1 2 p a a =+-,2422-+-=a a q ,试比较q p ,的大小 (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积

必修五不等式单元测试题资料

必修五不等式单元测 试题

收集于网络,如有侵权请联系管理员删除 人教版必修五《不等式》单元测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x の解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2} D .{x |x ≤0或x ≥2} 2.下列说法正确の是( ) A .a >b ?ac 2>bc 2 B .a >b ?a 2>b 2 C .a >b ?a 3>b 3 D .a 2>b 2?a >b 3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域の是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 4.不等式x -1 x +2 >1の解集是( ) A .{x |x <-2} B .{x |-2N B .M ≥N C .M 2 B .m <-2或m >2 C .-20时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-11 D .0log 1 2(x +13)の解集是_________. 13.函数f (x )=x -2 x -3 +lg 4-x の定义域是__________. 14.x ≥0,y ≥0,x +y ≤4所围成の平面区域の周长是________. 15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份 销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、

必修五不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2 112a b a b ++(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结:

必修5数学不等式典型例题解析(整理)

不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a bc d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-), 但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 11,0<<<则若; ⑤b a a b b a ><<则 若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______ (答:12,2??-- ??? ) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较 2 1log log 21+t t a a 和的大小 (答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,12 p a a =+-,2 422-+-=a a q ,试比较q p ,的大小 (答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 (答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3 log x =2log 2x ) 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。如

必修五不等式练习题含答案

不 等 式 练 习 题 第一部分 1.下列不等式中成立的是( ) A .若a b >,则22ac bc > B .若a b >,则22a b > C .若0a b <<,则22a ab b << D .若0a b <<,则 11>a b 2.已知1133 4 4 333,,552a b c ---?????? === ? ? ???????,则,,a b c 的大小关系是( ) (A).c a b << (B)a b c << (C)b a c << (D)c b a << 3.已知,,a b c 满足c b a <<且0ac <,下列选项中不一定...成立的是( ) (A )ab ac > (B )()0c b a -> (C )22cb ab > (D )()0ac a c -< 4.规定记号“⊙”表示一种运算,定义a ⊙b=b a ab ++(a , b 为正实数),若1⊙k 2<3,则k 的取值范围为 ( ) A .11k -<< B .01k << C .10k -<< D .02k << 5.若,,a b c 为实数,则下列命题正确的是( ) A .若a b >,则22ac bc > B .若0a b <<,则22a ab b >> C .若0a b <<,则 11 a b < D .若0a b <<,则b a a b > 6.设0.5342log log 2a b c π-===,,,则( ) A.b a c >> B. b c a >> C. a b c >> D.a c b >> 7.在R 上定义运算)1(:y x y x -=??,若不等式x a x a x 对任意实数1)()(<+?-成立,则实数a 的取值范围是( ). A .{a|11<<-a } B .{a|20<

高中数学必修5 第3章 不等式 教师版 不等式第14课时

听课随笔

第14课时 基本不等式的应用(2) 学习要求 1.进一步会用基本不等式解决简单的最大(小)值的实际问题。 2.通过对实际问题的研究,进一步体会数学建模的思想。 3.进一步开拓视野,认识数学的科学价值和人文价值. 【课堂互动】 自学评价 1.设x>0时, y=3-3x -x 1的最大值为323- 2.已知a>b>c , n ∈N*, 且11n a b b c a c , 则n 的最大值为_____4_____ . 3.已知x>0且x 1, y>0且y 1 , 则log y x+log x y 的取值范围是),2[]2,(+∞--∞ 【精典范例】 例1.过点(1 , 2)的直线l 与x 轴的正半轴、y 轴的正半轴分别交于A 、B 两点, 当△AOB 的面积最小时, 求直线l 的方程 【解】 见书(但设直线方程可有两种方法). 例2.如图(见书P 93) , 一份印刷品的排版 面积(矩形)为A , 它的两边都留有宽为a 的空白, 顶部和底部都留有宽为b 的空白, 如何选择纸张的尺寸, 才能使纸的用量最小? 见书. 思维点拔: 先建立目标函数,然后创造条件利用基本不等式求解。 追踪训练 1.某汽车运输公司,购买一批豪华大客车投人客

运,据市场分析,每辆客车营运的总利润y 万 元与营运年数n(n )N +∈的关系为 y=-n 2+12n -25,则每辆客车营运( C ) 年,使其营运年平均利润最大. A 3 B 4 C 5 D 6 2. 过第一象限内点P(a , b)的直线l 与x 轴 的正半轴、y 轴的正半轴分别交于A 、B 两 点, 当||||PB PA 取最小值时, 求直线l 的 方程. 解:设)0)((:<-=-k a x k b y l 则),0(),0,(b ak B k b a A +--. 所以||||PB PA =a k k b k ?+-+221||1 =ab k k ab 2)||1 |(|≥+ (等号当且仅当1-=k 时成立) 所以||||PB PA 取最小值2ab 时, 直线l 的 方程为:0=--+b a y x . 3.汽车行驶中, 由于惯性作用, 刹车后还要 向前滑行一段距离才能停住, 我们把这段距 离叫做“刹车距离”, 在某公路上, “刹车距 离”S (米)与汽车车速v (米/秒)之间有经验 公式: S=2403 v +v 85 , 为保证安全行驶, 要 求在这条公路上行驶着的两车之间保持的 “安全距离”为“刹车距离”再加25米, 现 假设行驶在这条公路上的汽车在平均车身 长5米, 每辆车均以相同的速度v 行驶, 并 且每两辆之间的间隔均是“安全距离”.

相关主题
文本预览
相关文档 最新文档