当前位置:文档之家› 高中物理光电效应知识点(可编辑修改word版)

高中物理光电效应知识点(可编辑修改word版)

高中物理光电效应知识点(可编辑修改word版)
高中物理光电效应知识点(可编辑修改word版)

一、光电效应和氢原子光谱

知识点一:光电效应现象

1.光电效应的实验规律

(1)任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于这个极限频率则不能发生光电效应.

(2)光电子的最大初动能与入射光的强度无关,其随入射光频率的增大而增大.

(3)大于极限频率的光照射金属时,光电流强度(反映单位时间内发射出的光电子数的多少)与入射光强度成正比.

(4)金属受到光照,光电子的发射一般不超过10-9_s.

2.光子说

爱因斯坦提出:空间传播的光不是连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比,即:ε=hν,其中h=6.63×10-34 J·s.

3.光电效应方程

(1)表达式:hν=E k+W0或E k=hν-W0.

(2)物理意义:金属中的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克

1

服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能E k=m v2.

2

知识点二:α粒子散射实验与核式结构模型

1.卢瑟福的α 粒子散射实验装置(如图13-2-1 所示)

2.实验现象

绝大多数α 粒子穿过金箔后,基本上仍沿原来的方向前进,但少数α 粒子发生了大角度偏转,极少数α 粒子甚至被撞了回来.如图13-2-2 所示.

α 粒子散射实验的分析图

3.原子的核式结构模型

在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.

知识点三:氢原子光谱和玻尔理论

1.光谱

(1)光谱:用光栅或棱镜可以把光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱.

(2)光谱分类

有些光谱是一条条的亮线,这样的光谱叫做线状

谱.有的光谱是连在一起的光带,这样的光谱叫做连

续谱.(3)氢原子光谱的实验规律.

1 1 1

巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式=R( -)(n=3,4,5,…),R

λ22 n2

是里德伯常量,R=1.10×107 m-1,n 为量子

数.2.玻尔理论

(1)

定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,

电子虽然绕核运动,但并不向外辐射能量.

(2)

跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子

的能量由这两个定态的能量差决定,即hν=E m-E n.(h 是普朗克常量,h=6.63×10-34 J·s)

(3)

是不连续的,因此电子的可能轨道也是不连续的.

点拨:易错提醒

(1)一群氢原子跃迁发出可能的光谱线数为N=C2n=n(n-1)

2

的光谱线数最多为(n-1).

(2)由能级图可知,由于电子的轨道半径不同,氢原子的能级不连续,这种现象叫能量

量子化.

考点一:对光电效应的理解

1.光电效应的实质

光子照射到金属表面,某个电子吸收光子的能量使其动能变大,当电子的动能增大到足以克服原子核的引力时,便飞出金属表面成为光电子.

2.极限频率的实质

光子的能量和频率有关,而金属中电子克服原子核引力需要的能量是一定的,光子的能量必须大于金属的逸出功才能发生光电效应.这个能量的最小值等于这种金属对应的逸出功,所以每种金属都有一定的极限频率.

3.对光电效应瞬时性的理解

光照射到金属上时,电子吸收光子的能量不需要积累,吸收的能量立即转化为电子的能量,因此电子对光子的吸收十分迅速.

4.

光电效应方程

图13-2-4

电子吸收光子能量后从金属表面逸出,其中只有直接从金属表面飞出的光电子才具有最

大初动能,根据能量守恒定律,E k=hν-W0.如图13-2-4 所示.

5.用光电管研究光电效应

(1)常见电路(如图13-2-5 所示)

图13-2-5

(2)两条线索

①通过频率分析:光子频率高→光子能量大→产生光电子的最大初动能大.

②通过光的强度分析:入射光强度大→光子数目多→产生的光电子多→光电流大.

(3)常见概念辨析

Error!

规律总结:

(1)光电子也是电子,光子的本质是光,注意两者的区别.

(2)在发生光电效应的过程中,并非所有光电子都具有最大初动能,只有从金属表面直接发出的光电子初动能才最大.

,一个氢原子跃迁发出可能

考点二:氢原子能级和能级跃迁

1. 氢原子的能级图

能级图如图 13-2-6 所示.

图 13-2-6

2. 能级图中相关量意义的说明

相关量 意义

能级图中的横线

表示氢原子可能的能量状态——定态

横线左端的数字“1,2,3…”

表示量子数

横线右端的数字

“-13.6,-3.4…”

表示氢原子的能量

相邻横线间的距离

表示相邻的能量差,量子数越大相邻的能量差越小,距离越

带箭头的竖线

表示原子由较高能级向较低能级跃迁,原子跃迁的条件为 hν

=E m -E n

3. (1) 一群氢原子跃迁发出可能的光谱线条数为 N =C 2n =n (n -1)

2

. (2) 一个氢原子跃迁发出可能的光谱线条数最多为(n -1).

二、核反应和核能

知识点一:天然放射现象和衰变

1. 天然放射现象 (1)

天然放射现象.

元素自发地放出射线的现象,首先由贝可勒尔发现.天然放射现象的发现,说明原子核具有复杂的结构.

(2)放射性和放射性元素.

物质发射某种看不见的射线的性质叫放射性.具有放射性的元素叫放射性元

素. (3)三种射线:放射性元素放射出的射线共有三种,分别是 α 射线、β 射线、γ 射线. (4)放射性同位素的应用与防护.

①放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同.

②应用:消除静电、工业探伤、作示踪原子等. ③防护:防止放射性对人体组织的伤害. 2. 原子核的衰变

(1)原子核放出α 粒子或β 粒子,变成另一种原子核的变化称为原子核的衰变.

(2)分类

α 衰变:A Z X→A Z-24Y+42He

β 衰变:A Z X→Z+A 1Y+-01e

(3)半衰期:放射性元素的原子核有半数发生衰变所需的时间.半衰期由原子核内部的因素决定,跟原子所处的物理、化学状态无关.

点拨:易错提醒

(1)半衰期是大量原子核衰变时的统计规律,对个别或少数原子核,无半衰期可言.

(2)原子核衰变时质量数守恒,核反应过程前、后质量发生变化(质量亏损)而释放出核能.

知识点二:核反应和核能

1.核反应

在核物理学中,原子核在其他粒子的轰击下产生新原子核的过程.在核反应中,质量数守恒,电荷数守恒.

2.核力

核子间的作用力.核力是短程力,作用范围在1.5×10-15 m 之内,只在相邻的核子间发生作用.

3.核能

核子结合为原子核时释放的能量或原子核分解为核子时吸收的能量,叫做原子核的结合能,亦称核能.

4.质能方程、质量亏损

爱因斯坦质能方程E=mc2,原子核的质量必然比组成它的核子的质量和要小Δm,这就是质量亏损.由质量亏损可求出释放的核能ΔE=Δmc2.

【考点解析:重点突破】

考点一:衰变和半衰期

2.

(1)根据半衰期的概念,可总结出公式

1 1

N 余=N 原( )t/τ,m 余=m 原( )t/τ

2 2

式中N 原、m 原表示衰变前的放射性元素的原子核数和质量,N 余、m 余表示衰变后尚未

发生衰变的放射性元素的原子核数和质量,t 表示衰变时间,τ 表示半衰期.

(2)影响因素:放射性元素衰变的快慢是由原子核内部因素决定的,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关.

考点二:核反应方程的书写

规律总结

(1)核反应过程一般都是不可逆的,所以核反应方程只能用单向箭头表示反应方向,不能用等号连接.

(2)核反应的生成物一定要以实验为基础,不能凭空只依据两个守恒规律杜撰出生成物来写核反应方程.

(3)核反应遵循质量数守恒而不是质量守恒;遵循电荷数守恒.

考点三:核能的产生和计算

1.获得核能的途径

(1)重核裂变:重核俘获一个中子后分裂成为两个中等质量的核的反应过程.重核裂变的同时放出几个中子,并释放出大量核能.为了使铀235 裂变时发生链式反应,铀块的体积应大于它的临界体积.

(2)轻核聚变:某些轻核结合成质量较大的核的反应过程,同时释放出大量的核能,要想使氘核和氚核合成氦核,必须达到几百万度以上的高温,因此聚变反应又叫热核反应.

2.核能的计算方法

(1)应用ΔE=Δmc2:先计算质量亏损Δm,注意Δm 的单位1 u=1.66×10-27 kg,1 u 相当于931.5 MeV 的能量,u 是原子质量单位.

(2)核反应遵守动量守恒和能量守恒定律,因此我们可以结合动量守恒和能量守恒定律来计算核能.

规律总结

根据ΔE=Δmc2 计算核能时,若Δm 以千克为单位,“c”代入3×108_m/s,ΔE 的单位为“J”;若Δm 以“u”为单位,则由1u c2=931.5_MeV 得ΔE=Δm×931.5_MeV.

人教版高一物理知识点归纳总结

质点参考系和坐标系

时间和位移

实验:用打点计时器测速度 知识点总结 了解打点计时器的构造;会用打点计时器研究物体速度随时间变化的规律;通过分析纸带测定匀变速直线运动的加速度及其某时刻的速度;学会用图像法、列表法处理实验数据。 一、实验目的 1.练习使用打点计时器,学会用打上的点的纸带研究物体的运动。 3.测定匀变速直线运动的加速度。 二、实验原理 ⑴电磁打点计时器 ①工作电压:4~6V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ⑵电火花计时器 ①工作电压:220V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ③打点原理:它利用火花放电在纸带上打出小孔而显示点迹的计时器,当接通220V的交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生电火花,于是在纸带上就打下一系列的点迹。 ⑵由纸带判断物体做匀变速直线运动的方法 0、1、2…为时间间隔相等的各计数点,s1、s2、s3、…为相邻两计数点间的距离,若△s=s2-s1=s3-s2=…=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。 ⑶由纸带求物体运动加速度的方法

三、实验器材 小车,细绳,钩码,一端附有定滑轮的长木板,电火花打点计时器(或打点计时器),低压交流电源,导线两根,纸带,米尺。 四、实验步骤 1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。 2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。 3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点, 取下纸带, 换上新纸带, 重复实验三次。 4.选择一条比较理想的纸带,舍掉开头的比较密集的点子, 确定好计数始点0, 标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度, 作v-t图线, 求得直线的斜率即为物体运动的加速度。 五、注意事项 1.纸带打完后及时断开电源。 2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。 3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。 4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。 常见考法 纸带处理时高中遇到的第一个实验,非常重要,在平时的练习中、月考、期中、期末考试均会高频率出现,以致在学业水平测试和高考中也做为重点考察内容,是选择、填空题的形式出现,同学们要引起重视。 误区提醒 要注意的就是会判断纸带的运动形式、会计算某点速度、会计算加速度,在运算的过

海南省高中物理会考知识点汇编()

高中物理会考知识点汇编 知识框架 力和运动 功和能 电磁学 1、机械运动 (1)一个物体相对于另一个物体的位置的改变,叫做机械运动. ①运动是绝对的,静止是相对的.②宏 观、微观物体都处于永恒的运动中. (2).参考系 :在描述一个物体的运动时,用来做参考的物体称为参考系。 2.质点 用来代替物体的有质量的点称为质点。这是为研究物体运动而提出的理想化模型。 当物体的形状和大小对研究的问题没有影响或影响不大的情况下,物体可以抽象为质点。 3.路程和位移 路程是质点运动轨迹的长度,路程是标量。(在物体做单向直线运动时,位移的大小等于路程。) 位移表示物体位置的改变,大小等于始末位置的直线距离,方向由始位置指向末位置。位移是矢量。 4.速度 平均速度和瞬时速度 速度是描述物体运动快慢的物理,s v t ?=?,速度是矢量,方向与运动方向相同。 平均速度:运动物体某一时间(或某一过程)的速度。 瞬时速度:运动物体某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向。 5.匀速直线运动(速度不变的运动 ) 在直线运动中,物体在任意相等的时间内位移都相等的运动称为匀速直线运动。x=vt 6.加速度 加速度是描述速度变化快慢的物理量,它等于速度变化量跟发生这一变化量所用时间的比值,定义式是t v v t v a t 0-=??=,加速度是矢量,其方向与速度变化量的方向相同,与速度的方向无关。 7.用电火花计时器(或电磁打点计时器)测速度 电磁打点计时器使用交流电源,工作电压在10V(4-6V)以下。电火花计时器使用交流电源,工作电压220V 。当电源的频率是50H z时,它们都是每隔0.02s打一个点。 8.用电火花计时器(或电磁打点计时器)探究匀变速直线运动的速度随时间的变化规律 匀变速直线运动时,物体某段时间的中间时刻速度等于这段过程的平均速度 9.匀变速直线运动规律 速度公式:0v v at =+ 位移公式: 20s v t at =+ 位移速度公式:22212as v v =- 平均速度公式:_02 2t t v v x v v t +?===? 10.匀变速直线运动规律的速度时间图像 :加速度指速度的变化率,也就是说加速度是V —t 图像的斜率。

高二物理 光电效应

《光的粒子性第一课时:光电效应》教学设计 一、教材分析 1、组成成分及地位和作用 《光的粒子性》是高中新教材人教版选修3-5第十七章《波粒二象性》的第二节内容,内容旨在第一节《能量量子化》内容的基础上,通过光电效应和康普顿效应分别说明光子既具有能量又具有动量,进而说明光具有粒子性。本节课选择讲授第一部分,即光电效应的部分。由光电效应的提出、光电效应的实验规律、爱因斯坦的光电效应方程三部分组成。本节课的内容在物理学的发展史上具有里程碑式的意义,从这里人们开始认识到光的粒子性,并且更多的科学家接受了量子的观点,为近代物理学的发展打下了坚实的基础。 二、学情分析 1、已有的认知水平 学生经过了选修3-4教材有关机械波和光学的学习,已经知道光具有干涉、衍射现象,光的电磁波本质,对光的波动性有了较为深入的了解,也可以说对于经典理论中的光的性质有了较深的印象。同时在本章第一节,学生初步有了能量子的概念。基于以上分析,根据学生已经具备的知识以及现阶段学生的能力,学生完全可以在教师的引导下完成本节课的学习。 2、学习中的困难 本节课的难点就在于摆脱经典理论对思维的束缚,打破由光的干涉、衍射建立起来的“光是一种波,只具有波动性”的固有印象,接受光量子说,并将光量子的观点应用到解释光电效应和康普顿效应中。 三、教学目标分析 根据学生的认知水平和教科书的内容,确立本节课的教学目标为: (1)了解光电效应及其实验规律,感受以实验为基础的科学研究方法 (2)了解爱因斯坦光电效应方程及其意义,感受科学家在面对科学疑难时的创新精神 四、教学重点、难点分析

(2)爱因斯坦光电效应方程 ?教学难点:(1)经典理论在解释光电效应问题时的困难 (2)爱因斯坦光电效应方程如何完整的解释光电效应现像 五、学法与教法分析 ?学法分析 根据学生的实际情况,我将“如何应用知识分析实际问题并进行逐步研究”作为本节课学法指导的重点。在教学中,充分发挥学生的主观能动性,通过分析光电效应的研究过程中遇到的每个问题,感受科学研究的过程,锻炼理论分析能力、知识应用能力。 ?教法分析 (1)启发式教学方法。通过对于物理学史的分析,启发学生思考光电效应从发现现象到探索规律整个过程中的重要问题、观察实验现象,让学生感受科学研究的过程。 (2)实验与理论相结合。实验与理论结合教学让学生认识到实验在物理学发展过程中的作用(3)培养学生的科学情怀。简介光电效应研究过程做出贡献的科学家,使学生体会科学家们探索科学问题的伟大历程 六、教学资源设计 电脑、多媒体辅助教学、毛皮与橡胶棒、锌版、验电器、光电效应演示器、强光手电、滤光片 七、教学过程设计

人教版高一物理必修二知识点总结

曲线运动 一、曲线运动 (1)条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。 ①匀变速曲线运动:若做曲线运动的物体受的是恒力,即加速度大小、方向都不变的曲线运动,如平抛运动; ②变加速曲线运动:若做曲线运动的物体所受的是变力,加速度改变,如匀速圆周运动。 (2)特点: ①曲线运动的速度方向不断变化,故曲线运动一定是变速运动。 ②曲线运动轨迹上某点的切线方向表示该点的速度方向。 ③曲线运动的轨迹向合力所指一方弯曲,合力指向轨迹的凹侧。 ④当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大;当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力的方向与速度方向的夹角为90度时,物体做曲线运动速率将不变。 2.运动的合成与分解(指位移、速度、加速度三个物理量的合成和分解) (1)合运动和分运动关系:等时性、等效性、独立性、矢量性、相关性 ①等时性:合运动所需时间和对应的每个分运动所需时间相等。 ②等效性:合运动的效果和各分运动的整体效果是相同的,合运动和分运动是等效替代关系,不能并存。 ③独立性:每个分运动都是独立的,不受其他运动的影响 ④矢量性:加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则 ⑤相关性:合运动的性质是由分运动性质决定的 (2)从已知的分运动来求合运动,叫做运动的合成;求已知运动的分运动,叫运动的分解。 ①物体的实际运动是合运动 ②速度、时间、位移、加速度要一一对应 ③如果分运动都在同一条直线上,需选取正方向,与正方向相同的量取正,相反的量取负,矢量运算简化为代数运算。如果分运动互成角度,运动合成要遵循平行四边形定则 3.小船渡河问题 一条宽度为L 的河流,水流速度为V s ,船在静水中的速度为V c (1)渡河时间最短: 设船上头斜向上游与河岸成任意角θ,这时船速在垂直于河岸方向的速度分量V 1=V c sin θ,渡河所需时间为:θsin c V L t = , sin90=1当船头与河岸垂直时,渡河时间最短,c V L t = m in (与水 速的大小无关) 渡河位移:222t v L s s += (2)渡河位移最短: ①当V c >V s 时V s = V c cos θ渡河位移最短L s =min ;渡河时间为θ sin v L t = 船头应指向河的上游,并与河岸成一定的角度θ=arccosV s /V c ②当V c >V s 时以V s 的矢尖为圆心,以V c 为半径画圆,当V 与圆相切时,α角最大,V c =V s cos θ,船头与河岸的夹角为:θ=arccosV c /V s 。 渡河的最小位移:L V V L s c s ==θcos

高中物理会考复习资料

高中物理会考复习资料 1)匀变速直线运动 1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t 7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m)路程:米速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 ) 3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动万有引力 1)平抛运动 1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt 3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2 5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2 合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo 7.合位移S=(Sx^2+ Sy^2)1/2 , 位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。 2)匀速圆周运动

高中物理公式大全(整理版)

高中物理公式大全 一、力学 1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关) 2、重力: G = mg (g 随高度、纬度、地质结构而变化,赤极g g >,高伟低纬g >g ) 3、求F 1、F 2的合力的公式: θcos 2212221F F F F F ++= 合,两个分力垂直时: 2 221F F F +=合 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围: F 1-F 2 F F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 5、摩擦力的公式: (1 ) 滑动摩擦力: f = N (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。 ② 为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快 慢以及正压力N 无关。 (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 0 f 静 f m (f m 为最大静摩擦力) 说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、万有引力: (1)公式:F=G 2 2 1r m m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = 6.67×10-11 N ·m 2 / kg 2 (2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高度)) a 、万有引力=向心力 F 万=F 向 即 '4222 22mg ma r T m r m r v m r Mm G =====πω 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 ②行星或卫星做匀速圆周运动的线速度: ,轨道半径越大,线速度越小。 2 3 24GT r M π=r GM v =

18届高考物理一轮复习专题光电效应波粒二象性导学案2

光电效应波粒二象性 知识梳理 知识点一、光电效应 1.定义 照射到金属表面的光,能使金属中的电子从表面逸出的现象。 2.光电子 光电效应中发射出来的电子。 3.研究光电效应的电路图(如图1): 图1 其中A是阳极。K是阴极。 4.光电效应规律 (1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。低于这个频率的光不能产生光电效应。 (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。 (3)光电效应的发生几乎是瞬时的,一般不超过10-9s。 (4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。 知识点二、爱因斯坦光电效应方程 1.光子说 在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。其中h=6.63×10-34J·s。(称为普朗克常量) 2.逸出功W0 使电子脱离某种金属所做功的最小值。 3.最大初动能 发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。

4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c 。 (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率)。不同的金属对应着不同的极限频率。 5.爱因斯坦光电效应方程 (1)表达式:E k =h ν-W 0。 (2)物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用 来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2。 知识点三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性。 (2)光电效应说明光具有粒子性。 (3)光既具有波动性,又具有粒子性,称为光的波粒二象性。 2.物质波 (1)概率波 光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。 (2)物质波 任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h p ,p 为运动物体的动量,h 为普朗克常量。 考点精练 考点一 光电效应现象和光电效应方程的应用 1.对光电效应的四点提醒 (1)能否发生光电效应,不取决于光的强度而取决于光的频率。 (2)光电效应中的“光”不是特指可见光,也包括不可见光。 (3)逸出功的大小由金属本身决定,与入射光无关。 (4)光电子不是光子,而是电子。 2.两条对应关系 (1)光强大→光子数目多→发射光电子多→光电流大;

人教版高中物理选修3-5知识点总结

选修3-5知识梳理 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。 (二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

高中物理会考知识点大总结

高中物理会考知识点大总结 高中物理会考知识点总结 第1章力 一、力:力是物体间的相互作用。 1、力的国际单位是牛顿,用N表示; 2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点; 3、力的示意图:用一个带箭头的线段表示力的方向; 4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等; (1)重力:由于地球对物体的吸引而使物体受到的力; (A)重力不是万有引力而是万有引力的一个分力; (B)重力的方向总是竖直向下的(垂直于水平面向下) (C)测量重力的仪器是弹簧秤; (D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心; (2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力; (A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力; (B)弹力包括:支持力、压力、推力、拉力等等;

(C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向; (D)在弹性限度内弹力跟形变量成正比;F=Kx (3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力; (A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力; (B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反; (C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力; (D)静摩擦力的大小等于使物体发生相对运动趋势的外力; (4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力; (A)合力与分力的作用效果相同; (B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力; (C)合力大于或等于二分力之差,小于或等于二分力之

高中物理 光电效应习题及解析

光电效应 一、选择题 1.用如图所示装置做光电效应实验,下述正确的是() A. 光电效应现象是由爱因斯坦首先发现的 B. 实验现象揭示了光具有波动性 C.实验中,光电子从锌板逸出,验电器带正电 D. 实验中,若用可见光照射锌板,也能发生光电效应【答案】C 【解析】【详解】A、光电效应是由赫兹首先发现的,故A错误.B、光电效应现象揭示 了光具有粒子性,故B错误.C、光电效应现象中,光电子从锌板逸出,验电器带正电,故C正确.D、光电效应中应该用紫外线照射锌板,当用可见光时,频率降低,小于极限频率,则不满足光电效应反生条件.故D错误.故选C.

2.如图所示是某金属在光的照射下,光电子最大初动能E k 与入射光频率v 的关系图象,由图象可知,下列不正确的是 A. 图线的斜率表示普朗克常量h B. 该金属的逸出功等于E C. 该金属的逸出功等于hv 0 D. 入射光的频率为2v 0时,产生的光电子的最大初动能为2E 【答案】D 【解析】 A 、根据光电效应方程0 k h E W -=υ ,知图线的斜率表示普朗克常量h ,故A 正确;B 、根据光电效应方程,当0=υ时,k 0E W =-,由图象知纵轴截距E -, 所以0W E =,即该金属的逸出功E ,故B 正确;C 、图线与υ轴交点的横坐标是0 υ,0k h E W -=υ该金属的逸出功0h υ,故C 正确;D 、当入射光的频率为02υ时,根据光电效应方程可知,E h h ==-?=0 00k 2h E υυυ,故D 错误;本题选错误的故选D .

3.如图所示,是研究光电效应的电路图,对于某金属用绿光照射时,电流表指针发生偏转.则以下说法正确的是() A. 将滑动变阻器滑动片向右移动,电流表的示数一定增大 B. 如果改用紫光照射该金属时,电流表无示数 C. 将K极换成逸出功小的金属板,仍用相同的绿光照射时,电流表的示数一定增大 D. 将电源的正负极调换,仍用相同的绿光照射时,将滑动变阻器滑动片向右移动一些,电流表的读数可能不为零 【答案】D 【详解】A.滑动变阻器滑片向右移动,电压虽然增大,但若已达到饱和电流,则电流表的示数可能不变,故A错误; B.如果改用紫光照射该金属时,因频率的增加,导致光电子最大初动能增加,则电流表一定有示数,故B错误; C.将K极换成逸出功小的金属板,仍用相同的绿光照射时,则光电子的最大初动能增加,但单位时间里通过金属表面的光子数没有变化,因而单位时间里从金属表面逸出的光电子数也不变,饱和电流不会变化,则电流表的示数不一定增大,故C错误;

人教版高中物理必修一知识点大全

人教版高中物理必修一 知识点大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理学习材料 (灿若寒星**整理制作) 必修一知识点大全 1.参考系 ⑴定义:在描述一个物体的运动时,选来作为标准的假定不动的物体,叫做参考系。 ⑵对同一运动,取不同的参考系,观察的结果可能不同。 ⑶运动学中的同一公式中涉及的各物理量应以同一参考系为标准,如果没有特别指明,都是取地面为参考系。 2.质点 ⑴定义:质点是指有质量而不考虑大小和形状的物体。 ⑵质点是物理学中一个理想化模型,能否将物体看作质点,取决于所研究的具体问题,而不是取决于这一物体的大小、形状及质量,只有当所研究物体的大小和形状对所研究的问题没有影响或影响很小,可以将其形状和大小忽略时,才能将物体看作质点。 ⑴物体可视为质点的主要三种情形: ①物体只作平动时; ②物体的位移远远大于物体本身的尺度时; ③只研究物体的平动,而不考虑其转动效果时。 3.时间与时刻 ⑴时刻:指某一瞬时,在时间轴上表示为某一点。

⑵时间:指两个时刻之间的间隔,在时间轴上表示为两点间线段的长度。 ⑶时刻与物体运动过程中的某一位置相对应,时间与物体运动过程中的位移(或路程)相对应。 4.位移和路程 ⑴位移:表示物体位置的变化,是一个矢量,物体的位移是指从初位置到末位置的有向线段,其大小就是此线段的长度,方向从初位置指向末位置。 ⑵路程:路程等于运动轨迹的长度,是一个标量。 当物体做单向直线运动时,位移的大小等于路程。 5.速度、平均速度、瞬时速度 ⑴速度:是表示质点运动快慢的物理量,在匀速直线运动中它等于位移与发生这段位移所用时间的比值,速度是矢量,它的方向就是物体运动的方向。 ⑵平均速度:物体所发生的位移跟发生这一位移所用时间的比值叫这段时间内的平均速度,即t v x =,平均速度是矢量,其方向就是相应位移的方向。 ⑶瞬时速度:运动物体经过某一时刻(或某一位置)的速度,其方向就是物体经过某有一位置时的运动方向。 6.加速度 ⑴加速度是描述物体速度变化快慢的的物理量,是一个矢量,方向与速度变化的方向相同。 ⑵做匀速直线运动的物体,速度的变化量与发生这一变化所需时间的比值叫加速度,即t v v t v a 0-=??= ⑶对加速度的理解要点:

高中物理会考知识点汇总

会考知识点复习 第一、二章 运动的描述和匀变速直线运动 一、质点 1.定义:用来代替物体而具有质量的点。 2.实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。 二、描述质点运动的物理量 1.时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。与时间对应的物理量为过程量,与时刻对应的物理量为状态量。 2.位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。路程是标量,它是物体实际运动轨迹的长度。只有当物体作单方向直线运动时,物体位移的大小才与路程相等。 3.速度:用来描述物体位置变化快慢的物理量,是矢量。 (1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。 (2)瞬时速度:运动物体在某时刻或位置的速度。瞬时速度的大小叫做速率。 (3)速度的测量(实验) ①原理:t x v ??=。当所取的时间间隔越短,物体的平均速度v 越接近某点的瞬时速度v 。然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。 ②仪器:电磁式打点计时器(使用4∽6V 低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V 交流电,纸带受到的阻力较小)。若使用50Hz 的交流电,打点的时间间隔为0.02s 。还可以利用光电门或闪光照相来测量。 4.加速度 (1)意义:用来描述物体速度变化快慢的物理量,是矢量。 (2)定义:t v a ??=,其方向与Δv 的方向相同或与物体受到的合力方向相同。 (3)当a 与v 0同向时,物体做加速直线运动;当a 与v 0反向时,物体做减速直线运动。加速度与速度没有必然的联系。 三、匀变速直线运动的规律 1.匀变速直线运动 (1)定义:在任意相等的时间内速度的变化量相等的直线运动。 (2)特点:轨迹是直线,加速度a 恒定。当a 与v 0方向相同时,物体做匀加速直线运动;反之,物体做匀减速直线运动。 2.匀变速直线运动的规律 (1)基本规律 ①速度时间关系:at v v +=0 ②位移时间关系:202 1at t v x + = (2)重要推论

高中物理公式大全

高中物理公式大全; 一、质点的运动(1)——直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论 Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt =Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt= Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

人教版高中物理选修3-1知识点归纳总结

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物 体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小, 曲线上某点的切线方向表示场强的方向。

高中物理会考知识点总结

高中物理会考知识点总结 1.质点 A 用来代替物体的有质量的点称为质点。这是为研究物体运动而提出的理想化模型。 当物体的形状和大小对研究的问题没有影响或影响不大的情况下,物体可以抽象为质点。 2.参考系 A 在描述一个物体的运动时,用来做参考的物体称为参考系。 3.路程和位移 A 路程是质点运动轨迹的长度,路程是标量。 位移表示物体位置的改变,大小等于始末位置的直线距离,方向由始位置指向末位置。位移是矢量。 在物体做单向直线运动时,位移的大小等于路程。 4.速度 平均速度和瞬时速度 A 速度是描述物体运动快慢的物理,t x v ??=/,速度是矢量,方向与运动方向相同。 平均速度:运动物体某一时间(或某一过程)的速度。 瞬时速度:运动物体某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向。 5.匀速直线运动 A 在直线运动中,物体在任意相等的时间内位移都相等的运动称为匀速直线运动。匀速直线运动又叫速度不变的运动。 6.加速度 A 加速度是描述速度变化快慢的物理量,它等于速度变化量跟发生这一变化量所用时间的比值,定义式是t V V t V a t ?-=??= 0,加速度是矢量,其方向与速度变化量的方向相同,与速度的方向无关。 7.用电火花计时器(或电磁打点计时器)测速度 A 电磁打点计时器使用交流电源,工作电压在10V 以下。电火花计时器使用交流电源,工作电压220V 。当电源的频率是50H z时,它们都是每隔0.02s打一个点。 若t ?越短,平均速度就越接近该点的瞬时速度 8.用电火花计时器(或电磁打点计时器)探究匀变速直线运动的速度随时间的变化规律 A 匀变速直线运动时,物体某段时间的中间时刻速度等于这段过程的平均速 度 t S V V = =21

新课标人教版高中高一物理必修一知识点总结归纳

物理(必修一)——知识考点 考点一:时刻与时间间隔的关系 时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如: 第4s末、4s时、第5s初……均为时刻;4s内、第4s、第2s至第4s内……均为时间间隔。 区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。 考点二:路程与位移的关系 位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小 ..。 ..等于路程。一般情况下,路程≥位移的大小

考点五:运动图象的理解及应用 由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。在运动学中,经常用到的有x -t 图象和v —t 图象。 1. 理解图象的含义: (1)x -t 图象是描述位移随时间的变化规律 (2)v —t 图象是描述速度随时间的变化规律 2. 明确图象斜率的含义: (1) x -t 图象中,图线的斜率表示速度 (2) v —t 图象中,图线的斜率表示加速度 考点一:匀变速直线运动的基本公式和推理 1. 基本公式: (1) 速度—时间关系式:at v v +=0 (2) 位移—时间关系式:202 1at t v x + = (3) 位移—速度关系式:ax v v 22 02=- 三个公式中的物理量只要知道任意三个,就可求出其余两个。 利用公式解题时注意:x 、v 、a 为矢量及正、负号所代表的是方向的不同。 解题时要有正方向的规定。 2. 常用推论: (1) 平均速度公式:()v v v += 02 1 (2) 一段时间中间时刻的瞬时速度等于这段时间内的平均速度:()v v v v t += =02 2 1 (3) 一段位移的中间位置的瞬时速度:2 2 202 v v v x += (4) 任意两个连续相等的时间间隔(T )内位移之差为常数(逐差相等): ()2aT n m x x x n m -=-=? 考点二:对运动图象的理解及应用 1. 研究运动图象: (1) 从图象识别物体的运动性质 (2) 能认识图象的截距(即图象与纵轴或横轴的交点坐标)的意义 (3) 能认识图象的斜率(即图象与横轴夹角的正切值)的意义 (4) 能认识图象与坐标轴所围面积的物理意义 (5) 能说明图象上任一点的物理意义

高中物理会考知识点(理科)

高中物理会考知识点(理科) 运动学知识点 第一节机械运动 一.参照物 (1)机械运动是一个物体相对于别的物体的位置的变化.宇宙万物都在不停地运动着.运动是绝对的,一些看起来不动的物体如房屋、树木,都随地球一起在转动. (2)为了研究物体的运动而被假定为不动的物体,叫做参照物. (3)同一个运动,由于选择的参照物不同,就有不同的观察结果及描述,运动的描述是相对的,静止是相对的. 二.质点的概念 (1)如果研究物体的运动时,可以不考虑它的大小和形状,就可以把物体看作一个有质量的点.用来代替物体的有质量的点叫做质点. (2)质点是对实际物体进行科学抽象而得到的一种理想化模型.对具体物体是否能视作质点,要看在所研究的问题中,物体的大小形状是否属于无关因素或次要因素. 三、描述运动的物理量 (一)时间和时刻 (1)在表示时间的数轴上,时刻对应数轴上的各个点,时间则对应于某一线段;时刻指过程的各瞬时,时间指两个时刻之间的时间间隔。 (2)时间的法定计量单位是秒、分、时,实验室里测量时间的仪器秒表、打点计时器。(二)位移和路程 1、位移 (1)位移是描述物体位置变化的物理量:用初、末位置之间的距离来反映位置变化的多少,用初位置对末位置的指向表示位置变化的方向. (2)位移的图示是用一根带箭头的线段,箭头表示位移的方向,线段的长度表示位移的大小. 2.位移和路程的比较 位移和路程是不同的物理量,位移是矢量,用从物体运动初位置指向末位置的有向线段来表示,路程是标量,用物体运动轨迹的长度来表示. (三)速度

1.速度——描述运动快慢的物理量,是位移对时间的变化率。(变化率J 是表示变化的快慢,不表示变化的大小。) 2.平均速度的定义 (1)运动物体的位移与发生这段位移所用时间的比值,叫做这段时间内的平均速度.定义式是V =s/t .国际单位制中的单位是米/秒,符号m /s ,也可用千米/时(km /h ),厘米/秒(cm/s )等. (3) 平均速度可以粗略地描述做变速运动的物体运动的快慢. 3.平均速度的计算 平均速度的数值跟在哪一段时间内计算平均速度有关系.用平均速度定义式计算平均速度时,必须使物体的位移S 与发生这个位移的时间t 相对应。. 4.瞬时速度 (1)运动物体在某一时刻或某一位置的速度,叫做瞬时速度.瞬时速度能精确地描述变速运动.变速运动的物体在各段时间内的平均速度只能粗略地描述各段时间内的运动情况,如果各时间段取情越小,各段时间内的平均速度对物体运动情况的描述就越细致,当把时间段取极小值时,这极小段时间内的平均速度就能精确描述出运动物体各个时刻的速度,这就是瞬时速度. (2)若物体在某一时刻的瞬时速度是对(m /s ),则就意味着该物体假如从这一时刻开始做匀速运动,每1s 内的位移就是v (m ). 4.速度和速率 速度是矢量,既有大小又有方向,速度的大小叫速率 (四)加速度 1.加速度 (l )在变速运动中,速度的变化和所用时间的比值,叫加速度. (2)加速度的定义式是a=t v v t 0 . (3)加速度是描述变速运动速度改变的快慢程度的物理量,是速度对时间的变化率。加速度越大,表示在单位时间内运动速度的变化越大. (4)加速度是矢量,不但有大小,而且有方向.在直线运动中,加速度的方向与速度方向相同,表示速度增大;加速度的方向与速度方向相反,表示速度减小.当加速度方向与速度

高中物理公式汇总一览表(全)

物理公式一览表 一、力学 1、 胡克定律: F = Kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度而变化) 3 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 4、两个平衡条件: 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G,μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关.大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反, b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6.万有引力F=km 1 m 2 /r 2 7、 牛顿第二定律: F 合 = ma 理解:(1)矢量性 (2)瞬时性 (3)独立性 (4) 同一性 8、匀变速直线运动: 基本规律: V t = V 0 + a t S = v o t +12 a t 2 几个重要推论: (1) V t 2 - V 02 = 2as (匀加速直线运动:a 为正值,匀减速直线运动:a 为正值) 初速为零的匀加速直线运动,在1s 、2s 、3s ……ns 内的位移之比为12:22:32 ……n 2; 在第1s 内、第 2s 内、第3s 内……第ns 内的位移之比为1:3:5……(2n-1); 在第1米内、第2米内、第3米内……第n 米内的时间之比为1: ()21-:32-)……(n n --1) (6)自由落体:h =1/2gt 2 2gh =v t 2

相关主题
文本预览
相关文档 最新文档