当前位置:文档之家› 代谢调控理论在微生物发酵中的应用

代谢调控理论在微生物发酵中的应用

代谢调控理论在微生物发酵中的应用
代谢调控理论在微生物发酵中的应用

代谢调控理论在微生物发酵中的应用

参考文献

贾红华,韦萍,何冰芳.L苯丙氨酸生产的代谢工程研究.生物加工过程.2004,2(2):8-12

目的

使得更加理性的改造菌株成为可能,促进发酵法的广泛应用

方法

目前至少已发现 7种微生物的苯丙氨酸合成途径,且均非常相似。

由于野生菌不会直接大量产生L-苯丙氨酸,高效的L-苯丙氨酸生产菌株多采用诱变和基因工程手段相结合来改变野生菌的芳香族氨基酸生物合成的相关代谢流量而获得。研究人员对L-苯丙氨酸生物合成途径中相关基因及其酶进行调控,并对中央代谢途径进行一定的改造,在芳香族氨基酸生物合成支路中也进行特定的修饰。

相关基因及其酶进行调控

PEP和E4P合成DAHP的反应由3个DAHP合成酶同工酶所催化。分别受L-色氨酸(由aroH表达)、L-苯丙氨酸(由aroG表达)和L-酪氨酸(由aroF)反馈抑制。作为关键反应之一的分支酸转化为预苯酸的反应依赖于两个不同的分支酸变位酶(分别由phoA,tyrA表达),并分别受L-苯丙氨酸和L-酪氨酸反馈抑制。而莽草酸脱氢酶则受其产物莽草酸抑制。

中央代谢途径改造

中央代谢途径是控制中间产物的代谢流量、产物的形成速率及产率的关键步骤。为高效生产目的产品,必须对中央代谢途径的相关步骤进行调节控制。

芳香族氨基酸生物合成途径的共同前体PEP和E4P均来自中央代谢途径(如图2所示)。糖酵解途径会产生PEP,而E4P则由磷酸戊糖途径供应。通过对E.coli 的中央代谢途径的计量分析显示,当该菌生长在以葡萄糖作为唯一碳源的限制性培养基上时,大约有30%的G6P会进入磷酸戊糖途径,但仅有3%的PEP用于芳香族氨基酸的生物合成。

研究表明:仅有当量PEP供应时,L-苯丙氨酸的理论产率为30%,当PEP 的供应量加倍时,其理论产率将增加到56%。为改善芳香族氨基酸的生产,研究人员采用分子生物学手段对该两个生物合成途径进行基因构建及改造,且取得了满意的成绩。

图1 L-苯丙氨酸的生物合成途径及其相关调控

在E.coli中,L-苯丙氨酸的一般生物合成途径如图1所示:由4-磷酸赤藓糖(E4P)和磷酸烯醇式丙酮酸 (PEP)缩合形成2-酮-3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸(DAHP)开始,并把这七碳中间代谢物转化为莽草酸(SHIK),然后再转化为分支酸(CHA),由分支酸合成苯丙酮酸(PPY),最后苯丙酮酸经转氨作用生成L-苯丙氨酸。

图2 E.coli的中央代谢系统

中央代谢途径是控制中间产物的代谢流量、产物的形成速率及产率的关键步骤。为高效生产目的产品,必须对中央代谢途径的相关步骤进行调节控制。

结果分析

增加PEP的供应量

PEP是涉及几个代谢过程的关键中间体。通过构建一PEP羧化酶阴性E.coli 突变株,切断PEP到草酰乙酸的代谢通路,使L-苯丙氨酸的产量提高6倍。如果还同时高水平表达PEP合成酶还可增加芳香族氨基酸合成途径中的碳流量,提高PEP的供应量,从而超量产生DAHP,增加L-苯丙氨酸及其他多种L-型氨基酸的产量。

增加E4P的供应量

转酮醇酶和转醛醇酶是磷酸戊糖途径非氧化阶段的两个关键酶。E4P是由磷酸戊糖之间经转酮醇酶和转醛醇酶催化基团转移产生。超量表达转酮醇酶基因(tktA),可明显提高E.coli中的转酮醇酶活性和E4P的供应量,同时增加DAHP

的产量。通过大量产生一抗反馈抑制DAHP合成酶和转酮醇酶导致进入芳香族氨基酸生物合成途径的碳流量增加了两倍。采取扩增E.coli中aroG和tktA基因,并使两个丙酮酸激酶同工酶失活,可明显增加DAHP的产量。如果同时表达tktA 和aroF基因,则会使E.coli的DAHP的分泌量增加40倍。

结论

在L-苯丙氨酸的发酵生产中,对其错综复杂的代谢途径的调控已经取得了很大的成就。随着。随着MS和NMS等分析手段与同位素示踪技术的高度发展与相互结合,将为解明细胞中的代谢网络和调控机制提供强有力的技术支持。

随着大量微生物的基因组全序列的逐渐被测定出来,很多微生物代谢网络的特性和功能,尤其是调控机理的逐步解析,在今后的研究中很有希望在更大的程度上应用代谢工程的成果,例如:将两种代谢途径进行协同调控,该手段将开辟更低成本的L-苯丙氨酸以及其他芳香族氨基酸的大规模生产新的路线。

微生物的代谢调控与发酵生产综述

微生物的代谢调控与发酵生产 发酵工程课张顺 微生物有着一整套可塑性极强和极精确的代谢调节系统,以保证上千种酶能正确无误、有条不紊地进行极其复杂的新陈代谢反应。从细胞水平上来看,微生物的代谢调节能力要超过复杂的高等动植物。这是因为,微生物细胞的体积极小,而所处的环境条件却十分多变,每个细胞要在这样复杂的环境条件下求得生存和发展,就必须具备一整套发达的代谢调节系统。在长期进化过程中,微生物发展出一整套十分有效的代谢调节方式,巧妙地解决了这一矛盾。例如,在每种微生物的遗传因子上,虽然潜在着合成各种分解酶的能力,但是除了一部分是属于经常以较高浓度存在的组成酶(constitutive-enzyme)外,大量的都是属于只有当其分解底物或有关诱导物存在时才合成的诱导酶(induced-enzyme或inducible-enzyme)。通过代谢调节微生物可最经济地利用其营养物,合成出能满足自己生长、繁殖所需要的一切中间代谢物,并做到既不缺乏也不剩余任何代谢物的高效“经济核算”。 微生物细胞的代谢调节方式很多,例如可调节营养物质透过细胞膜而进入细胞的能力,通过酶的定位以限制它与相应底物的接近,以及调节代谢流等。其中以调节代谢流的方式最为重要,它包括两个方面,一是“粗调”,即调节酶的合成量,二是“细调”,即调节现成酶分子的催化活力,两者往往密切配合和协调,以达到最佳调节效果。 利用微生物代谢调控能力的自然缺损或通过人为方法获得突破代谢调控的变异菌株,可为发酵工业提供生产有关代谢产物的高产菌株。有关的实际例子将在本节后部分进行介绍。 在发酵工业中,控制微生物生理状态以达到高产的环境条件很多,如营养物类型和浓度,氧的供应,pH的调节和表面活性剂的存在等。这里要讨论的则是另一类方式,即如何控制微生物的正常代谢调节机制,使其累积更多为人们所需要的有用代谢产物。由于一些抗生素等次生代谢产物的代谢调控十分复杂且目前还不够清楚,因此,下面所举的例子都是一些小分子主流代谢产物。现分三方面

微生物的代谢调控与发酵生产

微生物的代谢调控与发酵生产 微生物有着一整套可塑性极强和极精确的代谢调节系统,以保证上千种酶能正确无误、有条不紊地进行极其复杂的新陈代谢反应。从细胞水平上来看,微生物的代谢调节能力要超过复杂的高等动植物。这是因为,微生物细胞的体积极小,而所处的环境条件却十分多变,每个细胞要在这样复杂的环境条件下求得生存和发展,就必须具备一整套发达的代谢调节系统。在长期进化过程中,微生物发展出一整套十分有效的代谢调节方式,巧妙地解决了这一矛盾。例如,在每种微生物的遗传因子上,虽然潜在着合成各种分解酶的能力,但是除了一部分是属于经常以较高浓度存在的组成酶(constitutiveen-zyme)外,大量的都是属于只有当其分解底物或有关诱导物存在时才合成的诱导酶(induceden-zyme或inducibleenzyme)。通过代谢调节微生物可最经济地利用其营养物,合成出能满足自己生长、繁殖所需要的一切中间代谢物,并做到既不缺乏也不剩余任何代谢物的高效“经济核算”。 微生物细胞的代谢调节方式很多,例如可调节营养物质透过细胞膜而进入细胞的能力,通过酶的定位以限制它与相应底物的接近,以及调节代谢流等。其中以调节代谢流的方式最为重要,它包括两个方面,一是“粗调”,即调节酶的合成量,二是“细调”,即调节现成酶分子的催化活力,两者往往密切配合和协调,以达到最佳调节效果。 利用微生物代谢调控能力的自然缺损或通过人为方法获得突破代谢调控的变异菌株,可为发酵工业提供生产有关代谢产物的高产菌株。有关的实际例子将在本节后部分进行介绍。 在发酵工业中,控制微生物生理状态以达到高产的环境条件很多,如营养物类型和浓度,氧的供应,pH的调节和表面活性剂的存在等。这里要讨论的则是另一类方式,即如何控制微生物的正常代谢调节机制,使其累积更多为人们所需要的有用代谢产物。由于一些抗生素等次生代谢产物的代谢调控十分复杂且目前还不够清楚,因此,下面所举的例子都是一些小分子主流代谢产物。现分三方面来介绍。 (一)应用营养缺陷型菌株以解除正常的反馈调节 在直线式的合成途径中,营养缺陷型突变株只能累积中间代谢物而不能累积最终代谢物。但在分支代谢途径中,通过解除某种反馈调节,就可以使某一分支途径的末端产物得到累积。 1.赖氨酸发酵如图6-62所示,在许多微生物中,可用天冬氨酸为原料,通过分支代谢途径合成出赖氨酸、苏氨酸和甲硫氨酸。赖氨酸是一种重要的必需氨基酸,在食品、医药和畜牧业上需要量很大。但在代谢过程中,一方面由于赖氨酸对天冬氨酸激酶(AK)有反馈抑制作用,另一方面由于天冬氨酸除用于合成赖氨酸外,还要作为合成甲硫氨酸和苏氨酸的原料,因此,在正常的细胞内,就难以累积较高浓度的赖氨酸。

微生物代谢习题及答案

第六章 微生物的代谢习题及参考答案 一、名词解释 1.发酵 2.呼吸作用 3.有氧呼吸 4.无氧呼吸 5.异型乳酸发酵 6.生物固氮 7.硝化细菌 8.光合细菌 9.生物氧化 10.初级代谢产物: 11.次级代谢产物: 12.巴斯德效应: 13.Stickland 反应: 14.氧化磷酸化 二、填空题 1.微生物的4种糖酵解途径中, 是存在于大多数生物体内的一条主流代谢途径; 是存在于某些缺乏完整EMP 途径的微生物中的一种替代途径,为微生物所特有; 是产生4碳、5碳等中间产物,为生物合成提供多种前体物质的途径。 2.同型乳酸发酵是指葡萄糖经 途径降解为丙酮酸,丙酮酸在乳酸脱氢酶的作用下被NADH 还原为乳酸。异型乳酸发酵经 、 和 途径分解葡萄糖。代谢终产物除乳酸外,还有 。 3.微生物在糖酵解生成丙酮酸基础上进行的其他种类的发酵有丁二醇发酵、混合酸发酵、 发酵和 发酵等。丁二醇发酵的主要产物是 , 发酵的主要产物是乳酸、乙酸、甲酸、乙醇。 4.产能代谢中,微生物通过 磷酸化和 磷酸化将某种物质氧化而释放的能量储存在ATP 等高能分子中;光合微生物则通过 磷酸化将光能转变成为化学能储存在ATP 中。 磷酸化既存在于发酵过程中,也存在于呼吸作用过程中。 5.呼吸作用与发酵作用的根本区别是呼吸作用中电子载体不是将电子直接传递给底物降解的中间产物,而是交给 系统,逐步释放出能量后再交给 。 6.巴斯德效应是发生在很多微生物中的现象,当微生物从 转换到 下,糖代谢速率 ,这是因为 比发酵作用更加有效地获得能量。 7.无氧呼吸的最终电子受体不是氧,而是外源电子受体,像22322423、CO O 、S 、SO 、NO NO ----等无机化合物,或 等有机化合物。

第五章微生物的代谢

第五章微生物的代谢 一、目的要求 掌握微生物代谢和呼吸类型,调控方式。 二、教学内容 1.微生物能量代谢 2.微生物独特的代谢途径 3.微生物代谢的调控 4.微生物次级代谢与次级代谢产物 三、重点与难点内容 微生物代谢的调节、次级代谢及产能方式。 四、教学方法 采用多媒体教学 新陈代谢(metabolism)简称代谢,是指发生在活细胞中的各种分解代谢(catabolism)和合成代谢(anabolism)的总和。分解代谢是指复杂的有机物分子通过分解代谢酶系的催化,产生简单分子、腺苷三磷酸(ATP)形式的能量和还原力的作用;合成代谢与分解代谢正好相反,是指在合成代谢酶系的催化下,由简单小分子、ATP形式的能量和[H]式的还原力一起合成复杂的大分子的过程. 第一节微生物的能量代谢 能量代谢的中心任务是生物体如何把外界环境中多种形式的最初能源转换成对一切生命活动都能使用的通用能源——ATP。对微生物来说,它们可利用的最初能源有三大类即:有机物、日光和还原态无机物。 一、异养微生物的生物氧化 生物氧化是发生在活细胞内的一系列产能性氧反应的总称。生物氧化的形式包括某物质与氧结合、脱氢或失去电子;生物氧化的过程可分为脱氢(或电子)、递氢(或电子)和受氢(或电子)三个阶段;生物氧化的功能则有产能、产还原力和产小分子中间代谢物三种。异养微生物氧化有机物的方式,根据氧化还原反应中电子受体的不同可分成发酵和呼吸两种类型,而呼吸以可分为有氧呼吸和无氧呼吸两种方式。 1.发酵

发酵是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完成氧化的某种中间产物,同时释放能量并产生各种不同的代谢产物。在发酵条件下有机化合物只是部分地被氧化,因此只释放出一小部分的能量。发酵过程的氧化是与有机物的还原偶联在一起的。被还原的有机物来自于初始发酵的分解代谢,即不需要外界提供电子受体。 发酵的种类有很多,可发酵的底物有糖类、有机酸、氨基酸等,其中以微生物发酵葡萄糖最为重要。生物体内葡萄糖被降解成丙酮酸的过程称为糖酵解,主要分为四种途径:EMP、HMP、ED、磷酸解酮酶途径。 (1)E MP途径 整个EMP途径大致可分为两个阶段。第一阶段可认为是不涉及氧化还原反应及能量释放的准备阶段,只是生成两分子的主要中间代谢产物:甘油醛-3-磷酸。第二个阶段发生氧化还原反应,合成ATP并形成两分子的丙酮酸。在糖酵解过程中,有两分子ATP用于糖的磷酸化,但合成出四个分子的ATP,因此每氧化一个分子的葡萄糖净得两个ATP。 在两分子的1,3-二磷酯甘油酸的合成过程中,两分子NAD+被还成为NADH。然而,细胞中的NAD+供应是有限的,假如所有的NAD+都转化为NADH,葡萄糖的氧化就得停止。因为甘油-3-磷酸的氧化反应只有在NAD+存在时才能进行。这一路径可以通过将丙酮酸还原,使NADH 氧化重新成为NAD+而得以克服。例如在酵母细胞中丙酮酸被还原成为乙醇,并伴有CO2的释放。而在乳酸菌细胞中,丙酮酸被还原成乳酸。对于原核生物细胞,丙酮酸的还原途径是多样的,但有点是一致的:NADH必须重新被还原成NAD+,使得酵解过程中的产能反应得以进行。 EMP途径可为微生物的生理活动提供ATP和NADH,其中间产物又可为微生物的合成代谢提供碳骨架,并在一定的条件下可逆转合成多糖。 (2)H MP HMP途径是从葡萄糖-6-磷酸开始的,HMP途径的一个循环的最终结果是一分子葡萄糖-6-磷酸转变成一分子甘油醛-3-磷酸,三分子CO2和六分子NADPH。一般认为HMP途径合成不是产能途径,而是为生物合成提供大量的还原力(NADPH)和中间代谢产物。如核酮糖-5-磷酸是合成核酸,某些辅酶及组氨酸的原料。另外HMP途径中产生的核酮糖-5-磷酸,还可以转化为核酮糖-1,5-二磷酸,在羧化酶作用下固定CO2,对于光能自养菌、化通自养菌具有重要意义。虽然这条途径中产

微生物的产能代谢

5.2微生物的产能代谢 代谢(metabolism)是细胞内发生的各种化学反应的总称,它主要由分解代谢(catabolism)和合成代谢(anabolism)两个过程组成。 分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。一般可将分解代谢分为三个阶段(图 3.6):第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更为简单的乙酰辅酶A、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产 生一些ATP、NADH及FADH 2;第三阶段是通过三羧酸循环将第二阶段产物完全降解生成CO 2 , 并产生ATP、NADH及FADH 2 。第二和第三阶段产生的ATP、NADH及FADH2通过电子传递链被氧化,可产生大量的ATP。

合成代谢是指细胞利用简单的小分子物质合成复杂大分子的过程,在这个过程中要消耗能量。合成代谢所利用的小分子物质来源于分解代谢过程中产生的中间产物或环境中的小分子营养物质。 在代谢过程中,微生物通过分解代谢产生化学能,光合微生物还可将光能转换成化学能,这些能量除用于合成代谢外,还可用于微生物的运动和运输,另有部分能量以热或光的形式释放到环境中去。微生物产生和利用能量及其与代谢的关系见图3.7。 5.2.1生物氧化: 分解代谢实际上是物质在生物体内经过一系列连续的氧化还原反应,逐步分解并释放能量的过程,这个过程也称为生物氧化,是一个产能代谢过程。在生物氧化过程中释放的能量可被微生物直接利用,也可通过能量转换储存在高能化合物(如ATP)中,以便逐步被利用,还有部分能量以热的形式被释放到环境中。不同类型微生物进行生物氧化所利用的物质是不同的,异养微生物利用有机物,自养微生物则利用无机物,通过生物氧化来进行产能代谢。 1.异养微生物的生物氧化 异养微生物氧化有机物的方式,根据氧化还原反应中电子受体的不同可分成发酵和呼吸两种类型,而呼吸又可分为有氧呼吸和无氧呼吸两种方式。

相关主题
文本预览
相关文档 最新文档