当前位置:文档之家› 凝胶渗透色谱法

凝胶渗透色谱法

凝胶渗透色谱法
凝胶渗透色谱法

实验6

凝胶渗透色谱法

测定聚合物的分子量和分子量分布

聚合物分子量具有多分散性,即聚合物的分子量存在分布。不同的聚合方法、聚合工艺会使聚合物具有不同的分子量和分子量分布。分子量对聚合物的性能有十分密切的关系,而分子量分布的影响也不可忽视。当今高分子材料已向高性能化发展,类似分子量分布等高一层次的高分子结构的问题,越来越引起人们的重视。

自高分子材料问世以来,人们不断探索分子量分布的测定方法,直到60年代凝胶渗透色谱诞生,成为迄今为止最有效的分子量分布的测定方法。

一.实验目的

1.了解凝胶渗透色谱的原理;

2.了解凝胶渗透色谱的仪器构造和凝胶渗透色谱的实验技术;

3.测定聚苯乙烯样品的分子量分布。

二.实验原理

凝胶渗透色谱(Gel Permeation Chromatography,简称GPC)也称为体积排除色谱(Size Exclusion Chromatography,简称SEC)是一种液体(液相)色谱。和各种类型的色谱一样,GPC/SEC的作用也是分离,其分离对象是同一聚合物种不同分子量的高分子组份。当样品中不同分子量的各组份的分子量和含量被确定后,就可得到聚合物的分子量分布,然后可以很方便地对分子量进行统计,得到各种平均值。

一般认为,GPC/SEC是根据溶质体积的大小,在色谱中由于体积排除效应即渗透能力的差异进行分离。高分子在溶液中的体积决定于分子量、高分子链的柔顺性、支化、溶剂和温度,当高分子链的结构、溶剂和温度确定后,高分子的体积主要依赖于分子量。

凝胶渗透色谱的固定相是多孔性微球,可由交联度很高的聚苯乙烯、聚丙烯酸酰胺、

葡萄糖和琼脂糖的凝胶以及多孔硅胶、多孔玻璃等来制备。色谱的淋洗液是聚合物的溶剂。当聚合物溶液进入色谱后,溶质高分子向固定相的微孔中渗透。由于微孔尺寸与高分子的体积相当,高分子的渗透几率取决于高分子的体积,体积越小渗透几率越大,随着淋洗液流动,它在色谱中走过的路程就越长,用色谱术语就是淋洗体积或保留体积增大。反之,高分子体积增大,淋洗体积减小,因而达到依高分子体积进行分离的目的。基于这种分离机理,GPC/SEC 的淋洗体积是有极限的。当高分子体积增大到已完全不能向微孔渗透,淋洗体积趋于最小值,为固定相微球在色谱中的粒间体积。反之,当高分子体积减小到对微孔的渗透几率达到最大时,淋洗体积趋于最大值,为固定相微孔的总体积与粒间体积之和,因此只有高分子的体积居于两者之间,色谱才会有良好的分离作用。对一般色谱分辨率和分离效率的评定指标,在凝胶色谱中也沿用。

图16-1是GPC/SEC 的构造示意图,淋洗液通过输液泵成为流速恒定的流动相,进入紧密装填多孔性微球的色谱柱,中间经过一个可将样品送往体系的进样装置。聚合物样品进样后,淋洗液带动溶液样品进入色谱柱并开始分离,随着淋洗液的不断洗提,被分离的高分子组份陆续从色谱柱中淋出。浓度检测器不断检测淋洗液中高分子组份的浓度响应,数据被记录最后得到一张完整的GPC/SEC 淋洗曲线。如图16-2。

图16-1 GPC/SEC 的构造

淋洗曲线表示GPC/SEC 对聚合物样品依高分子体积进行分离的结果,并不是分子量分布曲线。实验证明淋洗体积和聚合物分子量有如下关系:

e BV A M ?=ln 或 e V B A M log ''log ?= (16-1)

式中M 为高分子组分的分子量,A 、B (或A’、B’)与高分子链结构、支化以及溶剂温度等影响高分子在溶液中的体积的因素有关,也与色谱的固定相、体积和操作条件等仪器因素有关,因此(1)式称为GPC/SEC 的标定(校正)关系。(1)式的适用性还限制在色谱固定相渗透极限以内,也就是说分子量过高或太低都会使标定关系偏离线

性。一般需要用一组已知分子量的窄分布的聚合物标准样品(标样)对仪器进行标定,得到在指定实验条件,适用于结构和标样相同的聚合物的标定关系。

图16-2 GPC/SEC淋洗曲线和“切割法”示意图

三.仪器和试剂

1.组合式GPC/SEC仪(美国Waters公司),电子天平,13mm微孔过滤器;配样瓶,注射针筒等。

2.四氢呋喃(AR)(淋洗液);悬浮聚合的聚苯乙烯(被测样品);窄分子量分布的聚苯乙烯(标准样品);

四.准备工作

1. 样品配制

选取十个不同分子量的标样,按分子量顺序1、3、5、7、9和2、4、6、8、10分为两组,每组标样分别称取约2mg混在一个配样瓶中,用针筒注入约2ml溶剂,溶解后用装有0.45微米孔径的微孔滤膜的过滤器过滤。

在配样瓶中称取约4mg被测样品,注入约2ml溶剂,溶解后过滤。

2. GPC/SEC的标定

待仪器基线稳定后,用进样针筒先后将两个混合标样进样,进样量为100微升,等待色谱淋洗,最后得到完整的淋洗曲线。从两张淋洗曲线确定共十个标样的淋洗体积。

作logM- V e 图得GPC/SEC 标定关系。

五.实验步骤:

1.仪器观摩

了解GPC/SEC 仪各组成部分的作用和大致结构,了解实验操作要点。设定淋洗液流速为1.0ml/min 、柱温和检测温度为30℃。了解数据处理系统的工作过程,但本实验将数据处理系统仅用作记录仪,数据处理由人工完成,以便加深对分子量分布的概念和GPC/SEC 的认识。

2. 样品测定

将样品溶液进样,得到淋洗曲线后,确定基线,用“切割法”进行数据处理,切割块数应在20以上。

六.数据处理:

GPC/SEC 的数据处理,一般采用“切割法”。在谱图中确定基线后,基线和淋洗曲线所包围的面积是被分离后的整个聚合物,以横坐标对这块面积等距离切割。切割的含义是把聚合物样品看成由若干个具有不同淋洗体积的高分子组份所组成,每个切割块的归一化面积(面积分数)是高分子组份的含量,切割块的淋洗体积通过标定关系可确定组份的分子量,所有切割块的归一化面积和相应的分子量列表或作图,得到完整的聚合物样品的分子量分布结果。因为切割是等距离的,所以用切割块的归一化高度就可以表示组份的含量。切割密度会影响结果的精度,当然越高越好,但是一般认为,一个聚合物样品切割成20块以上,对分子量分布描述的误差已经小于GPC/SEC 方法本身的误差。当用计算机记录、处理数据时,可设定切割成近百块。用分子量分布数据,很容易计算各种平均分子量,如n M 和w M 。

∑∑∑===i i i i i n i i i n M H H M W M 11 (16-2)

∑∑∑===i i

i i

i i

n i i w H M H M W M 1 (16-3)

式中,H i 是切割块的高度。

根据(2)、(3)式计算出样品的数均和重均分子量,并计算多分散系数d 。

七.回答问题及讨论

1.高分子的链结构、溶剂和温度为什么会影响凝胶色谱的校正关系?

2.为什么在凝胶渗透色谱实验中,样品溶液的浓度不必准确配制?

凝胶色谱法

凝胶色谱法 添加摘要 凝胶色谱法又叫凝胶色谱技术,是六十年代初发展起来的一种快速而又简单的分离分析技术,由于设备简单、操作方便,不需要有机溶剂,对高 分子物质有很高的分离效果。凝胶色谱法又称分 子排阻色谱法。 凝胶色谱法主要用于高聚物的相对分子质量分级 分析以及相对分子质量分布测试。目前已经被生 物化学、分子生物学、生物工程学、分子免疫学 以及医学等有关领域广泛采用,不但应用于科学 实验研究,而且已经大规模地用于工业生产。 凝胶色谱法-分类 根据分离的对象是水溶性的化合物还是有机溶剂可溶物,又可分为凝胶过滤色谱(GFC )和凝胶渗透色谱(GPC )。 凝胶过滤色谱一般用于分离水溶 性的大分子,如多糖类化合物。 凝胶的代表是葡萄糖系列,洗脱 溶剂主要是水。 凝胶渗透色谱法主要用于有机溶 剂中可溶的高聚物 (聚苯乙烯、 聚氯已烯、聚乙烯、聚甲基丙烯 酸甲酯等) 相对分子质量分布分 析及分离,常用的凝胶为交联聚 苯乙烯凝胶,洗脱溶剂为四氢呋 喃等有机溶剂。 凝胶色谱不但可以用于分离测定 高聚物的相对分子质量和相对分子质量分布,同时根据所用凝胶填料不同,可分离油溶性和水溶性物质,分离相对分子质量的范围从几百万到100以下。 近年来,凝胶色谱也广泛用于分离小分子化合物。化学结构不同但相对分子质量相近的物质,不可能通过凝胶色谱法达到完全的分离纯化的目的。 凝胶色谱系统 凝胶色谱仪

凝胶渗透色谱技术原理 凝胶色谱法-分子筛效益 一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这 种现象叫分子筛效应。具有多孔 的凝胶就是分子筛。 各种分子筛的孔隙大小分布有一 定范围,有最大极限和最小极限。 分子直径比凝胶最大孔隙直径大 的,就会全部被排阻在凝胶颗粒 之外,这种情况叫全排阻。两种 全排阻的分子即使大小不同,也 不能有分离效果。直径比凝胶最 小孔直径小的分子能进入凝胶的 全部孔隙。如果两种分子都能全 部进入凝胶孔隙,即使它们的大 小有差别,也不会有好的分离效 凝胶色谱法原理 果。因此,一定的分子筛有它一 定的使用范围。 在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子较小的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小

凝胶色谱法

凝胶色谱法 添加摘要 凝胶色谱法又叫凝胶色谱技术,是六十年代初发展起来的一种快速而又简单的分离分析技术,由于设备简单、操作方便,不需要有机溶剂,对高分子物质有很高的分离效果。凝胶色谱法又称分子排阻色谱法。 凝胶色谱法主要用于高聚物的相对分子质量分级分析以及相对分子质量分布测试。目前已经被生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域广泛采用,不但应用于科学实验研究,而且已经大规模地用于工业生产。 凝胶色谱法-分类 根据分离的对象是水溶性的化合物还是有机溶剂可溶物,又可分为凝胶过滤色谱(GFC )和凝胶渗透色谱(GPC )。 凝胶过滤色谱一般用于分离水溶性的大分子,如多糖类化合物。凝胶的代表是葡萄糖系列,洗脱溶剂主要是水。 凝胶渗透色谱法主要用于有机溶剂中可溶的高聚物 (聚苯乙烯、聚氯已烯、聚乙烯、聚甲基丙烯酸甲酯等) 相对分子质量分布分析及分离,常用的凝胶为交联聚苯乙烯凝胶,洗脱溶剂为四氢呋喃等有机溶剂。 凝胶色谱不但可以用于分离测定 高聚物的相对分子质量和相对分子质量分布,同时根据所用凝胶填料不同,可分离油溶性和水溶性物质,分离相对分子质量的范围从几百万到100以下。 近年来,凝胶色谱也广泛用于分离小分子化合物。化学结构不同但相对分子质量相近的物质,不可能通过凝胶色谱法达到完全的分离纯化的目的。

凝胶渗透色谱技术原理 凝胶色谱法-分子筛效益 一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同 的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗 粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在 凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过 程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分 子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后 流出,分子最小的最后流出,这Array种现象叫分子筛效应。具有多孔 的凝胶就是分子筛。 各种分子筛的孔隙大小分布有一 定范围,有最大极限和最小极限。 分子直径比凝胶最大孔隙直径大 的,就会全部被排阻在凝胶颗粒 之外,这种情况叫全排阻。两种 全排阻的分子即使大小不同,也 不能有分离效果。直径比凝胶最 小孔直径小的分子能进入凝胶的 全部孔隙。如果两种分子都能全 部进入凝胶孔隙,即使它们的大 小有差别,也不会有好的分离效 果。因此,一定的分子筛有它一 定的使用范围。 在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大, 完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应 的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变 凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子, 在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而 分子较小的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小

色谱分析法基本原理

色谱分析法基本原理 色谱法,又称层析法。根据其分离原理,有吸附色谱、分配色谱、离子 交换色谱与排阻色谱等方法。 吸附色谱是利用吸附剂对被分离物质的吸附能力不同,用溶剂或气体洗脱,以使组分分离。常用的吸附剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质。 分配色谱是利用溶液中被分离物质在两相中分配系数不同,以使组分分离。其中一相为液体,涂布或使之键合在固体载体上,称固定相;另一相为液体或气体,称流动相。常用的载体有硅胶、硅藻土、硅镁型吸附剂与纤维素粉等。 离子交换色谱是利用被分离物质在离子交换树脂上的离子交换势不同而 使组分分离。常用的有不同强度的阳、阴离子交换树脂,流动相一般为水或含有有机溶剂的缓冲液。 排阻色谱又称凝胶色谱或凝胶渗透色谱,是利用被分离物质分子量大小 的不同和在填料上渗透程度的不同,以使组分分离。常用的填料有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等,可根据载体和试样的性质,选用水或有机溶剂为流动相。 色谱法的分离方法,有柱色谱法、纸色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。色谱所用溶剂应与试样不起化学反应,并应用纯度较高的溶剂。色谱时的温度,除气相色谱法或另有规定外,系指在室温下操作。 分离后各成分的检出,应采用各单体中规定的方法。通常用柱色谱、纸 色谱或薄层色谱分离有色物质时,可根据其色带进行区分,对有些无色物质,可在245-365nm的紫外灯下检视。纸色谱或薄层色谱也可喷显色剂使之显色。薄层色谱还可用加有荧光物质的薄层硅胶,采用荧光熄灭法检视。用纸色谱进行定量测定时,可将色谱斑点部分剪下或挖取,用溶剂溶出该成分,再用分光光度法或比色法测定,也可用色谱扫描仪直接在纸或薄层板上测出,也可用色谱扫描仪直接以纸或薄层板上测出。柱色谱、气相色谱和高效液相色谱可用接于色谱柱出口处的各种检测器检测。柱色谱还可分部收集流出液后用适宜方法测定。柱色谱法 所用色谱管为内径均匀、下端缩口的硬质玻璃管,下端用棉花或玻璃纤 维塞住,管内装有吸附剂。色谱柱的大小,吸附剂的品种和用量,以及洗脱时的流速,均按各单体中的规定。吸附剂的颗粒应尽可能保持大小均匀,以保证良好的分离效果,除另有规定外通常多采用直径为0.07-0.15mm的颗粒。吸附剂的活性或吸附力对分离效果有影响,应予注意。 吸附剂的填装干法:将吸附剂一次加入色谱管,振动管壁使其均匀下沉,然后沿管壁缓缓加入开始层析时使用的流动相,或将色谱管下端出口加活塞,

色谱法的分类及其原理

色谱法的分类及其原理 (一)按两相状态 气相色谱法:1、气固色谱法 2、气液色谱法 液相色谱法:1、液固色谱法 2、液液色谱法 (二)按固定相的几何形式 1、柱色谱法(column chromatography) :柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法 2、纸色谱法(paper chromatography):纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 3、薄层色谱法(thin-layer chromatography, TLC) :薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的方法操作以达到分离目的。 (三)按分离原理 按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为:

1、吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物(例如,分离醇类与芳香烃)。 2、分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。 3、离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱主要是用来分离离子或可离解的化合物。它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。 4、尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。这样,样品分子基本按其分子大小先后排阻,从柱中流出。被广泛应用于大分子分级,即用来分析大分子物质相对分子质量的分布。 5、亲和色谱法:相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。例如利用酶与基质(或抑制剂)、抗原与抗体,激素与受体、外源凝集素与多糖类及核酸的碱基对等之间的专一的相互作用,使相互作用物质之一方与不溶性担体形成共价结合化合物,

凝胶渗透色谱法

实验6 凝胶渗透色谱法 测定聚合物的分子量和分子量分布 聚合物分子量具有多分散性,即聚合物的分子量存在分布。不同的聚合方法、聚合工艺会使聚合物具有不同的分子量和分子量分布。分子量对聚合物的性能有十分密切的关系,而分子量分布的影响也不可忽视。当今高分子材料已向高性能化发展,类似分子量分布等高一层次的高分子结构的问题,越来越引起人们的重视。 自高分子材料问世以来,人们不断探索分子量分布的测定方法,直到60年代凝胶渗透色谱诞生,成为迄今为止最有效的分子量分布的测定方法。 一.实验目的 1.了解凝胶渗透色谱的原理; 2.了解凝胶渗透色谱的仪器构造和凝胶渗透色谱的实验技术; 3.测定聚苯乙烯样品的分子量分布。 二.实验原理 凝胶渗透色谱(Gel Permeation Chromatography,简称GPC)也称为体积排除色谱(Size Exclusion Chromatography,简称SEC)是一种液体(液相)色谱。和各种类型的色谱一样,GPC/SEC的作用也是分离,其分离对象是同一聚合物种不同分子量的高分子组份。当样品中不同分子量的各组份的分子量和含量被确定后,就可得到聚合物的分子量分布,然后可以很方便地对分子量进行统计,得到各种平均值。 一般认为,GPC/SEC是根据溶质体积的大小,在色谱中由于体积排除效应即渗透能力的差异进行分离。高分子在溶液中的体积决定于分子量、高分子链的柔顺性、支化、溶剂和温度,当高分子链的结构、溶剂和温度确定后,高分子的体积主要依赖于分子量。 凝胶渗透色谱的固定相是多孔性微球,可由交联度很高的聚苯乙烯、聚丙烯酸酰胺、

葡萄糖和琼脂糖的凝胶以及多孔硅胶、多孔玻璃等来制备。色谱的淋洗液是聚合物的溶剂。当聚合物溶液进入色谱后,溶质高分子向固定相的微孔中渗透。由于微孔尺寸与高分子的体积相当,高分子的渗透几率取决于高分子的体积,体积越小渗透几率越大,随着淋洗液流动,它在色谱中走过的路程就越长,用色谱术语就是淋洗体积或保留体积增大。反之,高分子体积增大,淋洗体积减小,因而达到依高分子体积进行分离的目的。基于这种分离机理,GPC/SEC 的淋洗体积是有极限的。当高分子体积增大到已完全不能向微孔渗透,淋洗体积趋于最小值,为固定相微球在色谱中的粒间体积。反之,当高分子体积减小到对微孔的渗透几率达到最大时,淋洗体积趋于最大值,为固定相微孔的总体积与粒间体积之和,因此只有高分子的体积居于两者之间,色谱才会有良好的分离作用。对一般色谱分辨率和分离效率的评定指标,在凝胶色谱中也沿用。 图16-1是GPC/SEC 的构造示意图,淋洗液通过输液泵成为流速恒定的流动相,进入紧密装填多孔性微球的色谱柱,中间经过一个可将样品送往体系的进样装置。聚合物样品进样后,淋洗液带动溶液样品进入色谱柱并开始分离,随着淋洗液的不断洗提,被分离的高分子组份陆续从色谱柱中淋出。浓度检测器不断检测淋洗液中高分子组份的浓度响应,数据被记录最后得到一张完整的GPC/SEC 淋洗曲线。如图16-2。 图16-1 GPC/SEC 的构造 淋洗曲线表示GPC/SEC 对聚合物样品依高分子体积进行分离的结果,并不是分子量分布曲线。实验证明淋洗体积和聚合物分子量有如下关系: e BV A M ?=ln 或 e V B A M log ''log ?= (16-1) 式中M 为高分子组分的分子量,A 、B (或A’、B’)与高分子链结构、支化以及溶剂温度等影响高分子在溶液中的体积的因素有关,也与色谱的固定相、体积和操作条件等仪器因素有关,因此(1)式称为GPC/SEC 的标定(校正)关系。(1)式的适用性还限制在色谱固定相渗透极限以内,也就是说分子量过高或太低都会使标定关系偏离线

液相色谱仪结构及原理

液相色谱仪结构及原理 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达 4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 一、特点: 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 二、性质及原理:高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液—液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。a. 正相液—液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液—液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。 c. 液—液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。 2 .液—固色谱法 流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子(X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下:

凝胶色谱法要点

简介 凝胶色谱技术是上世纪六十年代初发展起来的一种快速而又简单的分离分析技术,对高分子物质有很好的分离效果。在生物化学、分子生物学、生物工程学、分子免疫学以及医学等有关领域被广泛采用,工业生产上也有非常广泛的应用。 一、分离原理  一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入凝胶相内,在向下移动的过程中,从一个凝胶内扩散到颗粒间隙后再进入另一凝胶颗粒,如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中分子大的先流出色谱柱,中等分子的后流出,分子最小的最后流出,这种现象叫分子筛效应。具有多孔的凝胶就是分子筛。各种分子筛的孔隙大小分布有一定范围,有最大极限和最小极限。分子直径比凝胶最大孔隙直径大的,就会全部被排阻在凝胶颗粒之外,这种情况叫全排阻。两种全排阻的分子即使大小不同,也不能有分离效果。直径比凝胶最小孔直径小的分子能进入凝胶的全部孔隙。如果两种分子都能全部进入凝胶孔隙,即使它们的大小有差别,也不会有好的分离效果。因此,一定的分子筛有它一定的使用范围。综上所述,在凝胶色谱中会有三种情况,一是分子很小,能进入分子筛全部的内孔隙;二是分子很大,完全不能进入凝胶的任何内孔隙;三是分子大小适中,能进入凝胶的内孔隙中孔径大小相应的部分。大、中、小三类分子彼此间较易分开,但每种凝胶分离范围之外的分子,在不改变凝胶种类的情况下是很难分离的。对于分子大小不同,但同属于凝胶分离范围内各种分子,在凝胶床中的分布情况是不同的:分子较大的只能进入孔径较大的那一部分凝胶孔隙内,而分子的可进入较多的凝胶颗粒内,这样分子较大的在凝胶床内移动距离较短,分子较小的移动距离较长。于是分子较大的先通过凝胶床而分子较小的后通过凝胶床,这样就利用分子筛可将分子量不同的物质分离。另外,凝胶本身具有三维网状结构,大的分子在通过这种网状结构上的孔隙时阻力较大,小分子通过时阻力较小。分子量

凝胶渗透色谱法

凝胶渗透色谱法(GPC) 一、凝胶渗透色谱 凝胶渗透色谱Gel Permeation Chromatography(GPC),一种新型的液体色谱,原理是利用高分子溶液通过一个装填凝胶的柱子,在柱子中按分子大小进行分离。 柱子为玻璃柱或金属柱,内填装有交联度很高的球形凝胶。其中的凝胶类型有很多,都是根据具体的要求而确定(常用的有聚苯乙烯凝胶)。然而,无论哪一种填料,他们都有一个共同点,就是球形凝胶本身都有很多按一定分布的大小不同的孔洞(见图1)。 图1 GPC分离原理 不仅可用于小分子物质的分离与鉴定,而且可作为用来分析化学性质相同但分子体积不同的高分子同系物。可以快速、自动测定高聚物的平均分子量及分子量分布。现阶段,已经成为最为重要的测定聚合物的分子量与分子量分布的方法。 二、测定原理 凝胶色谱法的固定相采用凝胶状多孔性填充剂,是根据样品中各

种分子流体力学提及的不同进行分离的。比凝胶孔径大的分子完全不能进入孔内,随流动相沿凝胶颗粒间流出柱外,而娇小的分子则可或多或少地进入孔内。因此大分子流程短,保留值小;小分子流程长,保留值大,所以凝胶色谱是按分子流体力学体积的大小,从大到小顺序进行分离的。(见图2) 图2 GPC淋出曲线 溶质分子的体积越小,其淋出体积越大,这种解释不考虑溶质与载体间的吸附效应以及溶质在流动相和固定相中的分配效应,其淋出体积仅仅由溶质分子的尺寸和载体的孔径尺寸决定,分离完全是由于体积排除效应所致。 凝胶色谱的特点是样品的保留体积不会超出色谱柱中溶剂的总量,因为保留值的范围是可以推测的,这样可以每隔一定时间连续进样而不会造成谱峰的重叠,提高了仪器的使用率。 三、分子量校正曲线(LogM-V曲线) 凝胶色谱图计算样品的分子量分布的关键是把凝胶色谱曲线中的淋洗体积V转化成分子量M,这种分子量的对数

色谱分析基本原理..

一、色谱分析法基本原理 色谱法,又称层析法。根据其分离原理,有吸附色谱、分配色谱、离子交换色谱与排阻色谱等方法。吸附色谱是利用吸附剂对被分离物质的吸附能力不同,用溶剂或气体洗脱,以使组分分离。常用的吸附剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质。分配色谱是利用溶液中被分离物质在两相中分配系数不同,以使组分分离。其中一相为液体,涂布或使之键合在固体载体上,称固定相;另一相为液体或气体,称流动相。常用的载体有硅胶、硅藻土、硅镁型吸附剂与纤维素粉等。离子交换色谱是利用被分离物质在离子交换树脂上的离子交换势不同而使组分分离。常用的有不同强度的阳、阴离子交换树脂,流动相一般为水或含有有机溶剂的缓冲液。排阻色谱又称凝胶色谱或凝胶渗透色谱,是利用被分离物质分子量大小的不同和在填料上渗透程度的不同,以使组分分离。常用的填料有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等,可根据载体和试样的性质,选用水或有机溶剂为流动相。色谱法的分离方法,有柱色谱法、纸色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。色谱所用溶剂应与试样不起化学反应,并应用纯度较高的溶剂。色谱时的温度,除气相色谱法或另有规定外,系指在室温下操作。分离后各成分的检出,应采用各单体中规定的方法。通常用柱色谱、纸色谱或薄层色谱分离有色物质时,可根据其色带进行区分,对有些无色物质,可在245-365nm的紫外灯下检视。纸色谱或薄层色谱也可喷显色剂使之显色。薄层色谱还可用加有荧光物质的薄层硅胶,采用荧光熄灭法检视。用纸色谱进行定量测定时,可将色谱斑点部分剪下或挖取,用溶剂溶出该成分,再用分光光度法或比色法测定,也可用色谱扫描仪直接在纸或薄层板上测出,也可用色谱扫描仪直接以纸或薄层板上测出。柱色谱、气相色谱和高效液相色谱可用接于色谱柱出口处

凝胶层析综述

凝胶层析技术的研究及应用 本文综述了凝胶层析的原理及其相关的参数和类型,以及在实际操作过程中的注意事项。并讲述了凝胶层析的一般应用。 凝胶层析 ( gel chromatography ) 又称为凝胶排阻层析、分子筛层析、凝胶过滤的等。它是以多孔性凝胶填料为固定相,按分子大小顺序分离样品中各个组分的液相色谱方法。 1959年,Porath和Flodin首次用一种多孔聚合物—交联葡聚糖凝胶作为柱填料,分离水溶液中不同分子量的样品,称为凝胶过滤。1964 年,Moore 制备了具有不同孔径的交联聚苯乙烯凝胶,能够进行有机溶剂中的分离,称为凝胶渗透层析(流动相为有机溶剂) 。随后这一技术得到不断的完善和发展,目前广泛的应用于生物化学、高分子化学等很多领域。 1 、凝胶层析原理、 凝胶层析是依据分子大小这一物理性质进行分离纯化的。凝胶层析的固定相是惰性的珠状凝胶颗粒,凝胶颗粒的内部具有立体网状结构,形成很多孔穴。当含有不同分子大小的组分的样品进入凝胶层析柱后,各个组分就向固定相的孔穴内扩散,组分的扩散程度取决于孔穴的大小和组分分子大小。 比孔穴孔径大的分子不能扩散到孔穴内部,完全被排阻在孔外,只能在凝胶颗粒外的空间随流动相向下流动,经历的流程短,流动速度快,先流出;而较小的分子可以完全渗透进入凝胶颗粒内部,经历的流程长,流动速度慢,最后流出;分子大小介于二者之间的分子在流动中部分渗透,渗透的程度取决于它们分子的大小,所以它们流出的时间介于二者之间,分子越大的组分越先流出,分子越小的组分越后流出。这样样品经过凝胶

层析后,各个组分便按分子从大到小的顺序依次流出,从而达到了分离的目的。 2、凝胶层析相关系数、 2.1外水体积、内水体积、基质体积、柱床体积、洗脱体积外水体积是指凝胶柱中凝胶颗粒周围空间的体积,也就是凝胶颗粒间液体流动相的体积。 内水体积是指凝胶颗粒中孔穴的体积,凝胶层析中固定相体积就是指内水体积。 基质体积是指凝胶颗粒实际骨架体积。 而柱床体积就是指凝胶柱所能容纳的总体积。 洗脱体积是指将样品中某一组分洗脱下来所需洗脱液的体积。 2.2分配系数分配系数是指某个组分在固定相和流动相中的浓度比。对于凝胶层析,分配系数实质上表示某个组分在内水体积和在外水体积中的浓度分配关系。 2.3排阻极限排阻极限是指不能进入凝胶颗粒孔穴内部的最小分子的分子量。所有大于排阻极限的分子都不能进入凝胶颗粒内部,直接从凝胶颗粒外流出,它们同时被最先洗脱出来。排阻极限代表一种凝胶能有效分离的最大分子量,大于这种凝胶的排阻极限的分子用这种凝胶不能得到分离。 2.4分级分离范围分级分离范围表示一种凝胶适用的分离范围,对于分子量在这个范围内的分子,用这种凝胶可以得到较好的线性分离。例如Sephadex G-75 对球形蛋白的分级分离范围为3,000 -70,000 ,它表示分子量在这个范围内的球形蛋白可以通过Sephadex G-75 得到较好的分离。应注意,对于同一型号的凝胶,球形蛋白与线形蛋白的分级分离范围是不同的。 2.5吸水率和床体积吸水率是指1g 干的凝胶吸收水的体积或者重量,但它不包括颗粒间吸附的水份。所以它不能表示凝胶装柱后的体积。而床体积是指1g 干的凝胶吸水后的最终体积。

多角度激光光散射仪与凝胶渗透色谱联用技术

多角度激光光散射仪与凝胶渗透色谱联用技术 仪器组成: Wyatt DAWN HELEOS Ⅱ(十八角度激光光散射检测器) Wyatt ViscoStar Ⅱ(粘度检测器) Wyatt Optilab rEX (示差折光检测器) 配一套Waters 515单元泵和柱温箱。 检测原理: 光散射法是测定高分子物质重均分子量的绝对方法。高分子溶液可视为不均匀介质,当光通过它时,入射光的电磁波诱导高分子成为振荡偶极子,并产生强迫振动作为二次光源发出散射光。高分子溶液的散射光强度远远高于其溶剂,并且强烈依赖于高分子的分子量、链形态、溶液浓度、散射光角度和折光指数增量(dn/dc值)等基本参数,从而得到高分子物质的绝对分子量。 凝胶渗透色谱可将溶剂中的高分子物质按照分子量的大小依次洗脱出来。利用光散射仪与凝胶渗透色谱联用技术,除了可以得到物质的平均分子量,还可以测得不同的高分子物质的分布及其相应分子量大小,并且不需要使用结构相似的标准样品做标准曲线。在直接测定

高分子物质的绝对分子量的同时,由于联用了粘度检测器和示差折光检测器,还可得到特性粘数、均方根旋转半径等重要参数。 应用: 光散射强度与分子大小直接相关,凝胶渗透色谱能分离不同分子量大小的高分子物质,结合次两种特性,可得到许多重要信息,已经被广泛应用于高分子化学、生物化学等众多研究领域。 第一,高分子物质的分子量的测定。不需要标准品、校正曲线以及任何假设,即可直接求得高聚物、多糖、蛋白质等多种高分子物质的绝对分子量。测定范围广泛,可达103~107,且采用十八角度激光光散射检测器,准确度高。 第二,多组分高分子物质的平均分子量及其相应组分对应的绝对分子量的测定。不仅可以单机操作测定混合物质的平均分子量,还可结合凝胶渗透色谱分离技术,测定各个分子量不同的各个不同组分的绝对分子量。 第三,高分子物质的折光指数增量(dn/dc值)、均方根旋转半径(Rg)、第二维里系数(A2)等重要参数和重均分子量(Mw)、数均分子量(Mn)等多种不同分子量的测定,可得到分子的分枝程度等形态特征,研究高分子物质与溶剂的相互作用,研究高分子物质的聚合与降解作用等。 具体检测工作: 第一,化学品、药品的合成过程中的质量控制,通过测定分子量的变化,控制反应的进程与方向,确定药品的含量品质。例如,以某一高聚物为母体,在其上进行聚合反应,通过分子量的测定,控制反应的进行程度。 第二,食品生产过程中的质量控制。通过测定分子量的变化,控制反应的进程与方向,确定食品的品质。例如,在高蛋白牛奶中的蛋白质的分子量,当蛋白质过大时是不利于人体吸收的,通过测定其分子量,对食品的品质进行鉴定。 第三,医疗器材材料的降解聚合作用的研究。例如,聚乳酸被广泛应用于心血管支架、假牙的医学材料中,在医疗器材申报的过程中要求对其降解作用进行研究。 标准: 1、GB/T 21864-2008 聚苯乙烯的平均分子量和分子量分布的检测标准方法高效体积排 阻色谱法 2、GB/T 21863-2008 凝胶渗透色谱法(GPC) 用四氢呋喃做淋洗液 3、SH/T 1759-2007 用凝胶渗透色谱法测定溶液聚合物分子量分布

凝胶层析实验步骤及细节

温州大学第四届生物学科实验技能大赛 血清凝胶层析 实验成绩:实验过程+实验结果+实验报告 实验时间: 5月6日(周日)8:50到10B正门集合,上午9:00至12:00左右分离器使用指导及凝胶装柱。下午1:30开始血清离心操作及层析操作。 实验前:身穿实验服,用蒸馏水清洗实验器具 实验后:清理实验器具 凝胶层析的实验步骤

实验试剂和用品 1. 试剂 Sephandex 4B 凝胶(凝胶颗粒)、5%重铬酸钾、5%蓝葡聚糖、生理盐水 2. 主要实验用具 铁架台(滴定台架)、凝胶柱(层析柱)<多孔板、筛板>(10×1.0cm)、螺丝夹、移液管、烧杯、胶头滴管、试管(20个)、试管架、玻璃棒 凝胶层析定义 凝胶层析又称凝胶过滤,分子筛层析或排阻层析。它的突出优点是凝胶属于惰性载体,不带电荷,吸附力弱,可在相当广的温度范围下进行,不需要有机溶剂。凝胶层析是按照蛋白质分子量大小进行分离的技术。 凝胶是一种具有多孔、网状结构的分子筛。利用这种凝胶分子筛对大小、形状不同的分子进行层析分离,称凝胶层析。 分子大小彼此相差25%的样品,只要通过单一凝胶床就可以完全将它们分开。 实验原理 不同类型凝胶的筛孔的大小不同。如果将这样的凝胶装入一个足够长的柱子中,作成一个凝胶柱。当含有大小不同的蛋白质样品加到凝胶柱上时,比凝胶珠平均孔径小的蛋白质就要连续不断地穿入珠子的内部,这样的小分子不但其运动路程长,而且受到来自凝胶珠内部的阻力也很大,所以越小的蛋白质,把它们从柱子上洗脱下来所花费的时间越长。凝胶中只有很少的孔径可接受大的蛋白。因此,大的蛋白质直接通过凝胶珠之间的缝隙首先被洗脱下来。凝胶过滤所用的凝胶孔径大小的选择主要取决于要纯化的蛋白质分子量。 凝胶柱的制备 在沸水浴中将湿凝胶浆逐渐升温至近沸,1小时即可达到凝胶的充分胀溶。加热法既可节省时间又可消毒。 凝胶的装填:将层析柱与地面垂直固定在架子上,下端流出口用夹子夹紧,柱顶可安装一个带有搅拌装置的较大容器,柱内充满洗脱液,将凝胶调成较稀薄的浆头液盛于柱顶的容器中,然后在微微地搅拌下使凝胶下沉于柱内,这样凝胶粒水平上升,直到所需高度为止,拆除柱顶装置,用相应的滤纸片轻轻盖在凝胶床表面。稍放置一段时间,再开始流动平衡,流速应低于层析时所需的流速。在平衡过程中逐渐增加到层析的流速,千万不能超过最终流速。平衡凝胶床过夜,使用前要检查层析床是否均匀,有无“纹路”或气泡,或加一些有色物质来观察色带的移动,如带狭窄、均匀平整说明层析柱的性能良好,色带出现歪曲、散乱、变宽时必须重新装柱。 凝胶柱的重复使用、凝胶回收与保存 一次装柱后可以反复使用,不必特殊处理,并不影响分离效果。为了防止凝胶染菌,可在一次层析后加入0.02%的叠氮钠,在下次层析前应将抑菌剂除去,以免干扰洗脱液的测定。 如果不再使用可将其回收,一般方法是将凝胶用水冲洗干净滤干,依次用70%、90%、95%乙醇脱水平衡至乙醇浓度达90%以上,滤干,再用乙醚洗去乙醇、滤干、干燥保存。湿态保存方法是凝胶浆中加入抑菌剂或水冲洗到中性,密封后高压灭菌保存。

色谱法分离原理教案

第十四章色谱法分离原理 一.教学内容 1.色谱分离的基本原理和基本概念 2.色谱分离的理论基础 3.色谱定性和定量分析的方法 二.重点与难点 1.塔板理论,包括流出曲线方程、理论塔板数(n)及有效理论塔板数 (n e f f)和塔板高度(H)及有效塔板高度(H e f f)的计算 2.速率理论方程 3.分离度和基本分离方程 三.教学要求 1.熟练掌握色谱分离方法的原理 2.掌握色谱流出曲线(色谱峰)所代表的各种技术参数的准确含义 3.能够利用塔板理论和速率理论方程判断影响色谱分离各种实验因素 4.学会各种定性和定量的分析方法 四.学时安排4学时 第一节概述 色谱法早在1903年由俄国植物学家茨维特分离植物色素时采用。他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有

碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义.但仍被人们沿用至今。 在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相;自上而下运动的一相(一般是气体或液体)称为流动相;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1.按两相状态分类 气体为流动相的色谱称为气相色谱(G C) 根据固定相是固体吸附剂还是固定液(附着在惰性载体上的 一薄层有机化合物液体),又可分为气固色谱(G S C)和气液色谱(GL C)。液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(L SC)和液液色谱(L LC)。超临界流体为流动相的色谱为超临界流体色谱(SF C)。随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CB PC). 2.按分离机理分类 利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离的方法,称为吸附色谱法。 利用组分在固定液(固定相)中溶解度不同而达到分离的方法称为分配色谱法。 利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分离的方法,称为离子交换色谱法。

凝胶渗透色谱正确选择检测器的重要性

凝胶渗透色谱正确选择检测器的重要性 作者:Stephen Ball, 马尔文仪器纳米颗粒及分子表征产品市场经理 凝胶渗透色谱分析法或尺寸排除色谱法(GPC/SEC)是高分子、大分子和蛋白质常用的主要分析手段,其中最主要的原因是它能对分子量和分子量分布数据进行定量表征。人们通常将上述分析方法分 为两步。第一步:利用含有适当特性微孔填充材料的色谱柱对溶解样品按照分子大小/体积进行分离;第二步:利用适当的检测仪器对被分离的样品进行分析。本文中,来自马尔文仪器的产品市场经理Stephen Ball将向您阐述可以采用的检测器技术及其提高分析效率的潜在可能。 GPC/SEC系统的传统配置为:采用单个折光指数 (RI) 检测器对浓度进行测量,在这种配置下,利用 参照校准数据可以得到相对分子量分布数据。这对某些常见的高分子材料和/或质量控制比较适合, 但分析者越来越多地倾向于采用具有如下特点的多检测仪组合GPC/SEC 系统: ?无需色谱柱校准即可取得所有材料的绝对数据, ?极大提高数据处理效果 目前市面上有很多可用于GPC/SEC的检测仪。由于分析具有两阶段的特性,因此在选择合适的系统 时有很多问题需要考虑。完全一体化的单一检测器固然有优势,但我认为它与选择最佳检测仪组合解 决方案相比只能说是次优方案。对检测器的选择进行优化是一种既直接又高效的方法,具有较多优势,比如可以仅通过一次实验就获得能确定分子量、流体力学尺寸和分子结构的表征。 这就提出了一个问题:如何才能为以应用为基础发掘最佳的检测器系统?这个问题牵涉很广,但却为 我们初步了解不同检测器的优势提供了一个良好的契机。 首先从粘度计开始,它可以测量各种粘度参数,而对于聚合物溶液而言,它可以建立起与样品分子量 之间的关联。当与RI检测器一同使用时,粘度计可以实现普氏校准,系统无需再寻找与待测样品十 分接近的标准样品,同时也提高了分子量分布数据的完整性。粘度测量还可以确定结构方面的信息, 比如可以对聚合物分支进行定量分析。 接下来让我们来看看静态光散射检测器,它们可以对绝对分子量进行直接测量。由于市场上存在着各 种不同的检测仪,如LALS、RALS和 MALS,因此问题就开始变得复杂了。上述所有这些检测仪都 通过测量散射光的能量来得到分子量,但散射光能量随角度各不相同,比如,小角度光散射检测仪(LALS) 以7o的角度检测入射光线,直角光散射 (RALS) 以90o测量入射光线,此外还有多角度测量 光散射仪 (MALS)。

凝胶渗透色谱分析的工作原理

SEC/GPC 凝胶渗透色谱分析的工作原理 PS-OBG 用作尺寸排除色谱(size exclusion chromatography ,又称凝胶渗透,gel permeation chromatography )测量大分子分子量时的标准样品。 首先介绍尺寸排除色谱(SEC/GPC )的工作原理: 如图三所示,红色和紫色两种颗粒代表不同尺寸的两种高分子,蓝色月牙形颗粒代表色谱柱内的填料。通常色谱柱填料是经过设计的具有不同孔径的高分子凝胶珠。当红色和紫色的高分子进入色谱柱以后,以一定速度流动的流动相在不停地冲洗色谱柱的同时,带动高分子颗粒在色谱柱内的移动。当高分子与凝胶珠填料接触时,尺寸大的高分子不能进入凝胶珠填料的孔,如图三中红色的大分子。所以红色的大分子在流动相的冲洗下先流出色谱柱。而紫色的尺寸较小的高分子可以进入凝胶填料珠的小孔,好像暂时被填料保留住了一样,最后由于流动相不停的冲洗,紫色高分子也会流出色谱柱,但是流出的时间较红色分子长了很多。图三右下方给出红色高分子和紫色高分子的凝胶色谱图,横坐标为保留时间,可以看出红色高分子的保留时间明显小于紫色高分子,这说明红色高分子分子量较大,比紫色高分子先流出色谱柱。 色谱柱的工作原理告诉我们,尺寸排除色谱可以将尺寸不同的高分子按照保留时间分开。保留时间越小的高分子(也就是流经色谱柱需要时间越短的高分子)的分子量越大,相反,保留时间越大的高分子(也就是流经色谱柱需要时间越长的高分子)的分子量越小。

懂得了这个原理,我们就可以用SEC/GPC来测分子量了! 但是,如何根据保留时间来确定高分子的分子量呢?也就是说,怎么将不同的保留时间与分子量一一对应起来呢?这时我们需要制定一条标准工作曲线。标准工作曲线的目的是建立保留时间和分子量的关系,当我们用SEC/GPC测定了一个未知的高分子,得到这个高分子的流出时间(保留时间),有了工作曲线,我们就可以很快知道这个未知高分子的分子量。 标准工作曲线的制定 标准工作曲线由一系列分布很窄,分子量已知的高分子标样做出,同时标样的结构和分子链的构象要与未知高分子尽可能的接近。 1.首先选用与被测样品类型相似的单分散性(d≤1.1)标样。先用其他方法精确测定其绝对分子量(百特纯使用激光光散射的方法测得PS-OBG的绝对分子量)。 2.然后将PS-OBG标样进行SEC/GPC分析,得到每个窄分布标样的峰位淋洗体积(V e),也就是每个标样在色谱柱内的保留时间 流速。 3.以V e为X轴,logM为Y轴作图,这样就可以得到校正曲线。 式中,A,B为常数,A表示排斥极限, B表示渗透极限4.将待测高分子进行SEC/GPC分析,得到待测高分子的峰位淋洗体积V’。 在标准曲线上将V’推回Y轴得到logM’,此M’即为待测高分子的分子量。 百特纯大分子(武汉)科技有限公司是由供职于加拿大联邦政府农业部国家实验室科学家及其他投资人共同创办。目前主要从事碳水化合物大分子领域新品研发及应用。百特纯的目标是向高等研究单位、院校提供高质量、高纯度、高均一性(极窄分子量分布),特定结构的医药及功能性碳水化合物大分子标准品及凝胶色谱标样,燕麦葡聚糖标样,1%精制燕麦OBG水溶液。

高效液相色谱法的分类及原理

高效液相色谱法地分类及其分离原理 高效液相色谱法分为:液固色谱法、液液色谱法、离子交换色谱法、凝胶色谱法. .液固色谱法(液固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上地吸附作用不同来进行分配地. ①液固色谱法地作用机制 吸附剂:一些多孔地固体颗粒物质,其表面常存在分散地吸附中心点. 流动相中地溶质分子(液相)被流动相带入色谱柱后,在随载液流动地过程中,发生如下交换反应: (液相)(吸附)<>(吸附)(液相) 其作用机制是溶质分子(液相)和溶剂分子(液相)对吸附剂活性表面地竞争吸附. 吸附反应地平衡常数为: 值较小:溶剂分子吸附力很强,被吸附地溶质分子很少,先流出色谱柱. 值较大:表示该组分分子地吸附能力较强,后流出色谱柱. 发生在吸附剂表面上地吸附解吸平衡,就是液固色谱分离地基础.资料个人收集整理,勿做商业用途 ②液固色谱法地吸附剂和流动相 常用地液固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等. 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间地作用力很弱,分配比较小,保留时间较短;但极性分子与极性吸附剂之间地作用力很强,分配比大,保留时间长.资料个人收集整理,勿做商业用途 对流动相地基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样地检测 常用地流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等. ③液固色谱法地应用 常用于分离极性不同地化合物、含有不同类型或不;数量官能团地有机化合物,以及有机化合物地不同地异构体;但液固色谱法不宜用于分离同系物,因为液固色谱对不同相对分子质量地同系物选择性不高.资料个人收集整理,勿做商业用途 .液液色谱法(液液分配色谱法) 将液体固定液涂渍在担体上作为固定相. ①液液色谱法地作用机制 溶质在两相间进行分配时,在固定液中溶解度较小地组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大地组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离地目地.资料个人收集整理,勿做商业用途 液液色谱法与液液萃取法地基本原理相同,均服从分配定律:固液 值大地组分,保留时间长,后流出色谱柱. ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相. 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相.

相关主题
文本预览
相关文档 最新文档