当前位置:文档之家› 高中物理带电粒子在匀强磁场中的运动

高中物理带电粒子在匀强磁场中的运动

高中物理带电粒子在匀强磁场中的运动
高中物理带电粒子在匀强磁场中的运动

第四节带电粒子在匀强磁场中的运动

一、带电粒子在匀强磁场中的运动

1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做____________运动.

2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做_______运动.

(1)向心力由洛伦兹力提供:qvB=__________=__________;

(2)轨道半径公式:R=mv qB

(3)周期:T=2πR

v

2πm

qB

(周期T与速度v、轨道半径R无关);

(4)频率:f=1

T

qB

2πm

(5)角速度:ω=2π

T

=__________.

二、带电粒子在有界磁场中的运动

1.分析方法:找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t和转过的圆心角α之间的关系作为辅助.

(1)圆心的确定

①基本思路:与速度方向垂直的直线和图中弦的中垂线一定过圆心.

②两种情形

a.已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点).b.已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点).

(2)半径的确定

用几何知识(勾股定理、三角函数等)求出半径大小.

(3)运动时间的确定

粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为:

t=

α

360°

T(或t=

α

T).

2.规律总结

带电粒子在不同边界磁场中的运动

(1)直线边界(进出磁场具有对称性,如图)

(2)平行边界(存在临界条件,如图)

(3)圆形边界(沿径向射入必沿径向射出,如图)

典例分析:

例1、在磁感应强度为B的匀强磁场中,一带电粒子做匀速圆周运动,又垂直进入磁感应强度为2B 的匀强磁场中,则( )

A.粒子速率加倍,周期减半

B.粒子速率不变,半径减半

C.粒子速率减半,半径变为原来的1/4

D.粒子速率不变,周期减半

例2.一个带电粒子沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图所示,径迹上的每小段都可以近似看成圆弧,由于带电粒子使沿途空气电离,粒子的能量逐渐减小(带电荷量不变),从图中情况可以确定 ()。

A.粒子从a到b,带正电

B.粒子从b到a,带正电

C.粒子从a到b,带负电

D.粒子从b到a,带负电

例3、如图所示,在有界匀强磁场边界线SP∥MN,速度不同的同种带电粒子从S点沿SP方向同时射入磁场,其中穿过a点的粒子速度v1与MN垂直,穿过b点的粒子,其速度方向与MN成60?角.设两粒子从S到a、b所需时间分别为t1、t2,则t1∶t2为( )

A.1∶3

B.4∶3

C.1∶1

D.3∶2

例4、如图所示,平面直角坐标系的第Ⅰ象限内有一匀强磁场垂直于纸面向里,磁感应强度为B.

一质量为m、电荷量为q的粒子以速度v从O点沿着与y轴夹角为30°的方向进入磁场,运动到A点时速度方向与x轴的正方向相同,不计粒子的重力,则( )

A.该粒子带正电

B.A点与x轴的距离为mv 2qB

C.粒子由O到A经历时间t=πm 3qB

D.运动过程中粒子的速度不变

例5、如图所示,在一底边长为2a,θ=30°的等腰三角形区域内(D在底边中点),有垂直纸面向外的匀强磁场.现有一质量为m,电荷量为q的带正电的粒子,从静止开始经过电势差为U 的电场加速后,从D点垂直于EF进入磁场,不计重力与空气阻力的影响.

(1)若粒子恰好垂直于EC边射出磁场,求磁场的磁感应强度B为多少?

(2)改变磁感应强度的大小,粒子进入磁场偏转后能打到ED板,求粒子从进入磁场到第一次

打到ED板的最长时间是多少?

课堂针对练习:

1、关于带电粒子在匀强磁场中运动,不考虑其他场力(重力)作用,下列说法正确的是( )

A.可能做匀速直线运动 B.可能做匀变速直线运动

C.可能做匀变速曲线运动 D.只能做匀速圆周运动

2、一个带电粒子,沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如下图所示.径迹

上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定 ( )

A.粒子从a到b,带正电

B.粒子从a到b,带负电

C.粒子从b到a,带正电

D.粒子从b到a,带负电

3、如图所示,比荷为e/m的电子从左侧垂直于界面、垂直于磁场射入宽度为d、磁感受应强度为B

的匀强磁场区域,要从右侧面穿出这个磁场区域,电子的速度至少应为()

A、2Bed/m

B、Bed/m

C、Bed/(2m)

D、2Bed/m

4、如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量相同的带电粒子a、b、c,

以不同的速率对准圆心O沿着AO方向射入磁场,其运动轨迹如图。若带电粒子只受磁场力的作用。则下列说法正确的是( )

A.a粒子动能最大

B.c粒子速率最大

C.b粒子在磁场中运动时间最长

D.它们做圆周运动的周期T a

5.如图所示,质量为m,电荷量为+q的带电粒子,以不同的初速度两次从O点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M、N两点射出磁场,测得OM∶ON=3∶4,则下列说法中错误的是( )

A.两次带电粒子在磁场中经历的时间之比为3∶4

B.两次带电粒子在磁场中运动的路程长度之比为3∶4

C.两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4

D.两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3

6、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸里,磁感应强度

为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ.求:

(1)该粒子射出磁场的位置;

(2)该粒子在磁场中运动的时间.(粒子所受重力不计)

1、两个电荷量相等的带电粒子,在同一匀强磁场中只受洛伦兹力作用而做匀速圆周运动.下列说法中正确的

是( )

A.若它们的运动周期相等,则它们的质量相等

B.若它们的运动周期相等,则它们的速度大小相等

C.若它们的轨迹半径相等,则它们的质量相等

D.若它们的轨迹半径相等,则它们的速度大小相等

2、如图所示,在垂直于纸面向内的匀强磁场中,垂直于磁场方向发射出两个电子1和2,其速度

分别为v1和v2.如果v2=2v1,则1和2的轨道半径之比r1∶r2及周期之比T1∶T2分别为( ) A.r 1∶r2=1∶2,T1∶T2=1∶2

B.r1∶r2=1∶2,T1∶T2=1∶1

C.r1∶r2=2∶1,T1∶T2=1∶1

D.r1∶r2=1∶1,T1∶T2=2∶1

3、质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半

圆轨迹如图中虚线所示.下列表述正确的是( )

A.M带负电,N带正电

B.M的速率小于N的速率

C.洛伦兹力对M、N做正功

D.M的运行时间大于N的运行时间

4、如图所示,水平导线中有稳恒电流I通过,导线正下方的电子初速度方向与电流方向相同,其

后电子将()

A.沿路径a运动,轨迹是圆;

B.沿路径a运动,曲率半径变小;

C.沿路径a运动,曲率半径变大;

D.沿路径b运动,曲率半径变小.

5、边长为a的正方形,处于有界磁场,如图所示,一束电子以v

水平射入磁场

后,分别从A处和C处射出,则v

A :v

C

=____;所经历的时间之比t

A

:t

B

=____。

6.如图所示,圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B,一带电粒子(不计重力)以某一初速度沿圆的直径方向射入磁场,粒子穿过此区域的时间为t,粒子飞出此区域时速度方向偏转角为60°,根据以上条件可求下列物理量中的()

A.带电粒子的比荷

B.带电粒子的初速度

C.带电粒子在磁场中运动的周期

D.带电粒子在磁场中运动的半径

7、如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间

的各种数值.静止的带电粒子带电荷量为 +q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ = 45°,孔Q到板的下端C的距离为L,当M、N 两板间电压取最大值时,粒子恰垂直打在CD板上,求:

⑴两板间电压的最大值U m;

⑵CD板上可能被粒子打中的区域的长度s;

⑶粒子在磁场中运动的最长时间t m.

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动(知识小结) 一.带电粒子在磁场中的运动 (1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。 ② 则粒子做匀速直线运动。 (2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。 (3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感 线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。 二、带电粒子在匀强磁场中的圆周运动 1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动. (4)运动时间: (Θ 用弧度作单位 ) 1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动. 2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关. 三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题) (一)边界举例: 1、直线边界(进出磁场有对称性) 规律:如从同一直线边界射入的粒子,再从这一边射出时,速 度与边界的夹角相等。 速度与边界的夹角等于圆弧所对圆心角的一半, 并且如果把两个速度移到共点时,关于直线轴对称。 2、平行边界(往往有临界和极值问题) (在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界) 3、矩形边界 磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场: 若从c 点射出,则圆心在d 处 若从d 点射出,则圆心在ad 连线中点处 4. (从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。) 特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出 2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==?=?v L =t

高中物理磁场经典计算题训练 人教版

高中物理磁场经典计算题训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示.发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点,带电粒子速度v 的大小应取哪些数值? 3.在直径为d 的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q , 质量为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向与AC 成α.若此粒子恰好能打在磁场区域圆周上D 点,AD 与AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小. a b c d A C F D (a ) (b )

高中物理新课程磁现象和磁场教学设计案例

高中物理新课程磁现象和磁场教学设 计案例 高中物理新课程磁现象和磁场教学设计案例 发布者:李昌茂 内容:选修3-1第三章《磁现象和磁场》(普通高中课程标准实验教科书) 教材分析 磁现象和磁场是新教材中磁场章节的第一节课,从整个章节的知识安排来看,本节是此章的知识预备阶段,是本章后期学习的基础,是让学生建立学习磁知识兴趣的第一课,也是让学生建立电磁相互联系这一观点很重要的一节课,为以后学习电磁感应等知识提供铺垫。整节课主要侧重要学生对生活中的一些磁现象的了解如我国古代在磁方面所取得的成就、生活中熟悉的地磁场和其他天体的磁场(太阳、月亮等),故本节课首先应通过学生自己总结生活中与磁有关的现象。电流磁效应现象和磁场对通电导线作用的教育是学生树立起事物之间存在普遍联系观点的重要教学点,是学生在以后学习物理、

研究物理问题中应有的一种思想和观点。 学生分析 磁场的基本知识在初中学习中已经有所接触,学生在生活中对磁现象的了解也有一定的基础。但磁之间的相互作用毕竟是抽象的,并且大部分学生可能知道电与磁的联系,但没有用一种普遍联系的观点去看电与磁的关系,也没有一种自主的能力去用物理的思想推理实验现象和理论的联系。学生对磁场在现实生活中的应用是比较感兴趣的,故通过多媒体手段让学生能了解地磁场、太阳的磁场和自然界的一些现象的联系(如黑子、极光等),满足学生渴望获取新知识的需求。 教学目标 一、知识与技能 1、让学生自己总结生活中与磁有关的现象,了解现实生活中的各种磁现象和应用,培养学生的总结、归纳能力。 2、通过实验了解磁与磁、磁与电的相互作用,掌握电流磁效应现象。使学生具有普遍联系事物的能力,培养观察实验能力和分析、推理等思维能力。

2015高中物理磁场经典计算题 (一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a = L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b

高中物理新课标版人教版1优秀教案磁现象和磁场

第三章磁场 全章教学设计 全章教学内容分析 我们生活在磁的世界里,但是磁对我们来说,依然相当神秘。本章从磁现象和电流磁效应导入磁场,首先介绍了磁场的性质及描述,进而研究磁场对通电导线和运动电荷的作用力。最后介绍带电粒子在磁场中的运动。全章的知识结构始终遵循“从充满问题的现象入手,从实验中发现本质,从本质中体会应用”这一思路。 磁场对电流的作用——安培力在本章中起着承上启下的作用,它不仅是磁场性质的重要体现,而且是学习电流表工作原理和推导洛伦兹力公式的基础,还是电磁感应动态分析的重要组成部分。在洛伦兹力公式的处理上,教材从“磁场对电流有力的作用”和“电流是由电荷的定向移动形成的”这两个事实出发,提出磁场对运动电荷有作用力的设想,然后用实验来验证,在此基础上引入洛伦兹力概念,并借助电流的微观模型推导洛伦兹力。一般情况下,带电粒子在磁场中的运动比较复杂,它被广泛运用于探索物质的微观结构图相互作用并且在现代科技中有着广泛的应用。教材结合显像管、质谱仪、回旋加速器应用实例主要介绍了带电粒子垂直进入匀强磁场中的匀速圆周运动,旨在让学生掌握粒子运动与控制的研究方法。 课标要求 1.内容标准 (1)列举磁现象在生活和生产中的应用。了解我国古代在磁现象方面的研究成果及其对人类文明的影响。关注与磁相关的现代技术发展。 例1:观察计算机磁盘驱动器的结构,大致了解其工作原理。 (2)了解磁场,知道磁感应强度和磁通量。会用磁感线描述磁场。 例2:了解地磁场的分布、变化,及其对人类生活的影响。 (3)会判断通电直导线和通电线圈周围磁场的方向。 (4)通过实验认识安培力,会判断安培力的方向。会计算匀强磁场中安培力的大小。 例3:利用电流天平或其他简易装置,测量或比较磁场力。 例4:了解磁电式电表的结构和工作原理。 (5)通过实验认识洛伦兹力。会判断洛伦兹力的方向,会计算洛伦兹力的大小。了解电子束的磁偏转原理及其在科学技术中的应用。 例5:观察阴极射线在磁场中的偏转。 例6:了解质谱仪和回旋加速器的工作原理。 (6)认识电磁现象的研究在社会发展中的作用。 2.活动建议 (1)用电磁继电器安装一个自动控制电路。 (2)观察电视显像管偏转线圈的结构,讨论控制电子束偏转的原理。 知识版块及知识结构 磁场的概念→磁场的描述→磁场对通电导线的作用力→磁场对运动电荷的作用力→带电粒子在匀强磁场中的运动 知识结构图

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动 四会中学邱又香 知识与能力目标 1.理解洛伦兹力对粒子不做功 2.理解带电粒子的初速度方向与磁感应强度垂直时,粒子在匀强磁场中做匀速圆周运动 3.推导半径,周期公式并解决相关问题 道德目标 培养学生热爱科学,探究科学的价值观 教学重点 带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式, 并能用来解决有关问题。 教学难点 带电粒子在匀强磁场中做匀速圆周运动的条件 对周期公式和半径公式的定性的理解。 教学方法 在教师指导下的启发式教学方法 教学用具 电子射线管,环行线圈,电源,投影仪, 教学过程 一引入新课 复习:1 当带电粒子以速度v平行或垂直射入匀强磁场后,粒子的受力情况; 2 回顾带电粒子垂直飞入匀强电场时的运动特点,让学生猜想带电粒子垂直飞入匀强磁场的运动情况。 二.新课 1.运动轨迹 演示实验利用洛伦兹力演示仪,演示电子射线管内的电子在匀强磁场中的运动轨迹,让学生观察存在磁场和不存在磁场时电子的径迹。 现象:圆周运动。 提问:是匀速圆周运动还是非匀速圆周运动呢? 分析:(1)首先回顾匀速圆周运动的特点:速率不变,向心力和速度垂直且始终在同一平面,向心力大小不变始终指向圆心。 (2)带电粒子在匀强磁场中的圆周运动的受力情况是否符合上面3个特点呢? 带电粒子的受力为F洛=qvB ,与速度垂直故洛伦兹力不做功,所以速度v不变,即可得洛伦兹力不变,且F洛与v同在垂直与磁场的平面内,故得到结论:带电粒子在匀强磁场中做匀速圆周运动 结论:1、带电微观粒子的质量很小,在磁场中运动受到洛伦兹力远大于它的重

力,因此可以把重力忽略不计,认为只受洛伦兹力作用。 2、沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动,洛伦兹力提供做向心力,只改变速度的方向,不改变速度的大小。 2.轨道半径和周期 ? 例:一带电粒子的质量为m ,电荷量为q ,速率为v ,它在磁感应强度为B 的匀强磁场中做匀速圆周运动,求轨道半径有多大? 由 得 可知速度越大,r 越大。 周期呢? 由 得 与速度半径无关。 实验:改变速度和磁感强度观测半径r 。 例1:一个质量为m 、电荷量为q 的粒子,从容器下方的小孔S1飘入电势差为U的加速电场,然后经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上求: (1)求粒子进入磁场时的速率 (2)求粒子在磁场中运动的轨道半径 解:由动能定理得:qU = mv 2 /2, 解得: m qU v 2= 粒子在磁场中做匀速圆周运动得半径为:R =mv/qB=m m qU /2/qB=B q mU 2/2 ? 例2:如图,从粒子源S 处发出不同的粒子其初动量相同,则表示电荷量最小的带正电粒子在匀强磁场中的径迹应是( ) S mv R qB =2m T qB π=2v qvB m R =2R T v π=

带电粒子在磁场中的圆周运动经典练习题(含答案详解).

电粒子在磁场中的圆周运动 1.处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( ) A .与粒子电荷量成正比 B .与粒子速率成正比 C .与粒子质量成正比 D .与磁感应强度成正比 答案 D 解析 假设带电粒子的电荷量为q ,在磁场中做圆周运动的周期为T =2πm qB ,则等效电流i =q T =q 2B 2πm ,故答案选D. 带电粒子在有界磁场中的运动 2.如图377所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x 轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( ) 图377 A .1∶2 B .2∶1 C .1∶ 3 D .1∶1 答案 B 解析 正、负电子在磁场中运动轨迹如图所示,正电子做匀速圆周运动在磁场中的部分对应圆心角为120°,负电子圆周部分所对应圆心角为60°,故时间之比为2∶1. 回旋加速器问题

图378 3.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D 形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D 形金属盒处于垂直于盒底面的匀强磁场中,如图378所示,要增大带电粒子射出时的动能,下列说法中正确的是( ) A .增加交流电的电压 B .增大磁感应强度 C .改变磁场方向 D .增大加速器半径 答案 BD 解析 当带电粒子的速度最大时,其运动半径也最大,由牛顿第二定律q v B =m v 2r ,得v =qBr m . 若D 形盒的半径为R ,则R =r 时,带电粒子的最终动能E km =12m v 2=q 2B 2R 2 2m .所以要提高加 速粒子射出的动能,应尽可能增大磁感应强度B 和加速器的半径R .

高中物理磁现象和磁场导学案

第三章第一节磁现象和磁场 【课前预习纲要】 【预习导学】 1、在初中我们已接触了一些磁有关的知识,生活中有哪些与磁有关的现象和应 用? 2、磁场的基本特性是什么? 3、磁感线的作用是什么?磁感线的方向是怎样规定的? 4、指南针的原理是什么? 【基础自测】 1、一根条形磁铁从中间断开后,每半段磁铁磁极的个数是() A.一个 B.两个 C.零 D.上述三种都可能 2、下列说法中错误的是() A.磁感线是磁场中实际存在的曲线 B.磁体周围的磁感线都是从磁体北极出来回到磁体的南极 C.磁场虽然看不见,摸不到,在磁体周围确实存在着磁场 D.磁感线是一种假想曲线,是不存在的 3、条形磁铁周围存在着磁场,在右图中能正确表示所 在点磁感线方向的小磁针是() A.小磁针A、B B.小磁针B、C C.小磁针C、D D.小磁针A、D 4、地球是一个大磁体,它的磁场分布情况与一个条形磁铁的磁场分布情况相似,以下说法正确的是( ) A.地磁场的方向是沿地球上经线方向的 B.地磁场的方向是与地面平行的 C.地磁场的方向是从北向南方向的 D.在地磁南极上空,地磁场的方向是竖直向下的 【课内学习纲要】 【要点简析】 一.磁现象 1.磁性:磁铁能吸引铁、钴、镍等物质,磁体的这种性质叫做磁性. 2.磁体:具有磁性的物质叫磁体. 3.磁极:磁体上磁性最强的部分叫磁极.每个磁体都有两个磁极 4.磁体的指向性:可以在水平面上自由转动的条形磁体或小磁针静止时,总是一端指南,另一端指北;指南的磁极叫南极,用“S”表示,指北的磁极叫北

极,用“N”表示. 5.磁极间的作用规律:同名磁极相互排斥,异名磁极相互吸引. 6.磁化:一些物体在或的作用下会获得这种现象叫做磁化.7.像软铁之类的物质获得磁性后磁性易消失,称之为软磁体;钢获得磁性后磁性不易消失,称之为硬磁体。实验室用的永磁体应该用磁体材料。 二.磁场 1.磁场:磁体或通电导体的周围存在的一种特殊物质,能够传递磁体 与磁体之间、磁体与通电导体之间、通电导体与通电导体之 间的_________。 2.基本性质:对放入其中的_____或_________产生力的作用。 3.产生: (1)磁体周围。 (2)通电导体的周围——电流的磁效应。 三、地球的磁场 1.地磁场 地球本身是一个_____,在其周围产生的磁场叫做地磁场。 2.地磁两极和地理两极的关系 地磁南极(S极)在地理____附近,地磁北极(N极)在地理___附近,二者并不重合。 【典例精析】 一、磁现象和电流的磁效应 例1:物理实验都需要有一定的控制条件。奥斯特做电流磁效应实验时,应排除地磁场对实验的影响。关于奥斯特的实验,下列说法中正确的是( ) A.该实验必须在地球赤道上进行 B.通电直导线应该竖直放置 C.通电直导线应该水平东西方向放置 D.通电直导线应该水平南北方向放置 练习1:实验表明:磁体能吸引一元硬币,对这种现象的解释正确的是( ) A.硬币一定是铁做的,因为磁体能吸引铁 B.硬币一定是铝做的,因为磁体能吸引铝 C.磁体的磁性越强,能够吸引的物质种类越多 D.硬币中含有磁性材料,磁化后能被吸引 二、探究磁场及磁场的基本性质 例2: 下列关于磁场的说法中正确的是( ) A.磁体周围的磁场看不见、摸不着,所以磁场不是客观存在的 B.将小磁针放在磁体附近,小磁针会发生偏转是因为受到磁场力的作用 C.磁体与磁体之间、磁体与通电导体之间、通电导体与通电导体之间的相互 作用都是通过磁场发生的 D.当磁体周围撒上铁屑时才能形成磁场,不撒铁屑磁场就消失 练习2:关于磁场,下列说法中正确的是( ) A.磁场和电场一样,都是客观存在的特殊物质 B.磁场对处在其中的磁体有磁场力的作用

高中物理带电粒子在匀强磁场中的运动

第四节带电粒子在匀强磁场中的运动 一、带电粒子在匀强磁场中的运动 1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做____________运动. 2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做_______运动. (1)向心力由洛伦兹力提供:qvB=__________=__________; (2)轨道半径公式:R=mv qB ; (3)周期:T=2πR v = 2πm qB (周期T与速度v、轨道半径R无关); (4)频率:f=1 T = qB 2πm ; (5)角速度:ω=2π T =__________. 二、带电粒子在有界磁场中的运动 1.分析方法:找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t和转过的圆心角α之间的关系作为辅助. (1)圆心的确定 ①基本思路:与速度方向垂直的直线和图中弦的中垂线一定过圆心. ②两种情形 a.已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点).b.已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点). (2)半径的确定 用几何知识(勾股定理、三角函数等)求出半径大小. (3)运动时间的确定 粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为: t= α 360° T(或t= α 2π T). 2.规律总结 带电粒子在不同边界磁场中的运动 (1)直线边界(进出磁场具有对称性,如图) (2)平行边界(存在临界条件,如图) (3)圆形边界(沿径向射入必沿径向射出,如图)

高中物理磁场公式总结

高中物理磁场公式总结 导读:我根据大家的需要整理了一份关于《高中物理磁场公式总结》的内容,具体内容:在高中物理中,磁场是学习的重点和难点。学生需要学会记忆并运用磁场公式。下面我给大家带来高中物理磁场公式,希望对你有帮助。高中物理磁场公式1.磁感应强度是用来表示磁场的强... 在高中物理中,磁场是学习的重点和难点。学生需要学会记忆并运用磁场公式。下面我给大家带来高中物理磁场公式,希望对你有帮助。 高中物理磁场公式 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A m 2.安培力F=BIL;(注:LB) {B:磁感应强度(T),F:安培力(F),I:电流强度 (A),L:导线长度(m)} 3.洛仑兹力f=qVB(注VB);质谱仪 {f:洛仑兹力(N),q:带电粒子电量 (C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F 向=f洛=mV2/r=m2r=mr(2/T)2=qVB;r=mV/qB;T=2m/qB;(b)运动周期与圆周运动的半径和线速度无关,

洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 注: (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负; (2)磁感线的特点及其常见磁场的磁感线分布要掌握;(3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料 高中物理磁场知识点 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。 电流在周围空间产生磁场,小磁针在该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。 电流和电流之间的相互作用也是通过磁场产生的 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流

带电粒子在磁场中做圆周运动

带电粒子在磁场中做圆周运动 相关公式: (1) 洛伦兹力充当向心力:r mv qvB 2= (2)轨道半径:qB mE qB p qB mv r K 2=== (3)周 期: qB m v r T ππ22== (4)角 速 度:m qB ω= (5)频 率:m qB T f π21== (6)动 能: m (qBr)mv E k 22122== 带电粒子在匀强磁场中运动,不考虑其他场力(重力)作用 ,可能会做哪些运动 解这类题的方法或规律: 1话轨迹 2找圆心 3定半径 注意:当粒子方向正对圆形磁场圆心O 点射入磁场时 射出的方向的反向延长线一定经过O 因为洛伦兹力为qvB,提供向心力,m(V^2)/r 或者其他的两个公式m(w^2)*r 又由于w=2∏/T 可以计算T=2∏m/(qB),r=mv/(qB) 角AOC 120度, 该带电粒子在磁场中运动时间为t=(120/360)*T=2∏m/(3qB) r=mv/(qB) 为什么带电粒子垂直射入匀强磁场中作匀速圆周运动,请给予证明 洛伦兹力与速度方向垂直. 匀速圆周运动公式有 a=V2/R 洛伦兹力大小不变【需要证说下】粒子质量不变 所以a=F/m a 也不变 又因为洛伦兹力与速度方向垂直 所以只改变速度方向 不改变速度大小 所以V2也不变 所以R 是一个定值 也就是说运动有一个半径是不变的 也就是圆周运动。 带电粒子在匀强电场中是否能做圆周运动

如果只考虑粒子受到匀强电场的作用力,因是恒力,所以粒子不能做圆周运动。如果考虑重力呢? 如果考虑重力,也不能做圆周运动,因为在所有力是恒力时,不可能做圆周运动的,只能做抛体运动或直线运动。 在匀强磁场和电厂一起的作用下能做什么运动呢? 如果电场是点电荷产生的电场,且电场方向与匀强磁场垂直,则在不考虑粒子重力时,只要粒子速度与磁场垂直,速度也与电场方向垂直,粒子可以做匀速圆周运动(圆心在点电荷处)。 如果电场是匀强电场,且考虑粒子重力,电场力与重力平衡(二者的合力为0),那么只要粒子速度与磁场垂直,粒子可以做匀速圆周运动。 如果是其他电场,粒子的运动较复杂。 带电粒子在复合场内做匀速圆周运动 如右图所示,水平放置的平行金属板间距为d,两板间电势差为U,水平方向的匀强磁场为B。今有一带电粒子在AB间竖直平面内作半径为R的匀速圆周运动,则带电粒子转动方向为____时针,速率为____。 解答:能做匀速圆周运动,又因为磁场力不做功,只能是电场力和重力抵消。 从而说明粒子带负电, 从而根据左手定责,说明粒子是顺时针旋转的。 速度根据 mv^2/R=Bqv Eq=mg,E=U/d得到 v=BqR/m=BRgd/U 高频考点:法拉第电磁感应定律、右手定则 动态发布:2011广东理综卷第15题、2010新课标理综第21题、2010全国理综17题、2010山东理综第21题、2011浙江理综第23题 命题规律:法拉第电磁感应定律、右手定则是高考考查的重点和热点,考查法拉第电磁感应定律、右手定则可能为选择题,也可能为计算题,计算题常常以压轴题出现,综合性强、难度大、分值高、区分度大。

高中物理磁现象和磁场知识点总结

第三章第1节磁现象和磁场 一、磁现象 磁性、磁体、磁极:能吸引铁质物体的性质叫磁性。具有磁性的物体叫磁体,磁体中磁性最强的区域叫磁极。 二、磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 三、磁场 1.磁体的周围有磁场 2.奥斯特实验的启示: ——电流能够产生磁场, 运动电荷周围空间有磁场 导线南北放置 3.安培的研究:磁体能产生磁场,磁场对磁体有力的作用;电流能产生磁场,那么磁场对电流也应该有力的作用。 磁场的基本性质 ①磁场对处于场中的磁体有力的作用。 ②磁场对处于场中的电流有力的作用。 第三章第3节几种常见的磁场 一、磁场的方向 物理学规定: 在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 二、图示磁场 1.磁感线——在磁场中假想出的一系列曲线 ①磁感线上任意点的切线方向与该点的磁场方向一致; (小磁针静止时N极所指的方向)

②磁感线的疏密程度表示磁场的强弱。 2.常见磁场的磁感线 永久性磁体的磁场:条形,蹄形 直线电流的磁场 剖面图(注意“”和“×”的意思) 箭头从纸里到纸外看到的是点 从纸外到纸里看到的是叉 环形电流的磁场(安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。) 螺线管电流的磁场(安培定则:用右手握住螺旋管,让弯曲的四指所指的方向跟电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向。) 常见的图示: 磁感线的特点: 1、磁感线的疏密表示磁场的强弱 2、磁感线上的切线方向为该点的磁场方向 3、在磁体外部,磁感线从N极指向S极;在磁体内部,磁感线从S极指向N极 4、磁感线是闭合的曲线(与电场线不同) 5、任意两条磁感线一定不相交 6、常见磁感线是立体空间分布的 7、磁场在客观存在的,磁感线是人为画出的,实际不存在。 四、安培分子环流假说 1.分子电流假说 任何物质的分子中都存在环形电流——分子电流,分子电流使每个分子都成为一个微小的磁体。 2.安培分子环流假说对一些磁现象的解释: 未被磁化的铁棒,磁化后的铁棒 永磁体之所以具有磁性,是因为它内部的环形分子电流本来就排列整齐. 永磁体受到高温或猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械振动的影响下,分子电流的取向又变得杂乱无章了。 3.磁现象的电本质

高二物理公式:电和磁

高二物理公式:电和磁 十二、磁场 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m 2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r= mω2r=mr(2π/T)2=qVB ;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下); ?解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负; (2)磁感线的特点及其常见磁场的磁感线分布要掌握; (3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料 十三、电磁感应 1.[感应电动势的大小计算公式] 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 2)E=BLV垂(切割磁感线运动) {L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)} 2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}* 4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大), ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)} 注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点; (2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。 (4)其它相关内容:自感/日光灯。 十四、交变电流(正弦式交变电流) 1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf) 2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总 3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2 4.理想变压器原副线圈中的电压与电流及功率关系 U1/U2=n1/n2;I1/I2=n2/n2;P入=P出 5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R; (P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻); 6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T); S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。 注:(1)交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;(2)发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;

高中物理磁场知识点总结+例题

磁场 一、基本概念 1.磁场的产生 ⑴磁极周围有磁场。⑵电流周围有磁场(奥斯特)。 安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。 ⑶变化的电场在周围空间产生磁场(麦克斯韦)。 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。 3.磁感应强度 IL F B (条件是L ⊥B;在匀强磁场中或ΔL 很小。) 磁感应强度是矢量。单位是特斯拉,符号为T ,1T=1N/(A?m)=1kg/(A ?s 2) 4.磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。磁感线的疏密表示磁场的强弱。 ⑵磁感线是封闭曲线(和静电场的电场线不同)。 ⑶要熟记常见的几种磁场的磁感线: 地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。 ⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 二、安培力 (磁场对电流的作用力) 1.安培力方向的判定 ⑴用左手定则。 ⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。 ⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。 例1.条形磁铁放在粗糙水平面上,其中点的正上方有一导线,在 导线中通有图示方向的电流后,磁铁对水平面的压力将会______(增 条形磁铁蹄形磁铁 通电环行导线周围磁场 通电长直螺线管内部磁场 通电直导线周围磁场

《带电粒子在磁场中的运动》教案示例

《带电粒子在磁场中的运动》教案示例 北京市第九中学物理教师肖伟华 设计思想 本节课是一节新常规课,组织方式为课堂教学。在设计本课时,遵循了新课程理念中“学生为主体、教师为主导”的原则,体现了传统媒体、现代媒体与课堂教学恰当整合的思想。 一.学生主体、教师主导的实现 主要通过恰当地创设教学情景来体现学生的主体地位。本节课共创设了以下几个情景: 1.在观察电子射线管中电子在磁场中的圆周运动的基础上,提出:从理论上如何分析、论证带电粒子垂直射入匀强磁场中时,为什么是匀速圆周运动?引导学生分析、推理、论证。 2.在得出带电粒子做匀速圆周的结论后,提出:粒子在多大的圆周上运动?运动一周的时间是多少?引导学生运用牛顿第二定律,结合圆周运动的知识,推导带电粒子运动的轨道半径和运动周期。 3.最后,提出:带电粒子在磁场中运动规律在实际中有什么应用?引导学生运用所学知识,分析质谱仪、回旋加速器的原理。 在整个课堂教学过程中,通过教师的引导,学生观察实验;思考回答问题;分析、推理、论证;完成实验原理设计,在这一系列的活动中,学生始终处于主体地位,是活动的主体。应用所学知识解决实际问题的过程,充分调动了学生的主体参与,而教师则始终主导着课堂的进行,体现教师的主导作用。 二.现代媒体与课堂教学的整合 在现代课堂教学中,现代媒体已经成为一个重要的支持教学的工具,媒体与课堂教学的整合一般有以下几种方式: 1.模拟演示/多媒体展示 2.情境化学习 3.微型世界 4.虚拟实验 具体采用哪种整合方式应视教学目标而定。在本课的教学中,目标是让学生建立带电粒子垂直进入匀强磁场时的运动图景,掌握带电粒子的运动规律及其应用。图景的建立是难点,为了突破这个难点,我设计了一个模拟带电粒子在磁场中运动的软件,在学生观察了电子射线管中电子的圆周运动后,再让学生观察模拟运动,帮助学生建立动态图景,突破了思维障碍。为了展示质谱仪和螺旋加速器的原理,我制作了相应的课件,动态演示它们的工作原理,帮助学生建立直观的图景,降低了教学难度。在整堂的教学过程中,传统媒体、现代媒体有机融合,相辅相成,使课堂教学行云流水,提高了课堂教学质量和教学效果。

带电粒子在匀强磁场中的运动-各个方向

高二物理选修3-1第三章磁场第六节带电粒子在匀强磁场中的运动有界磁场向各个方向运动专题专项训练 习题集 【知识点梳理】 在有界的磁场中从同一点向各个方向发射出去的相同的带电粒子在运动中,存在两种情况。当它们的速度大小不同时,在磁场中运动的半径不同,相同的带电粒子,在相同的磁场中运动的半径与速度成正比。当它们的速度大小相同时,在磁场中运动的半径相同,它们运动圆心的轨迹是在同一个圆周上。这个圆是以发射点为圆心,以带电粒子在此磁场中运动的半径为半径的圆。 【典题强化】 1.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=60°,∠b=90°,边长ab=L。一个粒子源在b点将质量为m,电荷量为q的带负电 粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中, 速度的最大值是() A.qBL/3m B.qBL/3m C.qBL/2m D.qBL/m 2.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=600,∠b=900,边长ac=L。一个粒子源在a点将质量为m、电荷量为q的带正电粒 子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速 度的最大值是() A.qBL/2m B.qBL/6m C.qBL/4m D.qBL/6m 3.如图所示,在xOy平面内有一半径为r的圆形磁场区域,其内分布着磁感应强度为B方向垂直纸面向里的匀强磁场,圆形区域边界上放有圆形的感光胶片,粒子打在其上会感光。在 磁场边界与x轴交点A处有一放射源A,发出质量为m,电量为q的粒子沿垂直 磁场方向进入磁场,其方向分布在由AB和AC所夹角度内,B和C为磁区边界 与y轴的两个交点.经过足够长的时间,结果光斑全部落在第Ⅱ象限的感光胶片 上,则这些粒子中速度最大的是() A.qBr/2m B.qBr/2m C.qBr/m D.(2+)qBr/m 4.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出)。一群比荷都为α的负离子体以相同速率v0(较大),由P点在纸平面内向不同方向射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)() A.离子飞出磁场时的动能一定相等 B.离子在磁场中运动半径不一定相等 C.沿PQ方向射入的离子飞出时偏转角最大 D.由Q点飞出的离子在磁场中运动的时间最长 5.如图所示,在半径为R的圆形区域内,有匀强磁场,方向垂直于圆平面(未画出).一群相同的带电粒子以相同速率v0,由P点在纸平面内向不同方向射入磁场.当磁感应强度大小为B1时,所有粒子出磁场的区域占整个圆周长的1/3;当磁感应强度大小减小为B2时,这些粒子在磁场中 运动时间最长的是2πR/3v0.则磁感应强度B1、B2的比值(不计重力)是()

高中物理磁场-完美总结

磁场基本性质 一、磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感线 为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线. 1.疏密表示磁场的强弱. 2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向. 3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场. 5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向· *熟记常用的几种磁场的磁感线: 【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是:(A) A.带负电; B.带正电; C.不带电; D.不能确定 解析:因在地球的内部地磁场从地球北极指向地球的南极,根据右手螺旋定则可判断出地球表现环形电流的方向应从东到西,而地球是从西向东自转,所以只有地球表面带负电荷才能形成上述电流,故选A. 三、磁感应强度 1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。 2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度. ①表示磁场强弱的物理量.是矢量. ②大小:B=F/Il(电流方向与磁感线垂直时的公式). ③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向. ④单位:牛/安米,也叫特斯拉,国际单位制单位符号T. ⑤点定B定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. ⑥匀强磁场的磁感应强度处处相等. ⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.

高中物理磁场公式总结

高中物理磁场公式大全_高中物理磁场公式总结 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m 2.安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB ;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下); ?解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负; (2)磁感线的特点及其常见磁场的磁感线分布要掌握; (3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料 1.[感应电动势的大小计算公式] 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)} 2.磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)} 3.感应电动势的正负极可利用感应电流方向判定{电源内部的电 流方向:由负极流向正极} *4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈 L有铁芯比无铁芯时要大), ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)} 注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定 律应用要点; (2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。 (4)其它相关内容:自感/日光灯。 1.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf) 2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R 总 3.正(余)弦式交变电流有效值: E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2 4.理想变压器原副线圈中的电压与电流及功率关系 U1/U2=n1/n2;I1/I2=n2/n2;P入=P出 5.在远距离输电中,采用高压输送电能可以减少电能在输电线上 的损失损′=(P/U)2R;

相关主题
文本预览
相关文档 最新文档