当前位置:文档之家› 递推数列在解概率问题上应用

递推数列在解概率问题上应用

递推数列在解概率问题上应用
递推数列在解概率问题上应用

递推数列在解概率问题上的应用

摘要:本文指出了递推数列、概率有机结合的题型,体现了知识网络的交汇点,探讨了运用递推数列解答概率问题的数学方法,分析了递推数列与概率的综合题对提高学生解题能力的作用。

关键词:递推数列概率综合能力

中图分类号:g633.6 文献标识码:a 文章编号:1673-9795(2013)06(c)-0090-02

递推数列是中学数学教学的难点,概率是新教材所增加的内容。二者的联袂,使数学题增加了活力,也使在知识网络交汇处命题增加了新的亮点。这对培养学生的数学思想方法和提高解题能力十分有益。本文试图对递推数列在概率上的应用做粗浅的分析研究。

例1:一种掷硬币走跳棋的游戏:棋盘上有第0、1、2…100,共101站,一枚棋子开始在第0站(即p0=1),由棋手每掷一次硬币,棋子向前跳动一次。若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站。直到棋子跳到第99站(获胜)或第100站(失败)时,游戏结束。已知硬币出现正、反面的概率相同,设棋子跳到第n站时的概率为pn。

(1)求。

(2)设(1≤n≤100),求证:数列是等比数列。

(3)求玩该游戏获胜的概率。

解:设事件a发生的概率为p,若在a发生的条件下发生b的概率为p′,则由a产生b的概率为p·p′。根据这一事实解答下题。

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

(完整版)已知数列递推公式求通项公式的几种方法

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2 n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2 n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。

高考数列递推公式题型归纳解析完整答案版

最新高考数列递推公式题型归纳解析完整答案版 类型1 ) (1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 变式1.1:(2004,全国I ,个理22.本小题满分14分) 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式. 解:Θk k k a a )1(122-+=-,k k k a a 3212+=+ ∴k k k k k k a a a 3)1(312212+-+=+=-+,即k k k k a a )1(31212-+=--+ ∴)1(313-+=-a a ,2235)1(3-+=-a a …… ……k k k k a a )1(31212-+=--+ 将以上k 个式子相加,得 ]1)1[(2 1 )13(23])1()1()1[()333(22112--+-=-+???+-+-++???++=-+k k k k k a a 将11=a 代入,得1)1(21321112--+?=++k k k a , 1)1(2 1 321)1(122--+?=-+=-k k k k k a a 。 经检验11=a 也适合,∴???????--?+?--?+?=-+)(1)1(2132 1)(1)1(21321222 1 21为偶数为奇数n n a n n n n n 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例3:已知31=a ,n n a n n a 2 31 31+-= + )1(≥n ,求n a 。 解:12 31 32231232)2(31)2(32)1(31)1(3a n n n n a n +-?+?-??????+---?+---= 3437526331348531n n n n n --= ????=---L 。 变式2.1:(2004,全国I,理15)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2), 则{a n }的通项1 ___ n a ?=? ? 12n n =≥ 解:由已知,得n n n na a n a a a a +-+???+++=-+13211)1(32,用此式减去已知式,得

利用逆推法解决递推数列策略..

利用逆推法解决递推数列策略 数列蕴含着丰富的数学思想,尤其是递推数列问题具有很强的逻辑性,是考查逻辑推理和化归能力的很好素材。近年来,递推数列问题成为高考命题的热点题型,这是因为递推数列问题能考查考生分析问题和解决问题的能力。 一、待定系数法 例1、已知数列}{n a 满足11=a ,且231+=+n n a a ,求.n a 解:设)(31t a t a n n +=++,则t a a n n 231+=+,所以t =1,)1(311+=++n n a a , 所以}1{1++n a 为等比数列,首项为2,所以1321-?=+n n a ,.1321-?=-n n a 点评:求递推式形如q pa a n n +=+1(p 、q 为常数且1≠p )的数列通项,可用迭代法或待定系数法得到一个新的等比数列}1 {-+p q a n 满足p p q a n =-++11)1(-+p q a n ,由等比数列的通项公式求得原数列的通项公式,也可用“归纳-猜想-证明”的方法来求,这也是近年高考考得较多的一种题型。 二、利用叠加或叠乘进行转化 例2、已知数列}{n a 满足211= a ,n n a a n n ++=+211,求.n a 解:由条件,知111)1(1121+-=+=+= -+n n n n n n a a n n , 所以21112-=-a a ,312123-=-a a ,413134-=-a a ,…,n n a a n n 1111--=--, 将这(n -1)个式子相加,得.111n a a n -=- 因为211=a ,所以.123n a n -= 例3、设}{n a 是首项为1的正项数列,且满足)(0)1(1221*++∈=?+-+N n a a na a n n n n n , 求通项公式.n a 解:因为)(0)1(1221*++∈=?+-+N n a a na a n n n n n , 所以0)]()1[(11=+-+++n n n n a a na a n ,因为0,01>>+n n a a ,所以01>++n n a a , 所以0)1(1=-++n n na a n ,即1 1+=+n n a a n n ,于是得n -1个等式: 2112=a a ,3223=a a ,4334=a a ,……,n n a a n n 11-=-,将这n -1个式子相乘, 并将11=a 代入,得.1n a n =

几种常见的递推数列通项的求法之教学反思

《几种常见的递推数列通项的求法》之教学反思 数学是一门研究数量关系和空间形式的科学。数列恰好是研究数量关系的一个章节。 数列通项公式直接表述了数列的本质,是给出数列的一种重要方法。数列通项公式具备两大功能,第一,可以通过数列通项公式求出数列中任意一项;第二,可以通过数列通项公式判断一个数是否为数列的项以及是第几项等问题;因此,求数列通项公式是高中数学中最为常见的题型之一,它既考察等价转换与化归的数学思想,又能反映学生对数列的理解深度,具有一定的技巧性,是衡量考生数学素质的要素之一,因而经常渗透在高考和数学竞赛中。 我在这几年的高中教学中,从每年各省的高考真题和模拟题中,发现“数列通项公式”求法在高中解题中占有很大的比重。求数列(特别是以递推关系式给出的数列)通项公式的确具有很强的技巧性,与我们所学的基本知识与技能、基本思想与方法有很大关系,因而在平日教与学的过程中,既要加强基本知识、、基本方法、基本技能和基本思想的学习,又要注意培养和提高数学素质与能力和创新精神。这就要求无论教师还是学生都必须提高课堂的教与学的效率,注意多加总结和反思,注意联想和对比分析,做到触类旁通,将一些看起来毫不起眼的基础性命题进行横向的拓宽与纵向的深入,通过弱化或强化条件与结论,揭示出它与某类问题的联系与区别并变更为出新的命题。这样无论从内容的发散,还是解题思维的深入,都能收到固本拓新之用,收到“秀枝一株,嫁接成林”之效,从而有利于形成和发展创新的思维。 高考改革的的变化趋势是强调基础,提高能力。相对于旧版教材,当前的新课标教材以意大利著名数学家斐波那契在兔子繁殖问题中提出的“斐波那契数列12(3)n n n a a a n --=+≥”,专门定义了数列的递推公式的概念,并由此产生出了怎样应用递推关系求解数列通项公式. 正是基于数列通项求法的重要性,我决定在赛课选题中把这个知识点作为切入点。 一、要有明确的教学目标 教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。高三备课时要依据考纲,但又不拘泥于考纲,灵活运用变通。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。本节课的重点在数形结合,所以我选择的每一道例题和练习题都以数形结合为中心。 二、要能突出重点、化解难点 每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,我应该加强学生在课堂上对习题过程的展示,对数形结合思想的领悟,以图解题,让学生在黑板上亲自演练,或用投影仪展示其做题的思路和过程。 三、要善于应用现代化教学手段 在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:一是能有效地增大每一堂课的课容量,从而把原来40

常见递推数列通项九种求解方法

常见递推数列通项地九种求解方法 高考中地递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考地热点之一.是一类考查思维能力地好题.要求考生进行严格地逻辑推理,找到数列地通项公式,为此介绍几种常见递推数列通项公式地求解方法. 类型一:<可以求和)累加法 例1、在数列中,已知=1,当时,有,求数列地通项公式. 解读: 上述个等式相加可得: ∴ 评注:一般情况下,累加法里只有n-1个等式相加. 【类型一专项练习题】 1、已知,<),求. 2、已知数列,=2,=+3+2,求. 3、已知数列满足,求数列地通项公式. 4、已知中,,求. 5、已知,,求数列通项公式. 6、已知数列满足求通项公式? 7、若数列地递推公式为,则求这个数列地通项公式 8、已知数列满足,求数列地通项公式. 9、已知数列满足,,求. 10、数列中,,<是常数,),且成公比不为地等比数列.

答案:1. 2. 3. 4. 5. 6. 7. 8. 9. 10.(1>2 (2> 11.(1>5 (2> 类型二: <可以求积)累积法 例1、在数列中,已知有,(>求数列地通项公式. 解读: 又也满足上式; 评注:一般情况下,累积法里地第一步都是一样地. 【类型二专项练习题】 1、已知,(>,求. 2、已知数列满足,,求. 3、已知中,,且,求数列地通项公式. 4、已知,,求. 5、已知,,求数列通项公式. 6、已知数列满足,求通项公式? 7、已知数列满足,求数列地通项公式. 8、已知数列{a n},满足a1=1, (n≥2>,则{a n}地通项 9、设{a n}是首项为1地正项数列, 且(n + 1>a- na+a n+1·a n = 0 (n = 1, 2, 3, …>,求它地通项公式. 10、数列地前n项和为,且,=,求数列地通项公式. 答案:1. 2. 3. 4. 5. 6.

必修5--数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… (3)数列的函数特征与图象表示: 4 5 6 7 8 9 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关 系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式 二、等差数列 题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。 例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-; 等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,124971 16a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 题型三、等差中项的概念: 定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。其中2 a b A +=

递推数列常十种方法

求递推数列通项公式的十种策略例析 递推数列的题型多样,求递推数列的通项公式的方法也非常灵活,往往可以通过适当的策略将问题化归为等差数列或等比数列问题加以解决,亦可采用不完全归纳法的方法,由特殊情形推导出一般情形,进而用数学归纳法加以证明,因而求递推数列的通项公式问题成为了高考命题中颇受青睐的考查内容。笔者试给出求递推数列通项公式的十种方法策略,它们是:公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法。仔细辨析递推关系式的特征,准确选择恰当的方法,是迅速求出通项公式的关键。 一、利用公式法求通项公式 例1 已知数列}a {n 满足n n 1n 23a 2a ?+=+,2a 1=,求数列}a {n 的通项公式。 解:n n 1n 23a 2a ?+=+两边除以1n 2+,得 23 2a 2a n n 1 n 1n + = ++,则232 a 2a n n 1n 1n =-++, 故数列}2a { n n 是以1222 a 1 1==为首,以23 为公差的等差数列,由等差数列的通项公式,得23) 1n (12a n n -+=,所以数列}a {n 的通项公式为n n 2)2 1 n 23(a -=。 评注:本题解题的关键是把递推关系式n n 1n 23a 2a ?+=+转化为 2 3 2a 2a n n 1 n 1n = -++,说明数列}2a {n n 是等差数列,再直接利用等差数列的通项公式求出23)1n (12 a n n -+=,进而求出数列}a {n 的通项公式。 二、利用累加法求通项公式 例2 已知数列}a {n 满足1a 1 n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 解:由1n 2a a n 1n ++=+ 得1n 2a a n 1n +=-+ 则112232n 1n 1n n n a )a a ()a a ()a a ()a a (a +-+-++-+-=---Λ

递推数列通项公式求法(教案)讲解学习

递推数列通项公式求 法(教案)

由递推数列求通项公式 马鞍中学 --- 李群花 一、课题:由递推数列求通项公式 二、教学目标 1、知识与技能: 会根据递推公式求出数列中的项,并能运用累加、累乘、待定系数等方法求数列的通项公式。 2、过程与方法: ①复习回顾所学过的通项公式的求法,对比递推公式与通项公式区别认识到由递推公式求通项公式的重要性,引出课题。 ②对比等差数列的推导总结出叠加法的试用题型。 ③学生分组讨论完成叠乘法及待定系数法的相关题型。 3、情感态度与价值观: ①通过对数列的递推公式的分析和探究,培养学生主动探索、勇于发现的求知精神; ②通过对数列递推公式问题的分析和探究,使学生养成细心观察、 认真分析、善于总结的良好思维习惯; ③通过互助合作、自主探究等课堂教学方式培养学生认真参与、积极交流的主体意识。 三、教学重点:根据数列的递推关系式求通项公式。 四、教学难点:解题过程中方法的正确选择。 五、教学课型,课时:复习课 1课时 六、教学手段:多媒体课件,黑板,粉笔 七、教学方法:激励——讨论——发现——归纳——总结 八、教学过程 (一)复习回顾:

1、通项公式的定义及其重要作用 2、学过的通项公式的几种求法 3、区别递推公式与通项公式,从而引入课题 (二)新知探究: 问题1: 在数列{a n }中 a 1=1,a n -a n-1=2n-1(n ≥ 2),求数列{a n } 的通项公式。 活动:通过分析发现形式类似等差数列,故想到用叠加法去求解。教师引导学生细致讲解整个解题过程。 总结:类型1:)(1n f a a n n =-+,利用叠加法(逐差相加法)求解。 问题2:例2在数列{a n }中 a 1=1, (n ≥ 2),求数列{a n } 的通项公式。 方法归纳:利用叠乘法求数列通项 活动:类比类型1推导过程,让学生分组讨论研究相关解题方案。 练习2设{a n }是首项为1的正项数列,且(n+1)a n 2+1 –na n 2 +a n+1a n =0, n n n a a 21 =-

高中数学几种常见的数列递推关系式专题辅导

高中数学几种常见的数列递推关系式 数列的递推关系是指数列中的前一项(前几项)与后一项的关系式。递推数列是数列中的重要内容,通过递推关系,观察,探求数列的规律,进而可求出整个数列的通项公式。通过递推关系的学习,可以培养学生的观察能力,归纳与转化能力,综合运用知识等能力,因此,是近几年高考与竞赛的热点。 下面针对几种高中常见的递推形式及处理方法做一总结。 一. 定义法 常见形式: 已知:a a a a d n n 11==++, ① 或a a a a q n n 110=≠=+, ② (其中,d 常数,q ≠0为常数) 定义法即高中所学的两大基本数列——等差数列与等比数列的基本定义式。 已知首项,与递推关系,数列的通项即知,在此不做赘述。但这两个基本数列的求通项公式的方法在后续学习中,在方法上起到了指导作用。即我们下面要介绍的方法。 二. 迭代法 常见形式:已知 a a a a f n n n 110=≠=++,() ③ 或a a a a f n f n n n 110=≠=+,,()()不恒为零 ④ (这里的f n ()是关于n 的关系式)。 这两个形式的递推关系式,虽然不是等差与等比数列,但表达方式上非常接近。我们可以利用迭代的方法来求出通项a n 也可以分别称为叠加法和叠乘法。 如:③a a f 211-=() a a f 322-=() …… a a f n n n N n n -=-≥∈-112()()*, 将以上n -1个式子叠加,可得 a a f f f n n n N n -=+++-≥∈11212()()()()*…, 这里,我们只须已知数列的首项a 1利用求和求出上述等式右端的和,即可求出数列 {}a n 的通项公式来。 如:④的具体例子: 例1. (2006年东北三省三校一模试题21)已知数列{}a n ,S n 是数列的前n 项和, a S n a n n 212 ==,。求S n 。 解:因为S n S S n n N n n n =-≥∈-2 21()()*, 所以n S n S n n 22 21-=- S S n n n n N n n -= -≥∈123()*, S S S S S S S S n n n n n n N n n n n 324312131425364132 3·…····… ·,---=---≥∈()*

数列题型及解题方法归纳总结99067

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…

几类递推数列通项公式的常见类型及解法

几类递推数列通项公式的常见类型及解法 递推数列问题成为高考命题的热点题型,对于由递推式所确定的数列通项公式问题,通常可对递推式的变形转化为等差数列或等比数列.下面将以常见的几种递推数列入手,谈谈此类数列的通项公式的求法. 一、a a d n n +=+1型 (d 为常数) 形如)(1n f a a n n +=+的递推数列求通项公式,将此类数列变形得a a d n n +-=1,再由 等差数列的通项公式()a a n d n =+-11可求得a n . 例1 已知数列{}a n 中()a a a n N n n 1123==+∈+,,求n a 的通项公式. 解:∵a a n n +=+13 ∴a a n n +-=13 ∴ {}a n 是以a 12=为首项,3为公差的等差数列. ∴()a n n n =+-=-21331为所求的通项公式. 二、)(1n f a a n n +=+型 形如)(1n f a a n n +=+的递推数列求通项公式,可用差分法. 例2 已知数列{}a n 中满足a 1=1,n a a n n -=+1,求n a 的通项公式. 解:作差n a a n n -=-+1,则 2a -1a = -1,3a -2a = -2,4a -3a = -3,……,)1(1--=--n a a n n , 将上面n -1个等式相加得 +-+-+-=-)3()2()1(1a a n ……+[)1(--n ] ∴ n a =2 2 2++-n n 为所求的通项公式. 三、n n a q a ?=+1型 形如n n a q a ?=+1的递推数列求通项公式,将此类数列变形得 q a a n n =+1 ,再由等比数列的通项公式11-?=n n q a a 可求得a n . 例3 已知数列{}a n 中满足a 1=1,n n a a 21=+,求n a 的通项公式. 解:∵n n a a 21=+ ∴ 21 =+n n a a

几类常见递推数列的解题方法

叠加、 叠乘、迭代递推、代数转化 ——几类常见递推数列的教学随笔 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、叠加相消. 类型一:形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例1:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1 [1+(2n -3)]( n -1)=( n -1)2 n ∈N + 练习1:⑴.已知数列{a n },a 1=1, n ∈N +,a 1+n =a n +3 n , 求通项公式a n . ⑵.已知数列{a n }满足a 1=3,)1(2 1 +=-+n n a a n n ,n ∈N +,求a n . 二、叠乘相约. 类型二:形如)(1n f a a n n =+.其中f (n ) =p p c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1). 例2:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0 ∴1 1+=+n n a a n n ∴n n n n n n n a a a a a a a a a a n n n n n n n 112 12 31 2111 23 22 11 =???--?--?-=?????=----- 练习2:⑴已知数列{a n }满足S n = 2 n a n ( n ∈N * ), S n 是{ a n }的前n 项和,a 2=1,求a n .

已知数列递推公式求通项公式的几种方法

已知数列递推公式求通项公式的几种方法 Revised on November 25, 2020

求数列通项公式的方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以12n +,得 113222n n n n a a ++=+,则11 3 222 n n n n a a ++-=,故数列{}2n n a 是以1222 a 1 1==为首项,以23 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 11 3 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1) 22n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为 121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-+ +-+-+, 即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解:由1231n n n a a +=+?+得1231n n n a a +-=?+则 所以3 1.n n a n =+-

数列题型与解题方法归纳总结

.下载可编辑. 知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ????????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可 能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+… +(a n -a n-1)

几类常见递推数列的解法

几类递推数列通项公式的常见类型及解法 省乐安县第二中学 芳林 邮编 344300 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法. 一、a a d n n +=+1型 形如d a a n n +=+1(d 为常数)的递推数列求通项公式,将此类数列变形得 a a d n n +-=1,再由等差数列的通项公式()a a n d n =+-11可求得a n . 例1: 已知数列{}a n 中()a a a n N n n 1123==+∈+,,求n a 的通项公式. 解: ∵a a n n +=+13 ∴a a n n +-=13 ∴ {}a n 是以a 12=为首项,3为公差的等差数列. ∴()a n n n =+-=-21331为所求的通项公式. 二、)(1n f a a n n +=+型 形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消. 例2:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1) ∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3) = 2 1[1+(2n -3)]( n -1)=( n -1)2 n ∈N + 三、n n a q a ?=+1型 形如n n a q a ?=+1(q 为常数)的递推数列求通项公式,将此类数列变形得 q a a n n =+1 ,再由等比数列的通项公式11-?=n n q a a 可求得a n . 例3 : 已知数列{}a n 中满足a 1=1,n n a a 21=+,求n a 的通项公式. 解:∵n n a a 21=+ ∴ 21 =+n n a a

数列四种递推公式解题

浅谈四种数列递推公式求通项公式的方法 寿县一中数学组 邵兵荣 摘要:本文是介绍数列通项公式的求法,数列的通项公式是研究数列性质的关键,对数列的单调性,数列的最大项,最小项,数列的求和等都有重大作用,通过构造等比数列将四种数列的递推公式转化为等比数列,先有等比数列的通项公式再求所求数列的通项公式。 关键词:等比数列 递推公式 通项公式 数列的递推公式是数列的一种表示方法,它反映的是数列相邻项之间的关系式,如果要研究某个数列的性质,我们就要确定其通项公式。本文就介绍了四种根据数列的递推公式求通项公式的方法。 一、数列}{n a 中,已知q pa a a a n n +==-11,,()+∈>N n n ,1,0,1≠≠q p ,求数列}{n a 的通项公式。 解析:可以设()x a p x a n n +=+-1,化简得()x p pa a n n 11-+=- 比较系数得到(),1q x p =-即1 -=p q x , 所以数列}{n a 满足:??? ? ??-+=-+-111p q a p p q a n n 即数列}1{-+p q a n 是以首项为1 -+p q a ,公比为p 的等比数列。 即111-??? ? ??-+=-+n n p p q a p q a 所以111--???? ? ?-+=-p q p p q a a n n ,(0,1,≠≠∈+q p N n ) 【例1】设数列}{n a 满足, 23,111+==-n n a a a ()+∈>N n n ,1,求数列}{n a 的 通项公式。 解:根据231+=-n n a a 可以得到()1311+=+-n n a a 即数列}1{+n a 是以211=+a 为首项,公比为3的等比数列。 所以1321-?=+n n a 即1321-?=-n n a 二、数列}{n a 中,已知a a =1,r qn pa a n n ++=-1,()+∈>N n n ,1,R r q a p ∈≠≠≠,0,0,1 ,求数列}{n a 的通项公式。 解析:可以设()]1[1y n x a p y xn a n n +-+=++-,可以得到

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法 高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。是一类考查思维能力的好题。要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。 类型一:1()n n a a f n +=+(()f n 可以求和) ????→解决方法 累加法 例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。 解析: 121(2)n n a a n n --=-≥ ∴21324311 3 521 n n a a a a a a a a n --=??-=?? -=???-=-?? 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴= 评注:一般情况下,累加法里只有n-1个等式相加。 【类型一专项练习题】 1、已知11a =,1n n a a n -=+(2≥n ),求n a 。 2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。 3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。 4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。 5、已知112a =,112n n n a a +??=+ ??? * ()n N ∈,求数列{}n a 通项公式. 6、 已知数列{}n a 满足11,a =()1 132,n n n a a n --=+≥求通项公式n a ? 7、若数列的递推公式为1* 113,23()n n n a a a n N ++==-?∈,则求这个数列的通项公式 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+?+=+,,求数列}a {n 的通项公式。 9、已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 10、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值; (II )求{}n a 的通项公式.

相关主题
文本预览
相关文档 最新文档