当前位置:文档之家› 关于脉冲功率电源的介绍

关于脉冲功率电源的介绍

关于脉冲功率电源的介绍
关于脉冲功率电源的介绍

关于脉冲功率电源的介绍

在全球化的发展环境下,各国为了提高自身的综合竞争力,均十分关注科学技术的应用。脉冲功率技术作为重要的技术之一,该技术的发展始于20世纪60年代,在多个领域均有着较为广泛的应用,其中在国防领域扮演着重要的角色。文章主要研究了脉冲功率电源的概况,并分析了其发展的技术阻碍,为了实现其快速的发展,要对其中存在的问题进行有效处理,在此基础上,脉冲功率技术的发展才能够更加稳定,同时,我国的国防竞争力也将不断增强。

标签:脉冲功率电源;电容器组;发电机系统;电池组;技术阻碍

当前,电源的相关问题得到了广泛的关注,其中最敏感的为小型化电源问题。在科学技术的支持下,电源的小型化得到了快速的发展,此类电源的应用是广泛的,其作用日益显著。但小型化电源的发展也存在不足,为了促进其发展,需要对先进的技术进行积极的、全面的运用。在此背景下,文章研究了脉冲功率电源,该电源是借助不同方式进行提供的,具体的方式有电容器组、发电机系统、电感储能系统与蓄电池组等。脉冲功率电源的应用满足了国防武器系统的电能需求,为我国国防工作的开展奠定了坚持的基础。

1 脉冲功率电源的概况

1.1 电容器组

目前,在工业、军事等领域对电容器的应用具有一定的普遍性,其中在电磁炮中的应用取得了良好的效果。随着电磁炮的快速发展,对电容器组的要求不断提高,在脉冲形状控制方面,利用了闭合开关;在能量存储密度方面,利用了新的介电材料,在此基础上,电容器组得到了进一步的发展,进而适应了实际应用的需求[1]。

对于脉冲功率电源而言,作为电源的电容器组存在一定的不足,主要为偏低的转化效率,同时,其充电状态未能保持长期性。为了有效解决此问题,需要借助高功率的大型充电设备,以此保证充电的快速与便捷,与此同时,工作电压也将得到控制。在此基础上,电容器组拥有较大的体积,但在军事领域对于武器系统的体积有着严格的要求。因此,在轨道炮系统中,电容器组的应用缺少针对性与时效性,此时的电源未能适应军事发展的需要。

在对电容器组展开设计过程中,要关注其热量的控制。对于电容器的介电材料而言,通常情况,均属于电绝缘体与热绝缘体。在炮弹发射时,电容器内部的热量将不断升高,为了保证电容器组的安全性,要对其给予高度的重视[2]。

1.2 发电机系统

关于电磁炮发电机的研究,其应用的类型较多,主要有单极脉冲发电机、补

三电源的外特性及电源的等效变换

实验三 电源的外特性及电源的等效变换 一、 实验目的 1. 了解电压源和电流源的外特性。 2. 了解实际电源的外特性。 3. 掌握实际电源两种模型之间等效变换的条件。 二、 实验仪器 直流稳压电源 直流稳流电源 元件箱 直流电压表 直流电流表 三、 预习要求 1. 了解直流稳压电源、直流稳流电源、直流电压表、直流电流表的使用方法。 2. 复习电压源与电流源的外特性。 3. 复习实际电源两种模型之间等效变换的条件。 4. 自拟数据记录表格。 四、 实验原理 1. 电压源的外特性 电压源的源电压u (t )是确定的时间函数,与其中电流的大小无关(短路除外),其外特性为u-i 平面上平行于电流轴的直线,如图1-7所示。在测试外特性时,对于直流电压源,可用直流稳压电源(在额定电流范围内)近似代替。 2. 电流源的外特性 电流源的源电流i (t )是确定的时间函数,与其端电压大小无关(开路除外),其外特性为u-i 平面上平行于电压轴的直线,如图1-8所示。测试外特性时,对于直流电流源,可用稳流电源(在额定电压范围内)近似代替。 图1-7 电压源及其外特性 图1-8 电流源及其外特性 3. 实际电源的两种模型及其外特性 实际电源对外供电时,内部总是有功率损耗的,因此实际电源的电路模型中是有内阻的。实际电源有两种电路模型:一种是电压源Us 串联电阻Ro ,其端电压随外电路 L R L

电流的增大而减小,如图1-9所示;一种是电流源Is 并电导Go ,其端电流随端电压的增大而减小,如图1-10所示。在实验室中,实际电源可以用稳压电源串电阻和稳流电源并电导来模拟。 图1-9 实际电压源模型及其外特性 图1-10 实际电流源模型及其外特性 4.实际电源两种模型的等效变换 当两个电路的端口特性(也即端口特性方程)一致时,由于它们的对外作用相同,所以可以将这两个电路相互替换,替换之后不影响外电路的响应。这样的两个电路称为等效电路,等效电路之间进行的相互替换称为电路的等效变换。同时,等效变换的结果只是对外等效,对内并不一定等效。 对于实际电源的两种模型,在满足端口特性方程一致的条件下,可以相互等效变换,其等效变换的具体条件如图1-11所示。 图1-11 电源的等效变换 五、 实验内容 按照图1-12联线。改变R L 值,对下面要求测试的每一项内容,分别测六组对应的电压和电流值,填入自拟表格中(参照表1-5)。 图1-12 电源外特性的测试 R L R L R L R Us=IsRo Go=1/Ro L

脉冲半导体激光器驱动电源的设计

脉冲半导体激光器驱动电源的设计 作者:张琳, 马家驹, 胡文华, ZHANG Lin, MA Jia-ju, HU Wen-hua 作者单位:张琳,ZHANG Lin(华北科技学院,北京,101601), 马家驹,胡文华,MA Jia-ju,HU Wen-hua(北京航空制造工程研究所,北京,100024) 刊名: 激光杂志 英文刊名:LASER JOURNAL 年,卷(期):2009,30(4) 被引用次数:0次 参考文献(3条) 1.Walterr Koechner Solid-state Laser Engineering 2006 2.范贤光.孙和义.唐文彦基于FPGA技术的半导体激光器脉冲驱动电源的设计[期刊论文]-激光杂志 2007(02) 3.房晓俊激光二级管泵浦的小型固体激光技术的研究 1997 相似文献(2条) 1.期刊论文张寿棋.楼祺洪.周军.董景星.ZHANG Shou-qi.LOU Qi-hong.ZHOU Jun.DONG Jing-xing连续可调纳秒 脉冲LD驱动电源的研制-激光技术2008,32(4) 为了满足单模尾纤输出脉冲半导体激光器及其后级光放大的要求,研制了一种重频、脉宽及峰值电流均连续可调的纳秒脉冲驱动电源.该电源使用功率场效应管作为开关,通过分析其驱动特性,采用合适的栅极驱动电路,从而缩短了脉冲宽度,增加了带负载能力;同时电源中的保护电路采用自断电等保护措施,能有效保证LD的安全工作.实验结果表明,该驱动电源工作稳定,能满足单模尾纤输出脉冲LD重频、脉宽、峰值可调的要求. 2.学位论文陆晓元纳秒脉冲半导体激光器驱动电源研究2008 本文阐述纳秒脉冲半导体激光器驱动电源的研制,对元件选择电路、有源脉冲变压器、纳秒脉冲产生电路的设计进行了详细介绍。 采用了基于Marx Bank形式的纳秒脉冲生成电路来产生纳秒脉冲,其特征是采用有源脉冲变压器连接纳秒脉冲源和高速纳秒脉冲形成电路;采用有源脉冲变压器作为触发脉冲和纳秒脉冲电路的隔离电路,提高了触发脉冲电路元件寿命,保护了触发脉冲电路,纳秒脉冲产生电路的工作电压降低了20V左右;纳秒脉冲产生电路采用表面贴装元件,与插针式元件电路相比,纳秒脉冲宽带(FWHM)小于2ns、上升时间小于1ns,最高重复频率为100KHz左右。 通过对设计的纳秒脉冲半导体激光器驱动电源的输出特性进行了测量、分析,发现在一定的范围内改变高速脉冲形成电路的供电电压,输出信号的上升速度和供电电压大致呈现线性关系,脉冲的幅度值也和供电电压呈现线性关系,但是供电电压的变化和脉冲宽度并没有呈现出大致的线性关系,得出在一定范围内,通过改变电压改变了输出脉冲的幅度,以及上升速度的结论。 研究成果可用于窄脉冲LD驱动、超宽带雷达、民用测距、军事用途的隐形目标探测等领域,对国防和民用有重要价值。 本文链接:https://www.doczj.com/doc/2710170470.html,/Periodical_jgzz200904009.aspx 授权使用:北京信息科技大学(bjxxkjdx),授权号:e2281f4c-ae54-421a-976c-9e3c00882328 下载时间:2010年11月28日

高压大功率脉冲电源的设计

1绪论 1.1论文的研究背景 电源设备用以实现电能变换和功率传递,是一种技术含量高、知识面宽、更新换代快的产品。现今已广泛应用到工业、能源、交通、运输、信息、航空、航天、航运、国防、教育、文化等领域。在信息时代,上述各行各业都在迅猛地发展,发展的同时又对电源产业提出了更多更高的要求。显然,电源技术的发展将 带动相关技术的发展,而相关技术的发展反过来又推动了电源产业的发展。当前在电源产业,占主导地位的产品有各种线性稳压电源、通讯用的AC y DC开关电源、DC y DC开关电源、交流变频调速电源、电解电镀电源、高频逆变式整流焊接电源、中频感应加热电源、电力操作电源、正弦波逆变电源、大功率高频高压直流稳压电源、绿色照明电源、化学电源、UPS可靠高效低污染的光伏逆变电 源、风光互补型电源等。而与电源相关的技术有高频变换技术、功率转换技术、数字化控制技术、全谐振高频软开关变换技术、同步整流技术、高度智能化技术、电磁兼容技术、功率因数校正技术、保护技术、并联均流控制技术、脉宽调制技术、变频调速技术、智能监测技术、智能化充电技术、微机控制技术、集成化技术、网络技术、各种形式的驱动技术和先进的工艺技术。 1.2脉冲电源的特点及发展动态 脉冲电源是各种电源设备中比较特殊的一种,顾名思义,它的电压或电流波 形为脉冲状。按脉冲电源的输出特性分类,有高频、低频、单向、双向、高压、低压等不同的分类,具体选择怎样的输出电压、输出电流和开关频率,根据具体的应用场合而定。按脉冲波形分,有矩形波、三角波、梯形波、锯齿波等多种形式,如图1. 1所示。 图1 . 1各种脉冲波形 由于矩形波具有较好的可控性和易操作性,所以这种波形的应用居多。究其本质,

脉冲功率技术

脉冲功率技术 摘要:脉冲功率技术是以较慢的速度将能量储藏在电容器中或者电感线圈中,然后将此电场能获磁场能迅速的释放出来,产生幅值极高的,但持续时间极端的脉冲电压及脉冲电流,从而导致极高功率的脉冲。 关键词:脉冲功率,储能技术 引言:脉冲功率技术中的储能技术包括惯性储能,电容储能,电感储能 一.、脉冲功率技术的发展 脉冲功率技术正式作为一个独立的部门发展,还是近几年的事。事实上作为脉冲功率技术基础的脉冲放电, 早就存在于大自然中。而对脉冲放电的研究则开始于研究天然雷电特性, 以及它对输电线路、建筑物危害及其防护措施。当时这种放电仅限于毫秒级和微秒级。四十年代末期, 就有人开始注意到亚微秒及毫微秒级的高压强流脉冲放电形式。但是, 一方面由于当时客观要求并不迫切;另一方面, 这样快的脉冲放电, 无论在产生技术上, 或者在测量技术上都存在着一定的困难。因此, 其后十多年,这种技术发展并不迅速。六十年代初期, 由于闪光辐射照相和瞬时辐射效应研究的需要, 英国原子能武器研究中心的J.C.马丁所领导的研究小组,开拓了称之为脉冲功率加速器的研究领域, 使毫微秒级脉冲功率技术往前推进了一步。同时, 一些科学技术在发展中受到障碍, 急需找寻新的途径。以微波和激光的发展为例, 利用速调管、行波管等原理去产生大功率高效率毫米或亚毫米微波已经不可能。利用一般方法产生大功率、高效率、波长可调的激光束也不可能。正当人们探索和寻找新的解决途径的时候, 他们发现脉冲功率技术是解决这些问题的良好途径。为此, 美国许多单位, 为桑地亚实验室、物理国际公司、海军研究实验室、康乃尔大学、加利福尼亚大学和斯坦福大学等单位, 对脉冲功

脉冲式激光驱动电源的研究与设计2

脉冲式激光驱动电源的研究与设计 1.1 引言 二十世纪后期到二十一世纪初,超短脉冲激光成为强有力的科学研究手段,使科研上升到一个新的层次。一些国家和部门重点实验室的科研项目,有很大比例围绕着超短脉冲激光及其应用。由于半导体激光器的增益带宽很宽适于产生超短脉冲激光,且体积小、能耗低、寿命长、价格低廉,操作控制简便,特别适用于军用、工业、交通、医学和科研应用[62]。因此,研究如何从LD获得超短脉冲激光就一直受到人们的高度重视,超短脉冲激光器以其自身的优点在激光领域里得到了广泛的应用。大电流超短脉冲半导体激光器可以直接作为仪器使用,它更可以作为系统的一个关键部件、一个激光光源。它将作为火花启动庞大的仪器装备制造业,因此研究如何从半导体激光器获得大电流超短脉冲激光备受重视,也是我国亟待解决的科技问题。目前,美、德、日等国在脉冲驱动源的发展走在了前列,已经达到很高的水平,据文献报道[62,63],他们目前已能获得电流达几十安培甚至上百安培,脉冲宽度达到纳秒,甚至皮秒级的半导体激光器驱动电源,但该电源还处于实验阶段,尚未商品化。一些半导体器件公司研制的LD驱动电源指标也已经很高,并且商品化。如专门生产小型化高速脉冲源著称的A VTECH 公司生产的型号为A VOZ-A1A-B、A V-1011-BDE驱动电源,其电流脉冲峰值可达2A,脉宽为100nS脉冲上升时间仅为10nS,重复频率可达1MHz。并带有通用的接口总线,通用性强,可用于驱动多种类型的半导体激光器。DEI公司的PCO-7210驱动电源脉宽小于50nS,重复频率也达到1MHz,峰值电流为十几安培,但这些产品价格昂贵,需要一到两万美金左右。在国内,对于脉冲式驱动电源的开发,大多用于光纤通信,其对输出电流的要求很低,只有几十毫安即可。由于半导体激光器的增益带宽很宽,适于产生超短脉冲激光,且体积小、能耗低、寿命长、价格低廉,操作控制简便,特别适用于军用、工业、交通、医学和科研应用。因此,研究如何从LD获得超短脉冲激光就一直受到人们的高度重视,超短脉冲激光器以其自身的优点在激光领域里得到了广泛的应用[64,65]。本章通过分析比对,选取快速开关器件VMOSFET作为半导体激光器脉冲驱动电路的核心元件,得到了大电流、窄脉冲输出。本设计具有结构简单、小型化、低电压供电、脉冲指标易于调整等优点。其主要设计指标如下: 1.脉冲宽度最小为30nS且连续可调; 2.脉冲频率在500Hz~50KHz连续可调; 3.最大输出电流峰值为5A。 1.2 超短脉冲驱动电源的设计 1.2.1超短脉冲驱动电源的整体设计 一、脉冲驱动电源的主要技术指标 从半导体激光器脉冲驱动电源的发展趋势来看,驱动技术是向着重复频率变高、功率输出增大、响应时间缩短,脉宽越来越窄的方向发展[66]。 (1)重复频率。重复频率是指电源向负载每秒中放电的次数,它是脉冲电源的一项重要指标。一般情况下,把每秒低于一次的电源叫低重复频率电源;而把

关于脉冲功率电源的介绍

关于脉冲功率电源的介绍 在全球化的发展环境下,各国为了提高自身的综合竞争力,均十分关注科学技术的应用。脉冲功率技术作为重要的技术之一,该技术的发展始于20世纪60年代,在多个领域均有着较为广泛的应用,其中在国防领域扮演着重要的角色。文章主要研究了脉冲功率电源的概况,并分析了其发展的技术阻碍,为了实现其快速的发展,要对其中存在的问题进行有效处理,在此基础上,脉冲功率技术的发展才能够更加稳定,同时,我国的国防竞争力也将不断增强。 标签:脉冲功率电源;电容器组;发电机系统;电池组;技术阻碍 当前,电源的相关问题得到了广泛的关注,其中最敏感的为小型化电源问题。在科学技术的支持下,电源的小型化得到了快速的发展,此类电源的应用是广泛的,其作用日益显著。但小型化电源的发展也存在不足,为了促进其发展,需要对先进的技术进行积极的、全面的运用。在此背景下,文章研究了脉冲功率电源,该电源是借助不同方式进行提供的,具体的方式有电容器组、发电机系统、电感储能系统与蓄电池组等。脉冲功率电源的应用满足了国防武器系统的电能需求,为我国国防工作的开展奠定了坚持的基础。 1 脉冲功率电源的概况 1.1 电容器组 目前,在工业、军事等领域对电容器的应用具有一定的普遍性,其中在电磁炮中的应用取得了良好的效果。随着电磁炮的快速发展,对电容器组的要求不断提高,在脉冲形状控制方面,利用了闭合开关;在能量存储密度方面,利用了新的介电材料,在此基础上,电容器组得到了进一步的发展,进而适应了实际应用的需求[1]。 对于脉冲功率电源而言,作为电源的电容器组存在一定的不足,主要为偏低的转化效率,同时,其充电状态未能保持长期性。为了有效解决此问题,需要借助高功率的大型充电设备,以此保证充电的快速与便捷,与此同时,工作电压也将得到控制。在此基础上,电容器组拥有较大的体积,但在军事领域对于武器系统的体积有着严格的要求。因此,在轨道炮系统中,电容器组的应用缺少针对性与时效性,此时的电源未能适应军事发展的需要。 在对电容器组展开设计过程中,要关注其热量的控制。对于电容器的介电材料而言,通常情况,均属于电绝缘体与热绝缘体。在炮弹发射时,电容器内部的热量将不断升高,为了保证电容器组的安全性,要对其给予高度的重视[2]。 1.2 发电机系统 关于电磁炮发电机的研究,其应用的类型较多,主要有单极脉冲发电机、补

电工实训3 电路元件伏安特性测试与电源外特性测量

电工实训三 电路元件伏安特性的测绘及电源外特性的测量 一. 实训目的 1. 学习测量线性和非线性电阻元件伏安特性的方法,并绘制其特性曲线 2. 学习测量电源外特性的方法 3. 掌握运用伏安法判定电阻元件类型的方法 4. 学习使用直流电压表、电流表,掌握电压、电流的测量方法 二. 实训原理 1. 电阻元件 (1) 伏安特性 二端电阻元件的伏安特性是指元件的端电压与通过该元件电流之间的函数关系。把电阻元件上的电压取为纵(或横)坐标,电流取为横(或纵)坐标,根据测量所得数据,画出电压和电流的关系曲线,称为该电阻元件的伏安特性曲线。 (2) 线性电阻元件 线性电阻元件的伏安特性满足欧姆定律。在关联参考方向下,可表示为:U=IR ,其中R 为常量,称为电阻的阻值,它不随其电压或电流改变而改变,其伏安特性曲线是一条过坐标原点的直线,具有双向性。如图3-1(a )所示。 (3) 非线性电阻元件 非线性电阻元件不遵循欧姆定律,它的阻值R 随着其电压或电流的改变而改变,即它不是一个常量,其伏安特性是一条过坐标原点的曲线,如图3-1(b )所示。 (a) 线性电阻的伏安特性曲线 (b) 非线性电阻的伏安特性曲线 图3-1 伏安特性曲线 2. 直流电压源 (1) 直流电压源 理想的直流电压源输出固定幅值的电压,输出电流大小取决于所连接的外电路,因此其外特性曲线是平行于电流轴的直线,如图3-2(a )中实线所示。 实际电压源的外特性曲线如图3-2(a )虚线所示,在线性工作区它可以用一个理想电压源Us 和内电阻Rs 相串联的电路模型来表示,如图3-2(b )所示。图中角θ越大,说明实际电压源内阻Rs 值越大。实际电压源的电压U 和电流I 的关系式为: I R U U S S ?-= 式(3-1) (2) 测量方法

电源输出功率最大问题

电源输出功率最大问题 一、用配方法求极值 例1.如图所示,已知电源内阻r ,电动势ε,滑动变阻器R 调在何处时,电源输出功率最大(R>r )。 分析:由闭合电路欧姆定律知:I R r ε = +,所以 22222 2 2 2 2 22 2 ( )() 224()44R R R P I R R R r R r R Rr r R Rr r Rr R r Rr r R ε εεεε === = = = -+++-++-++出 由于2 ()0R r -≥,所以当R -r =0即R =r 时,输出功率有最大值2 4P r ε=max 。 结论:当电源的内阻r 等于外电路电阻R 时,电源输出功率最大。 画电源输出功率随外电阻变化的变化规律图像,可采用取值、描点、绘图再连线的步骤得到的图像,也可用Excel 电子表格做出P —R 图像为:【ε=6V ,r =2,R =(0,1,2,3,4,5,6,7,8)】 由图像知:在峰值处R =r 时,电源输出功率最大。最大值为2 4P r ε= max 。 二、根据两项之积为常数,当两项相等时和有最小值求极值 函数b y ax x =+ ,因b ax ab x ?=为常数,所以当b ax x = 即x =y 有最小值 min y = 例2.如图,已知电源电动势ε,内阻r ,外电路电阻R 1和可变电阻R ,在R 由零增加到最大值的过程中,求:可变电阻上消耗的热功率最大的条件和最大热功率。

分析:根据闭合电路的欧姆定律可得电路中的电流为1I r R R ε = ++, 所以2 2 2 2 2 111() () 2()R P I R R r R r R R R r R R εε== = ++++ ++。 讨论电阻R 上消耗的电功率,因为分母中两项之积为常数,当两项相等时,分母有最小值,即当 21()r R R R += ( 1 R r R =+)时, R P 有最大值: 2 2 1112()2() 4() R P r R r R r R εε= = ++++。 例3.如图,已知电源电动势ε和电源电阻r ,外电路电阻R 1与滑动变阻器并联,问滑动变阻器R 调在何处时,在电阻R 上消耗的热电功率最大? 分析:根据闭合电路欧姆定律和串并联电路的特点知: ε=Ir +U 外 ① 112U I R I R ==外 ② 12I I I =+ ③ 则21122211()()I R R R r R r I r I R I R R ε++=+ +=,所以1 211()R I R R r R r ε=++ 2 2 1 2 11( )()R R P I R R R R r R r ε==++ 2212 2 2 1111()2()() R R R R r R rR R r R r ε= ++++ 22 122 1111()()2()R R r R R r R r R r R ε= ++++ 因为分母中两项之积为常数,当两项相等时分母有最小值,即当2 2 11()()R r R R r R += (11R r R R r =+)时,R P 有最大值存在。max 22211 1114()4() R R R P R r R r r R r εε== ++。

连续或脉冲输出功率可调LD驱动电源设计

连续或脉冲输出功率可调LD驱动电源设计 LD(激光二极管)不仅具有一般激光器高单色性、高相干性、高方向性和准直性的特点,还具有尺寸小、重量轻、低电压驱动、直接调制等特性,因而广泛应用于国防、科研、医疗、光通信等领域。然而,由于LD 是一种高功率密度并具有极高量子效率的器件,对于电冲击的承受能力差,微小的电流波动将导致光功率输出的极大变化和器件参数的变化,这些变化直接危及器件的安全使用,因而在实际应用中对驱动电源的性能和安全保护有着很高的要求。在驱动电源的设计过程中,同时考虑对LD 进行安全有效保护,如防止浪涌冲击,慢启动等问题。1 电路结构及原理LD 是依靠载流子直接注入而工作的,注入电流的稳定性对激光器的输出有直接、明显的影响,因此,LD 驱动电源需要 为LD 提供一个纹波小,毛刺少的稳恒电流。该LD 驱动电源包括4 部分:基准电压源,恒流源电路,脉冲控制电路,保护电路。结构框图如图1 所示。 1.1 基准电压源电路基准电压源电路构成如图2 所示,其作用是为恒流源电路提供一个高精度,低温漂的电压参考,同时,为电路中的集成电路(如光耦合器、运算放大器、反相器等)提供稳定工作电压。 LM317 是美国国家半导体公司的三端可调正稳压器集成电路,输出电压范 围是1.2~37 V,负载电流最大为1.5 A,使用简单。其工作过程如下:输出电压Vout 通过R1、VQ1,对C2 充电,开始时VQ1 饱和导通,Vout 最低(约1.5 V)。随着C2 上电压的升高,VQ1 逐渐退出饱和并趋于截止,Vout 逐渐升高至额定电压。改变R1、C2 的常数可改变软启动的时间。改变可变电阻R2 的值,可调整输出电压Vout 的值。VD1 用于关机后使C2 上的电荷快速泄放。其输出电压为:1.2 恒流源电路为了实现高的电流稳定度,驱动电路

纳秒级脉冲电源的研究与设计

纳秒级脉冲电源的研究与设计 随着脉冲功率技术在军事、医疗、环保等领域的快速发展,对于大功率脉冲电源的上升沿宽度要求日益提高,高功率快脉冲也逐渐成为脉冲功率技术的研究热点和发展趋势。而如何以较低的成本在提高脉冲电源电压等级的同时陡化脉冲宽度也是研究的难点之一。 以高压快脉冲为技术核心,以小型化、高重频和高效率为发展方向,本论文提出了一种低成本对称式的脉冲发生拓扑,同时以磁压缩技术陡化脉冲宽度,并深入研究了磁开关的控制技术,以实现高稳定性的纳秒级脉冲电源的研制,论文主要内容分为以下三个部分:1、提出了一种具有对称串联结构的高压脉冲电源拓扑,大幅降低成本;基于这种新型的高压脉冲电源拓扑,分析并初步验证了各种工作环境下的可行性。搭建了该高压脉冲电源的仿真模型,仿真验证了在正常运行和发生闪络等不同状态下电路的工作原理。 在实验室完成了该高压脉冲电源的研制,实验验证了在正常运行和发生闪络等不同状态下对于电路的分析,并在实际应用中证明了该拓扑相对于现有研究的优越性。2、介绍了脉冲磁压缩技术的工作原理,分析了各个磁芯参数对磁开关性能的影响,基于此,确定了磁芯材料的选择,并搭建了磁芯检测平台测量磁芯的磁滞曲线,对比了不同磁芯材料的区别。 基于脉冲电源体积小型化原则,分析了影响磁开关体积的因素,并利用数学模型确定了磁开关参数的最优解。系统地分析了磁复位原理以及磁复位电路与脉冲电源的匹配问题。 最后搭建了30kV/3kW的纳秒级脉冲电源样机,验证了磁复位原理的可行性,以及在高压大功率应用场合可能遇到的问题及其解决方案。3、针对电流型磁复

位方式存在的不足,指出了对于磁开关控制的必要性,并系统地分析了磁开关控制原理,提出了相应的控制方案。 最后基于PLECS软件搭建了35kV的纳秒级脉冲电源的仿真模型,通过仿真验证了控制方案的可行性和稳定性,并从实际应用角度分析了磁开关的最佳工作区间。

基于SiCMOSFET的纳秒级脉冲电源研制

基于SiC MOSFET的纳秒级脉冲电源研制 脉冲功率技术广泛应用于军事、环境保护、生物技术等领域,比如脱硫脱硝、脉冲杀菌、激光管驱动、阴极射线管扫描电路等。传统脉冲电源的主放电开关主要以真空弧光放电管、氢闸流管、火花隙为主,存在成本高、寿命短、外围电路复杂等缺点。 随着电力电子技术的发展,功率MOSFET和IGBT的性能越来越高,众多研究学者利用MOSFET或IGBT串并联组成高压固态开关替代传统放电开关,进而设计出纳秒级上升沿的高重复频率脉冲发生器。本文以SiC MOSFET为核心功率器件,设计了一台纳秒级脉冲电源,电源主要技术指标为:输出脉冲峰值可调范围为 0~30kV,脉冲重复频率为10Hz~1kHz可调,最大输出电流为80A,脉冲上升时间小于100ns。 本论文的主要工作如下:设计了纳秒脉冲电源的拓扑结构,主电路采用三级Marx发生器结构,研究了SiC MOSFET串联开关的静态和动态电压不均衡机制,给出了影响SiC MOSFET串联均压的关键因素。针对静态均压电路的特性,明确了均压电阻的设计方法,对于动态均压电路,采用负载侧RCD电路作为均压措施,并确定了相应参数的选取依据。 对比分析了正激式驱动、半桥驱动、反激驱动三种驱动方式的优缺点,确定采用半桥驱动的方式作为SiC MOSFET的串联驱动电路,该电路的隔离强度高、驱动电路设计方便,其驱动变压器的原边和副边绕组匝数均为1匝,可减少其分布参数的影响。通过实验测试了驱动电路的同步性,其驱动的延迟时间差异小于 10ns,同步性良好。 采用Microchip公司的dsPIC33FJl28MC706作为主控制芯片,整个控制系统

电弧的静特性和电源的外特性

电弧的静特性: 在电极材料、气体介质和弧长一定的情况下,电弧稳定燃烧时焊接电流和电弧电压变化的关系称为电弧的静特性。电弧静特性曲线呈U形,它有三个不同的区域(I、II、III)。当电流在I区较小时,电弧静特性属于下降特性区,随着电流的增加,电弧电压减小;当电流在II时,电弧特性属于水平特性区,当电流变化是而电弧电压几乎不变;当电流在III区内增大时,电弧特性属于上升特性区,电弧电压随电流的增大而升高。 不同的电弧焊接方法,其电弧在正常的使用范围内只工作于静特性曲线中的某一段或两段上。如焊条电弧焊的电弧主要工作于I和II区,当弧长变化时静特性曲线上下平移,弧长越长静特性曲线向上移动量越大,弧长过长时断弧。工作在II区的有埋弧焊、不熔化极气体保护焊和微束等离子弧焊等弧焊方法。工作在III区的有细丝熔化极气体保护焊、等离子弧焊和水下焊等弧焊方法。 焊条电弧焊的电弧对电源的要求: 电弧焊机是为电话提供电能的装置,为了保证电弧稳定工作的要求,弧焊电源在工艺性能和结构方面应该达到引弧容易;保证电弧稳定燃烧;保证焊接电流、电弧电压等工艺参数稳定;可以方便调节焊接工艺参数,以适应焊接不同性质和厚度不同的钢板;电源节能环保、质量轻、结构简单、制造成本低;安全可靠、工作性能良好、维修简单方便等。 为了达到以上要求弧焊电源应该具备以下性能。 弧焊电源具有下降的外特性曲线:在电弧稳定燃烧时,焊接电源输出稳定电流和电源输出稳定电压间的关系称为电源的外特性。电弧焊时,弧焊电源供电,电弧是电源用电的负载,电源与电弧构成完整的供电系统,为保证该系统的稳定性电源外特性曲线的形状和电弧静特性曲线的形状必须适当配合。 弧焊电源的外特性包括下降特性、平特性和上升特性。下降的外特性曲线是随着弧焊电源输出电流的增大,电源的输出电压下降。对于焊条电弧焊电源一般要求为陡降的外特性曲线。 电弧的静特性曲线与电源的外特性曲线的交点就是电弧燃烧的工作点,焊条电弧焊采用的下降特性曲线与电弧的静特性曲线交点有两点。 电弧电源具有适当的空载电压:外特性曲线上,焊接电流为0时的输出电压称为空载电压,它与电弧的引弧性能、电弧的稳定性有关。空载电压太低使引弧困难,电弧燃烧不稳定。过高则生产成本高,焊工的安全性差。 适当的短路电流:焊条电弧焊电弧的产生是通过电极与焊件进行短路后,提起焊条产生的,短路时电弧电压为0,如果短路电流过大,不但会因过载引起焊机过热以致烧坏,同时还会使焊条过热引起药皮脱落,液态金属飞溅增多;相反,短路电流太小,会使引弧和熔滴过渡发生困难。 弧焊电源能方便的调节焊接电流。焊条电弧焊接不同厚度的焊件,不同位置的焊缝,采用不同的焊条直径和适应不同的接头形式都是通过调节焊接电流来实现的。为此要求弧焊电源应该能在一定的范围内,对焊接电流灵活、均匀地进行调整。电流的调节是通过改变电源外特性来实现的。 弧焊电源具有良好的动态特性。为了适应电弧长短变化和经常短路的需要,要求弧焊电源供给的电压和电流能够随着负载的改变而迅速改变。所以动态品质是用来表示弧焊电源对负载瞬时变化的反应能力。它对电弧的燃烧稳定性、熔滴过渡、金属飞溅、焊缝成形等有

脉冲功率技术

华中科技大学研究生课程考试答题本 考生姓名李猛虎 考生学号 M201371361 系、年级高电压与绝缘技术2013级类别硕士 考试科目脉冲功率技术 考试日期 2013年12月15日

脉冲功率技术是指把较小功率的能量以较长时间慢慢输入到能储存能量的设备中,然后通过动作时间在毫微秒左右的快速开关将此能量在毫微秒至微秒时间内释放到负载上,以得到极高的功率,实质上是输出功率对输入功率的放大。脉冲功率系统中能量的储存方式有许多种,如电容储能,电感储能,脉冲电机储能以及电池储能等。脉冲功率技术研究的技术指标为:电压1kV~10MV,电子能量0.3~15MeV(电子伏),述流大小1kA~10MA,脉冲宽度0.1~100ns,束流功率0.1~100TW,总能量:1kJ~15MJ。脉冲功率技术的特征是:高脉冲功率,短脉冲持续时间,高电压,大电流。 脉冲功率技术,是以电气科学技术为基础,把电工新技术和高电压-大电流技术融为一体的新型学科。脉冲功率技术在国防科研和高新技术领域有着极为重要的应用,而且现在已经越来越多地应用于工业和民用部门,它是高新技术研究的重要技术基础之一,有着极其广泛的发展和应用前景。 脉冲功率的发展历程 脉冲放电现象存在于大自然。人们最早是在20世纪30年代开始研究脉冲功率现象。1938年,美国人Kingdon和Tanis第一次提出用高压脉冲电源放电产生微秒级脉宽的闪光X 射线;1939年,苏联人制成真空脉冲X射线管,并把闪光X 射线照相技术用于弹道学和爆轰物理学实验。采用高压脉冲电容器并联充电、串联放电方式来获得较高电压脉冲。第二次世界大战期间,企图将脉冲功率技术应用于军事的电磁炮和其他研究再度兴起,也促进了脉冲功率科学技术的形成和发展。1947年,英国人A.D.Blumlien以专利的形式,把传输线波的折反射原理用于脉冲形成线,在纳秒脉冲放电方面取得了突破。1962年,英国原子能研究中心的J.C.Martin领导的研究小组,将Marx发生器与Blumlien的专利结合起来,建造了世界上第一台强流相对论电子束加速器SOMG(3MV,50kA,30ns),脉冲功率达TW(1012W)量级,开创了高功率脉冲技术的新纪元。1986年建成PBFA-II 装置,其峰值电压为12MV、电流8.4MA、脉宽40ns,其二极管束能为4.3MJ,脉冲功率1014W,是世界上第一台功率闯过100TW 大关的脉冲功率装置。 美国和俄罗斯目前在脉冲功率技术上处于领先地位。美国从事脉冲功率技术研究的机构有Sandia国家实验室、Lawrence Livermore国家实验室、Maxwell实验室、Los Alamos科学实验室、海军武器研究中心、Texas技术大学等。1967年在Sandia 实验室建成的Hermes2I 为当时最大的脉冲功率装置;1972年美国陆军的Hary Diamond实验室建成了Aurora装置,这个设备由4台Marx发生器组成,是脉冲功率史上的一个里程碑;1986年Sandia实验室又建成了FBFA2II,是世界上第1个闯过100TW 大关的装置。俄罗斯从事脉冲功率技术研究的机构有库尔恰托夫研究所、新西伯利亚核物理所、托姆斯科大电流电子学研究所、电物理装备所、列别捷夫所等, 建造了许多大型的Marx成形线型联合装置,1985 年建成的AHrapa25就是其中之一。日本的脉冲功率技术主要应用于强流粒子束加速器,特别重视轻离子的惯性约束聚变。从事脉冲功率技术研究的机构有东京大学、熊本大学、大阪大学、长岗技术大学等, 较著名的装置有大阪大学的Raiden2IV和1986年长岗技术大学建成ETIGO 2II。

脉冲式激光驱动电源研究报告与设计方案

脉冲式激光驱动电源的研究与设计 1.1引言 二十世纪后期到二十一世纪初,超短脉冲激光成为强有力的科学研究手段,使科研上升到一个新的层次。一些国家和部门重点实验室的科研工程,有很大比例围绕着超短脉冲激光及其应用。由于半导体激光器的增益带宽很宽适于产生超短脉冲激光,且体积小、能耗低、寿命长、价格低廉,操作控制简便,特别适用于军用、工业、交通、医学和科研应用[62] 。因此,研究如何从LD获得超短脉冲激光就一直受到人们的高度重视,超短脉冲激光器以其自身的优点在激光领域里得到了广泛的应用。大电流超短脉冲半导体激光器可以直接作为仪器使用,它更可以作为系统的一个关键部件、一个激光光源。它将作为火花启动庞大的仪器装备制造业,因此研究如何从半导体激光器获得大电流超短脉冲激光备受重视,也是我国亟待解决的科技问题。目前,美、德、日等国在脉冲驱动源的发展走在了前列,已经达到很高的水平,据文献报道[62,63],他们目前已能获得电流达几十安培甚至上百安培,脉冲宽度达到纳秒,甚至皮秒级的半导体激光器驱动电源,但该电源还处于实验阶段,尚未商品化。一些半导体器件公司研制的LD 驱动电源指标也已经很高,并且商品化。如专门生产小型化高速脉冲源著称的AVTECH 公司生产的型号为AVOZ-A1A-B 、AV-1011- BDE驱动电源,其电流脉冲峰值可达2A,脉宽为100nS脉冲上升时间仅为10nS ,重复频率可达1MHz 。并带有通用的接口总线,通用性强,可用于驱动多种类型的半导体激光器。DEI公司的PCO- 7210驱动电源脉宽小于50nS,重复频率也达到1MHz ,峰值电流为十几安培,但这些产品价格昂贵,需要一到两万美金左右。在国内,对于脉冲式驱动电源的开发,大多用于光纤通信,其对输出电流的要求很低,只有几十毫安即可。由于半导体激光器的增益带宽很宽,适于产生超短脉冲激光,且体积小、能耗低、寿命长、价格低廉,操作控制简便,特别适用于军用、工业、交通、医学和科研应用。因此,研究如何从LD获得超短脉冲激光就一直受到人们的高度重视,超短脉冲激光器以其自身的优点在激光领域里得到了广泛的应用[64,65]。本章通过分析比对,选取快速开关器件VMOSFET 作为半导体激光器脉冲驱动电路的核心元件,得到了大电流、窄脉冲输出。本设计具有结构简单、小型化、低电压供电、脉冲指标易于调整等优点。其主要设计指标如下: 1.脉冲宽度最小为30nS且连续可调; 2.脉冲频率在500Hz~50KHz 连续可调; 3.最大输出电流峰值为5A 。 1.2 超短脉冲驱动电源的设计 1.2.1超短脉冲驱动电源的整体设计 一、脉冲驱动电源的主要技术指标从半导体激光器脉冲驱动电源的发展趋势来看,驱动技术是向着重复频率变高、功率输出增大、响应时间缩短,脉宽

亡的多参数可调高压纳秒脉冲发生器_图文(精)

1llO仪器仪表学报第3l卷 3高压纳秒脉冲发生器的研制 高压纳秒脉冲发生器的原理框图如图3所示,该装置主要由高压直流电源、纳秒脉冲形成系统和脉冲整形及计数系统三大部分组成。 纳秒脉冲形成系统 …………….企……………. 钮刮里h—习■刭一传:感厶畸器ry t 图3高压纳秒脉冲发生器基本原理框图 Fig.3The basic principles of the hish—voltage nanosecond pulse generator

高压纳秒脉冲发生器基本原理:高压直流电源通过限流保护电阻向LC形成线网络充电,在达到自击穿开关阈值电压时,自击穿开关瞬间击穿并在匹配负载(50Q处产生幅值为充电电压一半的高压纳秒方波脉冲。电流传感器在放电回路中采集脉冲电流,经过滤波、脉冲整形处理电路引入脉冲计数器,在脉冲输出重复频率一定时,通过计数器内置继电器控制整个装置的电源输入,从而实现本装置治疗时间窗口可控。 3.1高压直流电源 为减小装置的体积和重量,满足医用设备便携、简单可靠特性,高压直流电源采用高压恒流源(天津东文DW—IX303.1FlD。输出电压:DC O一+30kV;最大输出电流:l mA,电源配有电流、电压显示模块和调节电位器,并具有过压、过流保护模块。通过调节电源输出电流来控制LC形成线网络的充电速度,进而控制自击穿开关的闭合频率,最终实现装置输出脉冲重复频率可调,便于寻找最佳肿瘤细胞治疗剂量。 3.2纳秒脉冲形成系统 纳秒脉冲形成系统主要由LC网络、自击穿开关和负载电阻组成。 高陡度方波脉冲所包含的高频分量将有助于肿瘤细胞内电处理效应,进一步提高肿瘤细胞凋亡率及治疗效果,因此如何提高输出脉冲上升沿陡度是本装置的关键技术之一。根据电路理论¨…,脉冲的上升时间与杂散电感成正比,因此本装置主要从两个方面提高方波前沿的陡度。一方面在设计过程中,选择优质无感电容、电阻;合理布线,尽量减小回路所包含的面积,以减小回路杂散电感。另一方面,设计低导通时延的高性能自击穿开关。 3.2.1LC网络 高压电容选用无感陶瓷电容(西安九元CT8-1。电容值200pF,充分考虑裕度,电容耐压值选40kV。

(整理)高功率脉冲电源

高功率脉冲电源 学院(系):电气工程学院班级:1113班 学生姓名:高玲 学号:21113043 大连理工大学 Dalian University of Technology

1分类及结构原理 高功率脉冲最早始于30年代,随着用电容器放电产生X射线的出现,经过了几十年的发展,目前高功率脉冲电源应用范围非常广泛,例如用于闪光X射线照相、高功率激光、大功率微波、电磁脉冲、电磁发射(或推进)、粒子束武器和电磁成形等离子体物理与受控核聚变研究、核爆炸模拟等方面。‘ 如图1所示。高功率脉冲电源包括初级能源、中间储能脉冲成形系统及转换系统等几个部分。 图1. 高功率脉冲电源组成框图 脉冲功率的形成过程是:首先经过慢储能,使初级能源具有足够的能量;其次,向中间储能和脉冲形成系统注入能量;再次,能量经过储存、压缩、形成脉冲或转化,等复杂过程之后,最后快速释放给负载。 (1)初级能源为小功率的能量输入设备,如电容器的充电机、电感线圈的励磁电源、飞轮电机的拖动电机,其能源来在电网。 (2)中间储能设备有以电容器和Marx发生器为例的电场储能,以常温或超导电感线圈为例的磁场储能,以各类具有转动惯量的脉冲发电机为主的机械储能,以蓄电池、磁流体发电机、爆炸磁通压缩发生器为代表的化学储能,以及以核能磁流体发电机为例的核能初级能源,等等。 (3)能量转换与释放系统主要包括各种大容量闭合开关和断路开关及各种波形调节技术设备。 脉冲功率装置初级能源的储能方式主要包括:以电场形式储能的电容器、以磁场方式储能的电感器、机械能发电机、化学能装置以及核能等。如表1所示。 (1)电容储能简单、技术成熟,因此它的应用最为广泛,如惯性约束、强激光、粒子束武器、大功率微波等。世界上一些著名的脉冲功率装置都采用电容储能放电回路,如美国的PBFA.II等。 (2)电感储能最大的优点是储能密度大,所以倍受研究者的关注。电感储能技术在诸如受控等离子体物理、受控核聚变、电磁推进等现代科学技术领域中,都有着极为重要的应用。 (3)机械储能具有储能密度高、结构紧凑、易做成移动式,且提取十分方便等优点,因此也得到了广泛的应用。目前,其主要的应用领域有:近代同步加速器、托卡马克热核装置、等离子体。箍缩、大型风洞装置、大截面金属对头焊接等。

纳秒脉冲电源硬件设计

自动化学院 本科毕业设计(论文)题目:纳秒脉冲电源硬件设计

摘要 脉冲电源有单正脉冲和双正、负脉冲电源,采用独特的调制技术,数字化控制,是高频开关电源技术的进一步发展与创新,在很多行业领域得到了广泛的应用。提高脉冲频率和电源效率是其主要的发展方向。而本设计文主要用单片机STC89C51作为微控制器和可编程逻辑器件CPLD EPM7160STC100-10,通过对CPLD 的编程实现对脉冲的调节。其中电源的控制主要有CPLD来完成,CPLD负责对脉冲宽度、脉冲间隔进行控制,把控制信息传递给下一级。其中CPLD的输入端可以由键盘输入也可以由计算机进行控制。这样就可以利用模块化设计的方法对电源硬件模块进行设计,开发出了全新的数字化的纳秒双脉冲电源,电压在0-15V,脉冲频率10M以上最小脉宽10ns。并运用Quartus对脉冲波形进行仿真,结果表明该电源完全符合设计的要求。 关键词:纳秒脉冲;脉冲电源; CPLD

ABSTRACT Pulse power with a single positive pulse and double positive, negative pulse power,Unique modulation technique,digital control, Further development and innovation of high-frequency switching power supply technology, In many industries has been widely applied. Improve the pulse frequency and power efficiency is the main direction of development. The text of this design is mainly used as a single-chip microcontroller STC89C51 and Programmable logic device CPLD EPM7160STC100, By programming the CPLD realize the pulse of the regulation. Which controls the power supply to complete the main CPLD, CPLD is responsible for the pulse width, the pulse interval are controlled. The control information is passed to the next level. CPLD inputs which can be entered from the keyboard can also be controlled by the computer. This method can be used for modular design of the power supply design of hardware modules, Developed a new digital dual-nanosecond pulse power, a voltage of 0 to 15V, pulse frequency than 10M,and the minimum pulse width 10ns. And the use of a pulse waveform simulation Quartus, The results show that the power supply is fully consistent with the design requirements. Keywords nanosecond pulse ; pulse power supply; CPLD

相关主题
文本预览
相关文档 最新文档