当前位置:文档之家› (完整版)第四讲锚杆支护理论

(完整版)第四讲锚杆支护理论

(完整版)第四讲锚杆支护理论
(完整版)第四讲锚杆支护理论

第四讲锚杆支护理论

本讲主要介绍锚杆常用支护理论(包括一些近年来比较流行和活跃的理论)、锚杆支护设计方法和国外锚杆支护主要经验,以及巷道容易冒顶的十种情况和五种应对措施。

锚杆支护的作用机理尚在探讨之中。目前己提出的观点较多,其中影响较大的有悬吊作用、组合梁(拱)作用、组合拱、减跨理论、加固(提高C、φ值)作用等几种。这几种观点都是以围岩状态和利用锚杆杆体受拉(力)为前提来解释锚杆支护作用机理的,因此,围岩状态及锚杆受拉力这两个前提的客观性是判定上述理论正确性的标准。

一、锚杆支护理论

支护:就是指为了地下巷道掘进、硐室开挖后的稳定及施工安全,而采取的支持、加强或改善围岩应力状态而打设的构件或采取的措施的总称。支护包括两个方面,一是支,就是顶住顶板,防止顶板出现大量的下沉,使顶板下沉控制在可控、安全的状态,二是护,就是保持顶板的完整性,防止出现漏矸、漏顶、巷道掉渣等现象。支和护是一个有机统一的整体,它们共同组成了支护系统。

(一)锚杆支护理论综述

1、悬吊理论

1)机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。

图4-1 锚杆悬吊作用原理示意图

2)缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。

3)适用条件:在锚杆的长度范围内有一层坚硬而稳定的岩层,锚杆可以锚固到顶板坚硬稳定岩层。

图4-2 a拱形巷道的锚杆悬吊作用b软弱岩层的锚杆悬吊作用

2、组合梁理论

1)机理:将锚固范围内的岩层挤紧,增加岩层间的摩

擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将几层薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应变和应力都将大大减小,组合梁的挠度亦减小。在于通过锚杆的预拉应力将原视为叠合梁(板)的岩层挤紧,增大岩层间的摩擦力;

同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。

决定组合梁稳定性的主要因素是锚杆的预拉应力及杆体强度和岩层的性质。

2)缺点:将锚杆作用与围岩的自稳作用分开;在顶板较破碎、连续性受到破坏时,难以形成组合梁。这一观点有一定的影响,但是其工程实例比较少,也没有进一步的资料供锚杆支护设计应用,尤其是组合梁的承载能力难以计算,而且组合梁在形成和承载过程中,锚杆的作用难以确定。另外,岩层沿巷道纵向有裂缝时粱的连续性问题、梁的抗弯强度等问题也难以解决。

3)适用条件:

层状地层,如图4-3中2所示;

顶板在相当距离内(锚杆长度范围内)不存在稳定岩层,

悬吊作用处于次要地位。

图4-3锚杆的组合梁作用a未打锚杆(叠合梁)b布置锚杆(组合梁)

3、组合拱理论

1)机理:在破碎区安装预应力锚杆时,在杆体两端将形成圆锥形分布的压应力,如果沿巷道周边布置锚杆群,只要铺杆间距足够小,各个锚杆形成的压应力圆锥体将相互交错,在岩体中形成一个均匀的压缩带,即承压拱,这个承压拱可以承受其上部破碎岩石施加的径向荷载。在承压拱内的岩石径向及切向均受压,处于三向应力状态,其围岩强度得到提高,支撑能力也相应加大。

2)缺点:一般不能作为准确的定量设计。

3)适用条件:顶板无稳定岩层。

图4-4 a锚杆的组合拱作用原理示意图b锚杆的减跨作用示意图

4、减跨理论

1)机理:把不稳定的顶板岩层看成是支撑在两帮的叠合梁(板),由于可视悬吊在老顶上的锚杆为支点安设了锚杆就相当于在该处打了点柱,增加了支点,减少了顶板的跨度(如图),从而降低了顶板岩层的弯曲应力和挠度,维持了顶板与岩石的稳定性,使岩石不易变形和破坏。

2)使用条件:同悬吊理论,其实质就是锚杆的“减跨”作用,它实际上来源于锚杆的悬吊作用。

3)缺点:它也未能提供用于锚杆支护参数设计的方法和参数。

5、围岩松动圈巷道支护理论

围岩松动圈巷道支护理论是在对围岩状态进行深入研究后提出的,通过研究,发现松动圈的存在是巷道围岩的固有特性,它的范围大小(厚度值)目前可以用声波仪或者多点位移计等手段进行测定。

松动圈理论认为:巷道支护的主要对象是围岩松动圈产生、发展过程中产生的碎胀变形力,锚杆受拉力的来源在于松动圈的发生、发展,并根据围岩松动圈厚度值大小的不同将其分为小、中、大三类,松动圈的类别不同,则锚杆支护机理也就不同。

本理论认为,巷道支护的对象除松动圈围岩自重和巷道深部围岩的部分弹塑性变形力外,还有松动围围岩的变形

力。后者,往往占据主导地位。简而言之,巷道支护的对象主要是围岩松动圈在形成过程中的岩石碎胀力。

在现有支护条件下,试图用支护手段阻止围岩松动破坏是不可能的。

松动圈理论认为,支护的作用是限制围岩松动圈形成过程中碎胀力所造成的有害变形。

支护对破碎围岩的维护作用:松动圈发展变形过程中维持破碎岩块相互啮合不垮落,通过提供支护阻力限制破裂缝隙过度扩张,从而减少巷道的收敛变形。

1)小松动圈(<40cm)

围岩的变形压力可以忽略不计,巷道支护载荷只是松动圈内围岩的自重,其数值小于0.1MPa,只用单一喷混凝土支护即可达到支护的目的。

2)中松动圈(40cm~150cm)

围岩碎胀变形比较明显,变形量较大,使刚性的喷射混凝土支护产生裂缝或破坏,必须采用以锚杆为主体构件的锚喷支护方式,以锚杆为主体支护结构控制其碎胀变形,喷层将只作为锚杆间活石的支护和防止围岩风化。

由于围岩松动圈厚度小于常用锚杆长度,因此可采用锚杆悬吊作用机理来设计支护参数。

3)大松动圈(>150cm)

围岩表现出软岩的工程特征,围岩松动圈碎胀变形量

大,初期围岩收敛变形速度快,变形持续时间长,矿压显现大,支护难度大。支护不成功时,巷道底板出现底鼓。在这种条件下,如果用悬吊理论设计锚杆支护参数,常因设计锚杆过长、过粗而失去其普遍应用的价值。

在单根锚杆作用下每根锚杆因受拉应力而对围岩产生挤压,在锚杆两端周围形成一个两端圆锥形的受压区,合理的锚杆群可使单根锚杆形成的压缩区彼此联系起来,形成一个厚度为b的均匀压缩带。对于拱形巷道,压缩带将在围岩破裂处形成拱形;对于矩形巷道,压缩带将在围岩破裂处形成矩形结构,统称之为组合拱作用机理。

表4-1 松动圈分类表

6、锚杆支护的“关健承载圈”及“扩容—稳定”理论

由煤炭科学研究总院开采所康红普博士提出,该理论认为:巷道围岩的变形和破坏状态在掘进、稳定、回采等不同阶段是不同的,具有显著差别。因此主张根据围岩的状态特

点分别按“关键承载圈理论”和“扩容--稳定理论”分析阐述锚杆支护的作用机理。

1)“关键承载圈”是指在巷道周围围岩一定深度的范围内,存在一个能承受较大切向应力的“岩石圈”,该岩石圈处于应力平衡状态,具有结构上的稳定性,可以用来悬吊承载圈以内的岩层。

关键承载圈理论认为,承载圈以内的岩石重量是支护的对象——即荷载高度。

理论分析及工程实践表明:承载圈厚度越大,圈内应力分布越均匀,承载能力越大;在对围岩未采取人工支护等控制措施时,承载圈离巷道周边越近,荷载高度越低,巷道越易维护。

关键承载圈的位置及厚度,可以根据对围岩状态的分析计算得出。

“关键承载圈理论”认为,当载荷高度不大,通常锚杆长度能够伸入到关键承载圈中时,用“关键承载圈观点”阐述锚杆支护机理。其主要观点是:

(1)关键承载圈以内的岩石重量是支护的对象,荷载高度是关键承载圈以下的不稳定岩层的高度。

(2)锚杆的支护作用主要是:将破坏区岩层与关键承载圈相连,阻止破碎岩层垮落;对围岩提供径向、切向约束力,阻止破坏区岩层的扩容、离层、滑动,提高破碎区的承载能

力,如图4-5所示。

图4-5 锚杆支护的关键承载圈理论示意图

2)扩容—稳定理论

巷道经受采动影响之后,围岩的破坏范围会逐渐扩大,当通常锚杆的长度不能伸入到关键承载圈时,依据“扩容—稳定理论”阐述锚杆支护的作用,主要观点:

(1)锚杆要控制围岩的扩容变形,阻止深部破碎岩层的进一步扩容相离层。

(2)在破坏区内形成“次生关键承载层”,使围岩深部关键承载圈内的应力分布趋于均匀和内移,提高关键承载圈的承载能力。

(3)锚杆对煤帮的控制效果尤为明显,由于煤层强度较低且受到采动影响程度较为严重,所以回采巷道两帮支护显得尤为重要,安装锚杆后,对煤帮的扩容、松动和挤出均有控制作用,加钢带后效果会更好。

“扩容一稳定理论”的核心思想就是控制围岩的扩容变形,形成次生关键承载层,提高承载圈的承载能力使围岩趋

于稳定。

次生关键承载层厚度的影响因素很多,当其厚度较薄且远小于巷道尺寸时,在水平应力的作用下,次生关键层很容易发生“压曲失稳、弯曲失稳”破坏,造成巷道支护失败。

因此,合理确定次生关键承载层的厚度至关重要,锚杆的存在,减小了岩层压曲或者弯曲失稳的可能性,锚杆预紧力越大,支护效果越好。

(二)锚杆(索)支护作用机理分析

1、锚杆支护主要作用在于控制锚固区围岩的离层、滑动、裂隙张开、新裂纹产生等扩容变形与破坏,尽量使围岩处于受压状态,抑制围岩弯曲变形、拉伸与剪切破坏的出现,最大限度地保持锚固区围岩的完整性,提高锚固区围岩的整体性和稳固性。

2、在锚固区内形成刚度较大的次生承载结构,阻止锚固区外岩层离层,改善围岩深部的应力状态。

3、锚杆支护系统的刚度十分重要,特别是锚杆预应力起着决定性作用。根据巷道围岩条件确定合理的锚杆预应力是支护设计的关键。较高的预应力要求锚杆具有较高的强度。

4、锚杆预应力的扩散对支护效果同样重要。单根锚杆预应力的作用范围有限,必须通过托板、钢带和金属网等构件,将预应力扩散到离锚杆更远的围岩中。钢带、金属网等

护表构件在预应力支护系统中发挥重要的作用。

5、锚索的作用主要有两个方面:一是将锚杆形成的次生承载结构与深部围岩相连,提高次生承载结构的稳定性。二是锚索施加较大的预紧力,挤紧和压密岩石中的层理、节理裂隙等不连续面,增加不连续面之间的抗剪力,从而提高围岩的整体强度。

二、锚杆的三径匹配

1、钻孔直径比锚杆直径大6~10mm。

2、钻孔直径比树脂药卷大6mm左右。

3、一般钻孔直径29mm,锚杆直径20、22mm,树脂药卷直径23mm。

图4-6 锚固力与钻孔直径、锚杆直径的关系

三、锚杆支护设计

锚杆支护设计可归纳为三大类,分别是工程类比法、理论计算法、以计算机数值模拟为基础的动态系统设计方法。我们今天主要讲理论计算法,其他方法简单介绍一些。

(一)工程类比法:是一种实用的方法,在我国锚杆支护设计中占主导地位。这种方法是在已有的大量、成功实践

的基础上,根据巷道的生产地质条件确定支护参数。主要有以回采巷道围岩稳定性分类为基础的工程类比法;巷道围岩松动圈分类为基础的工程类比法。采用《我国缓倾斜、倾斜煤层回采巷道稳定性分类方案》,将巷道分为5类。制订相应的煤巷锚杆支护技术规范。

(二)动态系统设计方法:首先进行地质力学评估(含地应力测试),将地质力学参数、锚杆参数等输入计算机数值模拟软件,以围岩强度强化理论为依据,按控制围岩变形效果和经济合理的原则选择最优方案,组织施工,并对巷道围岩稳定状况和锚杆载荷监测,根据监测反馈信息确定是否调整锚杆支护参数,经反复实践,在动态中修改完善设计。

(三)理论计算方法(k的取值)

1、按加固拱原理确定锚杆参数:

1)顶锚杆

(1)锚杆长度:L= N(1.1+B/10)=1.0×(1.1+4.2/10)=1.52m;根据我矿支护经验,锚杆长度取L=2.0-2.2m。

式中:L—锚杆长度;

N—围岩稳定影响系数,取1.0m;

B—巷道跨度。

(2)锚杆直径:D=L/110=(2.0-2.2)/110=0.018-0.02m,取D=18-20mm。

(3)锚杆间距:d≤0.5L=0.5×2.2=1.1m,取间排距为900

×1000mm。

(4)锚杆型号:选用φ(18-20)×(2000-2200)mm的左旋无纵筋锚杆,其锚固力≥100KN/根;配用W钢带及φ4mm的钢网联合支护顶板。

2)巷帮锚杆:巷帮支护锚杆选用φ20×2200mm的左旋无纵筋锚杆,并配合φ14mm的钢筋梯形梁和φ4mm的钢网联合支护。

2、按悬吊理论确定锚杆参数:

1)锚杆长度L,

L=L1+L2+L3 =50+1200+300=1550mm

设计锚杆长度L=2200mm

式中:L1——锚杆外露长度

L2——软弱岩层厚度,可根据柱状图确定mm

L3——锚杆伸入稳定岩层深度一般不小于300mm

2)锚固力N:可按锚杆杆体的屈服载荷计算

N=π/4(d2σ屈) = 0.25×3.14×(0.02)2×335×106=105KN 式中:σ屈——杆体材料的屈服极限Mpa;d——杆体直径3)锚杆间排距

锚杆间距D≤1/2L

D≤0.5×2200=1100mm

锚杆排距L0=Nn/2kra L2=105×103×13/2×3×24×103×2.1×1.2=3.76m

设计锚杆间排距为900×1000mm

式中:n——每排锚杆根数

N——设计锚固力,KN/根

K——安全系数,取2-3

r ——上覆岩层平均容重,取24KN/ m3

a——1/2巷道掘进宽度m

3、按组合梁原理计算

(1) 锚杆长度L

L=L1+L2+L3

式中:L1——锚杆外露长度m

L3——锚固端长度m

L2——组合梁自撑厚度m

L2=0.612B[K1P/ψσ1σx]/2

K1——与施工方法有关的安全系数。掘进机掘进2-3;爆破法掘进3-5;巷道受动压影响5-6

P——组合梁自重均布载荷MPa

ψ——与组合梁层数有关的系数

1

0.3-0.4倍,单位为MPa;σx——原岩水平应力,σx=λrz MPa,λ—侧压力系数,一般为0.25-0.4,Z—巷道埋深,m。

(2)锚杆间距

以上所选锚杆长度,还需验算组合梁各层间不发生相对滑动,并保证最下面一层岩层的稳定性。

D≥1.63m1(σ1/KP)/2

式中:m1——最下面一层岩层的厚度m

K——安全系数,取8-10

P——本层自重均布荷载P=r1m1MPa ;

r1——最下面一层岩层的容重,KN/m3

四、国外锚杆支护主要经验:

1、美国锚杆支护技术的精髓是“两高一大”。高强度(螺纹钢);高预拉力(涨壳式锚头与树脂锚固剂联合使用,使得锚杆具有很高的预拉力,锚杆的预拉力可以达到杆体本身强度的50%~75%);大排间距。

2、澳大利亚主要推广全长树脂锚固锚杆,强调锚杆强度要高。其锚杆设计方法是将地质调研、设计、施工、监测、信息反馈等相互关联、相互制约的各个部分作为一个系统工程进行考察,使它们形成一个有机的整体,形成了锚杆支护系统的设计方法。

3、波兰主要推广及时支护技术,在巷道开挖后,及时进行支护,以适应围岩应力重新分布的要求,及时控制围岩变形。

4、国外锚杆支护的发展现状,即成功经验

(1)采用高强度、超高强度材料制造锚杆,加工精细,

将锚杆作为产品、实现了产业化、商品化,而不是简单的支护材料,并形成适用于不同条件的系列化产品。

(2)形成一整套比较科学的设计方法,以巷道围岩地质力学评估及井下实测数据为基础,强调最大水平应力在巷道布置与支护参数设计上的应用。

(3)采用可靠的监测手段,大力推广应用顶板光纤窥视仪、顶板离层指示仪、围岩深部多点位移计、测力锚杆等监测仪器。

(4)坚持科学管理,严格质量监测,形成了从理论到实践的完善的锚杆支护技术体系。

(5)有比较可靠的配套机具,采用掘锚一体化联合掘进机或性能良好的单体锚杆钻机,满足施工要求,并能实现快速掘进。

五、掘进巷道容易冒顶的十种情况

(一)淋水严重的地点

1、淋水大的地点往往是节理、裂隙发育的地点,顶板完整性差。

2、水对顶板围岩强度的降低起到很大的作用,使顶板岩层软化,强度下降。

3、一些隐性的节理裂隙不易发现,容易发生突然性冒顶事故。

(二)地质构造破碎带附近。

(三)掘进头0-30米附近,是危险区,围岩形成塑性区,发生了塑性变形(不可逆),进而产生塑性破坏。

(四)回采工作面上下端头0-30米范围。

1、受超前支撑压力影响。

2、采动压力影响。

3、上述二者叠加的影响。

(五)开切眼

1、巷道跨度大,稳定性差。巷道的稳定性与其跨度的平方成反比。

图4-7影响巷道稳定的四要素

2、有些切眼的跨度超过了直接顶的初垮步距,维护困难。

3、所需锚索的长度大,需要大于其跨度的三分之二。

(六)巷道交叉点

1、悬露面积大稳定性差。

2、应力集中系数高。一般比其它地点要高50-60%。

3、冒顶突然,隐蔽性强。

(七)埋深大和高应力区域

埋深与围岩应力成正比,埋深乘以0.025就是原岩应力。

(八)围岩强度低的区域(顶板岩性为泥岩、砂质泥岩、遇水软化崩解的岩石等)

围岩强度低,顶板岩层的抗拉强度就小,顶板岩层容易破坏,不好控制。

(九)二次采动影响巷道和回撤通道

受二次采动影响的巷道经历了两次上覆岩层大结构关键块的断裂、回转、下沉等全过程的采动影响。

(十)锚杆锚索使用不当的地点。

1、三径不匹配。

2、锚杆锚索长度不足。

3、托盘不紧贴顶板,预紧力不足。

采取的措施:加强支护

1、增加锚杆、锚索的支护密度,也就是缩小锚杆、锚索的间排距。

2、采取锚索+钢带联巷支护。

3、锚网喷联合支护。

4、主动支护与被动支护结合的联合支护措施。

5、顶板加固。注浆(水泥浆、化学浆、高分子材料等)、锚注。

锚杆支护理论

锚杆支护理论 (1)悬吊理论。1952年路易斯?阿?帕内科(Louis.A.Panek )等提出了第一个锚杆支护理论—悬吊理论,该理论认为锚杆支护的作用就是将巷道顶板浅部较软弱破裂岩层悬吊在深部稳固的岩层上,增强浅部较软弱岩层的稳定性。 (2)组合梁理论。1952年德国Jacobio 等基于层状地层提出了组合梁理论。该理论认为通过在岩体内施加锚杆,可以将多层薄岩层组合成类似铆钉加固的组合梁,因此,锚杆锚固范围内岩层被视为组合梁,并认为组合梁作用的实质就是通过锚杆的预拉应力将锚固区内岩层挤紧,增大岩层之间的摩擦力;同时,锚杆本身也具有一定的抗剪能力,可以约束岩层间的错动。锚固范围内岩层同步变形,这种组合厚岩层在载荷作用下,其最大弯曲应力和应变较之前单一薄岩层都将大大减小,该理论充分考虑了锚杆对离层及层间滑动的约束作用。组合梁理论适用于若干层状岩层组成的巷道顶板。 (a) 未打锚杆 (b) 布置顶板锚杆 1—锚杆 2—层状地层 图7-30 锚杆的组合梁作用 (3)组合拱理论。兰氏(T?A?Lang )和彭德(Pende )通过光弹试验提出组合拱理论。组合拱理论认为,在拱形巷道围岩中安装预应力锚杆时,在锚固区内将形成以杆体两端为端点的圆锥形分布的压应力,只要沿巷道周边安装的锚杆间距足够小,相邻锚杆的压应力椎体将相互交错,在巷道周围锚固区中部形成一个连续的压缩带(拱)。承压拱内岩石处于径向、切向均受压的三向应力状态,使得岩体强度大大提高,支撑能力相应增加。该理论充分考虑了锚杆支护的整体作用,在软岩巷道中应用广泛。

图7-31 组合拱(压缩拱)作用示意图 (4)新奥法。20世纪60年代,奥地利工程师L.V.Rabcewicz在总结前人经验基础上,提出了新奥法(NATM),目前新奥法已成为地下工程的主要设计施工方法之一。1978年,米勒(L.Miiller)教授比较全面地阐述了新奥法的基本指导思想和主要原则,并将其概括为22条。1980年,奥地利土木工程学会地下空间利用分会把新奥法定义为:“在岩质为砂质介质中开挖隧道,以使围岩形成一个中空筒状支承环结构为目的的隧道设计施工方法”。施工时遵循下列原则:①应当考虑岩体的力学特性;②应当在适宜时机构筑支护结构,避免围岩中出现不利的应力应变状态;③为使围岩形成力学上十分稳定的中空筒状支承环结构,必须构筑一个闭合的支护结构;④现场量测监控围岩动态,根据允许变形量求得最适宜的支护结构。新奥法的上述定义简明扼要地揭示了新奥法核心问题-充分利用围岩自承能力,使围岩本身形成支承环。 (5)围岩强度强化理论。侯朝炯、勾攀峰提出来巷道围岩强度强化理论。该理论认为:①巷道锚杆支护的实质是锚杆与锚固区域的岩体相互作用而组成锚固体,形成统一的承载结构;②锚杆提高了锚固体的力学参数E、C、Φ,改善了锚固体的力学性能;③锚固体的峰值强度和残余强度都得到强化。锚固体的峰值强度和残余强度随锚杆支护强度的增加而得到强化,达到一定程度就可保持围岩稳定。该理论的分析方法是将锚杆的作用简化为对锚固围岩从锚杆的两端施加径向约束力,由实验室锚固块体试验确定围岩塑性应变软化本构关系,再利用弹塑性理论定量分析锚杆的支护效果。 (6)松动圈理论。20世纪70年代末期,以中国矿业大学董方庭为首的“松动圈巷道支护研究室”,提出围岩松动圈支护理论。该理论包括三个部分:(1)巷道工程的外载荷问题:围岩松动圈理论认为,围岩破裂过程中所产生的碎胀力(剪切力)是支护的危险载荷;(2)围岩分类方法:围岩松动圈是围岩应力、围岩强度、水的影响等综合因素的指标,它与支护难度关系密切;(3)巷道锚喷支

浅论锚杆支护的作用机理和适用条件

浅论锚杆支护的作用机理和适用条件 【摘要】众所周知,由于锚杆支护方式具有其独特的优越性,矿井支护中经常用到锚杆支护方式。本文简要地介绍了锚杆支护的优越性、锚杆支护的作用机理,以及锚杆的类型、结构和适用条件。 【关键词】锚杆;支护 1 引言 锚喷支护跟棚子和石材支架支护等相比较,具有明显的优越性。棚子和石材支架是在巷道围岩的外部对岩石进行支撑,它只是被动地承受围岩产生的压力和防止破碎的岩石冒落。而锚杆支护则是通过锚入围岩内部的锚杆,改变围岩本身的力学状态,在巷道周围形成一个整体而又稳定的岩石带,利用锚杆与围岩共同作用,达到维护巷道稳定的目的。它是一种积极防御的支护方法,是矿山支护技术的重大变革。 实践证明,锚杆不但支护效果好,且用料省,其用钢量仅为U形钢支架的1/12~1/15。另外,施工简单,有利于机械化操作,施工速度快。但是锚杆不能封闭围岩,以防止围岩风化;不能防止各锚杆之间裂隙岩石的剥落,因此,在围岩不稳定情况下,往往需配合其他支护措施,如喷水泥砂浆、挂金属网、喷射混凝土等通常称为锚喷支护或锚喷网联合支护。随着高产高效矿井建设的加快、采准巷道大量应用锚杆支护技术、施工速度大大提高。 2 锚杆支护的作用原理 锚杆维护巷道的作用机理尚在探讨中,目前主要有以下几种理论。 1)加固拱作用 对于被纵横交错的弱面所切割的块状或破裂状围岩,如果及时用锚杆加固,就能提高岩体结构弱面的抗剪强度,在围岩周边一定厚度的范围内形成一个不仅能维持自身稳定、而且能阻止其上部围岩松动和变形的加固拱,从而保持巷道的稳定。 通过光弹性试验,证实了加固拱的形成。在弹性体上安装具有预张力的锚杆后,在弹性体内便形成以锚头和紧固端为顶点的锥形体压缩区。挤压加固拱的形成关键在于对锚杆施加预张应力。由于锚杆预应力的作用,一方面在锥体压缩区内产生压应力,从而增大了岩块之间的内聚力(粘结力),提高了岩体强度;另一方面使压缩带内的岩石处于三向受压状态,使岩体强度得到提高。 2)悬吊作用 悬吊作用是利用锚杆将软弱岩层或危岩吊挂于上部坚固稳定的岩层上,由锚杆来承担其重量。 3)组合梁作用 将平顶巷道的层状顶板看作是以巷道两帮为支点的叠合梁,在荷载作用下,每层板的上下缘分别处在受压、受拉状态。但用锚杆将各层板紧固后,在荷载作用下,各层之间基本上不发生离层、错动,就如同一块板的变曲,大大提高了板系的抗弯强度。在层状顶板中安设锚杆后,各岩层由迭合梁变为组合梁,从而提高了顶板岩层的承载能力;锚杆本身也起着抗剪销钉的作用,有效地阻止了岩层的层间错动。 4)围岩补强作用 巷道围岩深部的岩石处于三向受压状态。靠近巷道周边的岩石则处于二向受

锚杆支护理论计算方法

锚杆支护参数的确定 一、锚杆长度 L≥L1+L2+L3------------------------- ① =0.1+1.5+0.3=1.9m 式中: L——锚杆总长度,m; L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2——锚杆有效长度或软弱岩层厚度,m; L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。 (一)锚杆外露长度L1 L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)] (二)锚入岩(煤)层内深度(锚固长度)L3 1.经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定: 第3.3.3条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表3.3.3选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟;

四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度 宜为300~400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取300mm~400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定: 第3.3.11条 局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式: 公式(3.3.11-1)、(3.3.11-2)见图形所示。 cs st f f d k l 412≥ (3.3.11-1) cr st a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm); d1——锚杆钢筋直径走私或锚索体直径(cm ); d2——锚杆孔直径(cm ); fst ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2);

锚杆支护机理

锚杆支护技术在煤矿的广泛应用,推动了锚杆支护理论的研究工作,国内外在这方面做了大量的工作,取得了许多有价值的成果,形成了以下3大类较成熟的锚杆支护理论:一是基于锚杆的悬吊作用而提出的悬吊理论、减跨理论等;二是基于锚杆的挤压、加固作用提出的组合梁理论、组合拱理论以及楔固理论等;三是综合锚杆的各种作用而提出的松动圈支护理论、锚固体强度强化理论、锚注理论、最大水平应力理论以及锚杆桁架支护理论等。 悬吊理论认为,巷道开挖以后,由于应力状态的改变,围岩中一定区域内将可能发生岩石的松动和破裂现象、或由于被裂隙切割的岩块因失去足够约束而成为关键块体即出现危岩,此时锚杆的作用就是利用其抗拉能力将松软岩层或危岩悬吊于稳定岩层之上。该理论适用于锚杆长度范围内赋存有稳定岩层或稳定岩层结构的条件。 减跨理论包括两方面的内容:一是基于松散介质的自然冒落拱理论提出的锚杆作用原理,其依据是冒落拱高度与跨度成正比关系,认为利用锚杆的悬吊作用可增加顶板岩层的支点,从而减小支点间的跨距,进而达到降低冒落拱高度、减少所需支护强度的目的;二是基于梁或板的理论提出的锚杆作用原理,即当巷道顶板为层状岩层时,其变形特性近似于梁或板的性质,此时锚杆的作用是缩短梁或板的跨距,以减小其中因横力而产生的弯矩及因弯矩产生的弯曲应力,尤其是弯曲拉应力,从而提高顶板的稳定性。从以上两种情况可以看出,减跨理论中锚杆的作用机理以及适用条件等同于悬吊理论,即需要以稳定岩层或稳定岩层结构为依托。 组合梁理论适用于顶板由多层小厚度连续性岩层组成的巷道,其原理是通过锚杆的轴向作用力将顶板各分层夹紧,以增加各分层间的摩擦作用,并借助锚杆自身的横向承载能力提高顶板各分层间的抗剪切强度以及层间粘结程度,使各分层在弯矩作用下发生整体弯曲变形,呈现出组合梁的弯曲变形特征,从而提高顶板的抗弯刚度及强度。 挤压加固理论适用性较强(几乎适用于所有围岩条件)。对于拱形巷道,其原理是通过锚杆的轴向作用力在围岩中形成拱形压缩带,即通过锚杆的轴向作用力将围岩中一定范围岩体的应力状态由单项(或双向)受压转变为三向受压,从而提高其环向抗压强度指标,使该压缩带既可承受其自身重量,又可承受一定的

锚杆支护理论计算方法

锚杆支护参数的确定 锚杆长度 L》L l + L2+L3 -------------------- ① =0.1+1.5+0.3=1.9m 式中: L —锚杆总长度,m L1 - -—锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m; L2 - -―锚杆有效长度或软弱岩层厚度,m L3 —锚入岩(煤)层内深度(锚固长度),按经验L3>300mm (一)锚杆外露长度L1 L1=(0.1?0.15)m ,[钢带+托板+螺母厚度+ (0.02?0.03 )](二)锚入岩(煤)层内深度(锚固长度儿3 1. 经验取值法 《在锚杆喷射混凝土支护技术规范》GBJ86- 85 “第三节锚杆支护设计”中、第3.3.3条第四款规定: 第333条端头锚固型锚杆的设计应遵守下列规定: 一、杆体材料宜用20锰硅钢筋或3号钢钢筋; 二、杆体直径按表333选用; 三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟; 四、树脂锚杆锚头的锚固长度宜为200?250毫米,快硬水泥卷锚杆锚头的锚固长度

公式(3.3.11 -1) (3311-2)见图形所示 (3.3.11 -1) (3.3.11 -2) 宜为300?400毫米; 五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150X150 毫米; 六、锚头的设计锚固力不应低于50千牛顿; 七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。 一般取 300mn?400mm 2. 理论估算法 《在锚杆喷射混凝土支护技术规范》 GBJ86- 85 “第三节锚杆支 护设计”中规定: 第3311条局部锚杆或锚索应锚入稳定岩体。水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时 满足下列公式: 式中la——锚杆杆体或锚索体锚入稳定岩体的长度(cm); d1—锚杆钢筋直径走私或锚索体直径(cm ; d2 --- 锚杆孔直径(cn); f st ――锚杆钢筋或锚索体的设计抗拉强度(N/cm); f cs——水泥砂浆与钢筋或水泥砂浆与锚索的设计粘结强度(N/cm2); 4d2 f cr

锚杆支护原理

锚杆支护 一、锚杆支护原理 1、锚杆的悬吊作用 悬吊作用是指用锚杆将软弱的直接顶板吊挂在其上的坚固老顶之上。如图1所示,或者是用锚杆将因巷道开挖而引起松动的岩块连接在松动区外的完整坚固岩石上,使松动岩块不至冒落。 锚杆的悬吊作用

2、锚杆的组合梁理论 利用锚杆的拉力将层状岩层组合起来形成组合梁结构进行支护,这就是锚杆组合梁作用。组合梁作用的本质在于通过锚杆的预拉应力将原视为叠合梁的岩层挤紧,增大岩层间的摩擦力;同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。 锚杆的组合作用

3、锚杆锲固作用 是指在围岩中存在一组或多组不同产状的不连续面的情况下,由于锚杆穿过这些不连续面,防止或减少了围岩沿不连续面的移动。如图3。 锚杆的楔固作用 p бb p 锚杆的楔固作用 -б p (бb p

4、挤压加固拱作用 形成以锚杆头和紧固端为顶点的锥形体压缩区。如将锚杆沿拱形巷道周边按一定间距径向排列,在预应力作用下,每根锚杆周围形成的锥形体压缩区彼此重叠联结,在围岩中形成一连续压缩带。它不仅能保持自身的稳定,而且能承受地压,组织上部围岩的松动和变形。 显然,对锚杆施加预紧力是形成加固拱的前提。

5、锚杆的减跨作用 如果把不稳定的顶板岩层看成是支撑在两帮的叠合梁,由于可视悬吊在老顶上的锚杆为支点,安设了锚杆就相当于在该处打了点柱增加了支点而减少了顶板的跨度,从而降低了顶板岩层的弯曲应力和挠度,维持了顶板与岩石的稳定性,使岩石不易变形和破坏。这就是锚杆的“减跨”作用,它实际上来源于锚杆的悬吊作用。 上述几种锚杆支护作用并非是孤立存在的,实际上是相互补充的综合作用,只不过在不同地质条件下,某种支护作用占的地位不同而已。

传统锚杆支护理论

传统锚杆支护理论 传统的锚杆支护理论有悬吊理论、组合梁理论、组合拱(压缩拱)理论,近期又发展了最大水平应力理论等。 1、悬吊理论 悬吊理论认为:锚杆支护的作用就是将巷道顶板较软弱岩层吊在上部稳定岩层上,以增强较软弱岩层的稳定性。 对于回采巷道经常遇到的层状岩体,当巷道开挖后,直接顶因弯曲、变形与老顶分离,如果锚杆及时将直接顶挤压并悬吊在老顶上,就能减小和限制直接顶的下沉和离层,以达到支护的目的。 巷道浅部围岩松软破碎,或者开掘巷道后应力重新分布,顶板出现松动破裂区,这时锚杆的悬吊作用就是将这部分易落岩体悬吊在深部未松动岩层上。这是悬吊理论的进一步发展。 根据悬吊岩层的质量就可以进行锚杆支护设计。 悬吊理论直观地揭示了锚杆的悬吊作用,在分析过程中不考虑围岩的自承能力,而且将被锚固体与原岩体分开,与实际情况有一定差距,计算数据存在误差。 悬吊理论只适用于巷道顶板,不适用于巷道帮、底。如果顶板中没有坚硬稳定岩层或顶板较软弱岩层较厚,围岩破碎区范围较大,无法将锚杆锚固到上面坚硬岩层或者未松动岩层上,悬吊理论就不适用。 2、组合梁理论

组合梁理论认为:在层状岩体中开挖巷道,当顶板在一定范围内不存在坚硬稳定岩层时,锚杆的悬吊作用居次要地位。 如果顶板岩层中存在若干分层,顶板锚杆的作用,一方面是依靠锚杆的锚固力增加各岩层间的摩擦力,防止岩石沿层面滑动,避免各岩层出现离层现象;另一方面,锚杆杆体可增加岩层间的抗剪刚度,阻止岩层间的水平错动,从而将巷道顶板锚固范围内的几个薄岩层锁紧成一个较厚的岩层(组合梁)。这种组合厚岩层在上覆岩层荷载的作用下,其最大弯曲应变和应力都将大大减小,组合梁的挠度也减小,而且组合梁越厚,梁内的最大应力、应变和梁的挠度也就减小。 根据组合梁的强度大小,可以确定锚杆支护参数。 组合梁理论,是对锚杆将顶板岩层锁紧成较厚岩层的解释。在分析中,将锚杆作用与围岩的自稳作用分开,与实际情况有一定的差距,并且随着围岩条件的变化,在顶板较破碎、连续性受到破坏时,组合梁也就不存在了。 组合梁理论只适合于层状顶板锚杆支护的设计,对于巷道的帮、底不适用。 3、组合拱(压缩拱)理论 组合拱理论认为:在拱形巷道围岩的破裂区中安装预应力锚杆时,在杆体两端将形成圆锥形分布的压应力,如果沿巷道周边置锚杆群,只要锚杆间距足够小,各个锚杆形成的压应力圆锥体将相互交错,就能在岩体中形成一个均匀的压缩带,即承压拱(也称组合拱或压缩拱),这个承压拱可以承受其上部破碎岩石施加的径向荷载。在承压

(完整版)第四讲锚杆支护理论

第四讲锚杆支护理论 本讲主要介绍锚杆常用支护理论(包括一些近年来比较流行和活跃的理论)、锚杆支护设计方法和国外锚杆支护主要经验,以及巷道容易冒顶的十种情况和五种应对措施。 锚杆支护的作用机理尚在探讨之中。目前己提出的观点较多,其中影响较大的有悬吊作用、组合梁(拱)作用、组合拱、减跨理论、加固(提高C、φ值)作用等几种。这几种观点都是以围岩状态和利用锚杆杆体受拉(力)为前提来解释锚杆支护作用机理的,因此,围岩状态及锚杆受拉力这两个前提的客观性是判定上述理论正确性的标准。 一、锚杆支护理论 支护:就是指为了地下巷道掘进、硐室开挖后的稳定及施工安全,而采取的支持、加强或改善围岩应力状态而打设的构件或采取的措施的总称。支护包括两个方面,一是支,就是顶住顶板,防止顶板出现大量的下沉,使顶板下沉控制在可控、安全的状态,二是护,就是保持顶板的完整性,防止出现漏矸、漏顶、巷道掉渣等现象。支和护是一个有机统一的整体,它们共同组成了支护系统。 (一)锚杆支护理论综述 1、悬吊理论

1)机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。 图4-1 锚杆悬吊作用原理示意图 2)缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。 3)适用条件:在锚杆的长度范围内有一层坚硬而稳定的岩层,锚杆可以锚固到顶板坚硬稳定岩层。 图4-2 a拱形巷道的锚杆悬吊作用b软弱岩层的锚杆悬吊作用 2、组合梁理论 1)机理:将锚固范围内的岩层挤紧,增加岩层间的摩

擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将几层薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应变和应力都将大大减小,组合梁的挠度亦减小。在于通过锚杆的预拉应力将原视为叠合梁(板)的岩层挤紧,增大岩层间的摩擦力; 同时,锚杆本身也提供一定的抗剪能力,阻止其层间错动。锚杆把数层薄的岩层组合成类似铆钉加固的组合梁,这时被锚固的岩层便可看成组合梁,全部锚固层能保持同步变形,顶板岩层抗弯刚度得以大大提高。 决定组合梁稳定性的主要因素是锚杆的预拉应力及杆体强度和岩层的性质。 2)缺点:将锚杆作用与围岩的自稳作用分开;在顶板较破碎、连续性受到破坏时,难以形成组合梁。这一观点有一定的影响,但是其工程实例比较少,也没有进一步的资料供锚杆支护设计应用,尤其是组合梁的承载能力难以计算,而且组合梁在形成和承载过程中,锚杆的作用难以确定。另外,岩层沿巷道纵向有裂缝时粱的连续性问题、梁的抗弯强度等问题也难以解决。 3)适用条件: 层状地层,如图4-3中2所示; 顶板在相当距离内(锚杆长度范围内)不存在稳定岩层,

锚杆支护的发展现状

锚杆支护技术的应用现状及发展趋势 摘要 基于国内外大量而广泛的锚杆支护技术的应用与研究,锚杆支护的优越性越来越得到认可,本文阐述了锚杆支护技术及其分类,总结了锚杆支护技术的作用原理,并对国内外锚杆支护的现状做了初步分析。运用支护设计中常用理论及方法,对锚杆支护的优缺点进行了分析和评价,高效机械化掘进与支护技术是保证矿井实现高产高效的必要条件,也是巷道掘进技术的发展方向。同时对实际支护工程中的某些不足进行了具体讨论,并对未来的发展趋势进行了初步分析。 关键词:锚杆支护;支护原理;应用现状;发展趋势

摘要 ··································································································· I 一、概述 (1) 二、锚杆支护技术的概念及其分类 (1) (一)锚杆支护技术 (1) (二)锚杆的分类 (2) (三)锚杆支护适用条件及优缺点 (6) (四)锚杆支护的设计与施工 (6) 三、锚杆的支护原理 (7) (一)目前,已经被广为接受的锚杆支护理论主要有如下几种: (7) (二)近年来,又提出了新的支护理论,主要有以下几种: (9) 四、国内外锚杆支护技术的应用现状 (10) (一)国外锚杆支护技术的现状 (10) (二)国内锚杆支护的现状 (12) (三)国内外锚杆支护技术的对比 (12) 五、锚杆支护技术发展趋势 (13) (一)锚杆支护技术的改进 (13) (二)锚杆支护技术的发展趋势 (15) 参考文献 (16)

一、概述 锚杆支护作为岩土工程加固的一种重要形式,由于其具有安全、高效、低成本等优点,在国际岩土工程领域得到了越来越多的应用。1872年,英国北威尔士的煤矿加固工程中首次采用钢筋加固页岩之后,1905年美国矿山中也出现了类似的加固工程。到了20世纪40年代,锚杆支护在地下工程中的应用在国外得到了迅猛发展。 目前,在澳大利亚和美国等国的地下工程支护中,锚杆支护已经占到了接近100%。我国于20世纪50年代开始试用锚杆支护技术,至70年代前期还处于探索阶段,直到1978年才开始重点推广,80年代开始向英国学习锚杆支护技术后推广到煤巷支护,90年代又向澳大利亚学习引进成套先进的锚杆支护技术,目前已得到较广泛的推广和应用。在一些矿区的锚杆支护巷道比例达到90%以上,有些矿井甚至达到了100%,取得了较好的技术与经济效益。国内现有楔缝、涨壳、倒楔锚杆、钢丝绳或钢筋砂浆锚杆、木锚杆、竹锚杆、内涨锚杆、管缝锚杆、树脂锚杆、水泥锚杆、爆扩锚杆、预应力注浆大锚索等十几个系列。 由于各种锚杆的构造不同,锚杆作用机理差异甚大,国内外大量工程实践证明,各种不同种类锚杆,在不同的地质条件下,有不同的“支护”效果。国内外锚杆支护成功的经验表明,合理的锚杆支护设计及详细的监测分析,不仅可保证回采巷道的安全可靠,而且可取得显著的技术经济效益和社会效益。 二、锚杆支护技术的概念及其分类 (一)锚杆支护技术 锚杆支护技术就是在土层或岩层中钻孔,埋入锚杆后灌注水泥(或水泥砂浆、锚固剂),依靠锚固体与岩层之间的摩擦力、拉杆与锚固体的握裹力以及拉杆强度共同作用,来承受作用于支护结构上的荷载。通过锚杆的轴向作用力,将杆体周围围岩中一定范围岩体的应力状态由单向(或双向)受压转变为三向受压,从而提高其环向抗压强度,使压缩带既可承受其自身重量,又可承受一定的外部载荷,使其有效地控制围岩变形。 锚杆支护是在边坡、岩土深基坑等地表工程及隧道、采场等地下施工中均广

巷道锚杆支护计算公式

根据1552工作面围岩柱状资料分析,15#煤层顶板直接顶为粘土岩,厚度1.0-1.5m ,施工时,极易垮落,掘进施工时以14#煤层做顶沿15#煤层底板掘进,采取锚网支护。为了将锚杆加固的“组合梁”悬吊于老顶坚硬岩层中,需用高强度锚索做辅助支护。根据邻近1551运、回两巷掘进巷道的支护经验,确定1552回风巷、1552回风巷皮带机头硐室,采用锚杆—钢筋网—钢带--锚索联合支护。 二、支护参数设计 ㈠采用类比法合理选择支护参数:根据15#煤层邻近巷道的支护经验,1552回风巷巷道顶锚杆选用φ16mm ×1800mm 的圆钢锚杆,间距1000mm,排距900mm ;选用1x7丝φ15.24mm ,锚固力不小于230kN 冷拔钢筋,长度4.2m 的锚索加强支护。 ㈡采用计算法校核支护参数 1、锚杆长度计算 L = KH+L 1+L 2 式中:L ——锚杆长度,m H ——冒落拱高度,m K----安全系数,取2 L 1——锚杆锚入稳定岩层深度,取0.5m L 2——锚杆在巷道中的外露长度,取0.05m 其中: H=B/2f=3.4/(2×4)=0.43m 式中:B ——巷道宽度 f ——岩石坚固性系数,取4 L = 2H+L1+L2=2×0.43+0.5+0.05=1.41m 施工时取L=1.8m 2、锚杆间距、排距a 、b a=b= KHr Q 式中:a 、b ——锚杆间、排距m Q ——锚杆设计锚固力,50kN/根; H ——冒落拱高度,取0.58m ; K ——安全系数,取2; r ——被悬吊粘土岩的重力密度,26.44kN/m 3 a=b= 44 .2643.0250 ??=1.48m

锚杆支护理论

第四讲锚杆支护理论本讲主要介绍锚杆常用支护理论(包括一些近年来比较流行和活跃的理论)、锚杆支护设计方法和国外锚杆支护主要经验,以及巷道容易冒顶的十种情况和五种应对措施。 锚杆支护的作用机理尚在探讨之中。目前己提出的观点较多,其中影响较大的有悬吊作用、组合梁(拱)作用、组合拱、减跨理论、加固(提高C、φ值)作用等几种。这几种观点都是以围岩状态和利用锚杆杆体受拉(力)为前提来解释锚杆支护作用机理的,因此,围岩状态及锚杆受拉力这两个前提的客观性是判定上述理论正确性的标准。 一、锚杆支护理论 支护:就是指为了地下巷道掘进、硐室开挖后的稳定及施工安全,而采取的支持、加强或改善围岩应力状态而打设的构件或采取的措施的总称。支护包括两个方面,一是支,就是顶住顶板,防止顶板出现大量的下沉,使顶板下沉控制在可控、安全的状态,二是护,就是保持顶板的完整性,防止出现漏矸、漏顶、巷道掉渣等现象。支和护是一个有机统一的整体,它们共同组成了支护系统。 (一)锚杆支护理论综述 1、悬吊理论

1)机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。 图4-1锚杆悬吊作用原理示意图2)缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。 3)适用条件:在锚杆的长度范围内有一层坚硬而稳定的岩层,锚杆可以锚固到顶板坚硬稳定岩层。 图4-2a拱形巷道的锚杆悬吊作用b软弱岩层的锚杆悬吊作用 2、组合梁理论 1)机理:将锚固范围内的岩层挤紧,增加岩层间的摩擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将几层薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应变和应力都将大大减小,组合梁的挠度亦减小。在于通过锚杆的预拉应力将原视为叠合梁(板)的岩层挤紧,增大岩层间的摩擦力;

锚杆支护计算(实用荟萃)

2.3 支护参数计算 根据锚杆加固作用原理,确定如下参数: 2.3.1锚杆长度 123L L L L =++=0.15+1.5+0.4=2.05m 式中, 1L —锚杆外露长度,其值主要取决于锚杆类型及锚固方式,一般取0.15m ,对于端锚锚杆,L 1=垫板厚度+螺母厚度+(0.03~0.05),对于全长锚固锚杆,还有加上穹形球体的厚度; 2L —锚杆的有效长度,即围岩松动圈的范围,通过查规范知一般取1.5m; 3L —锚杆锚固段长度亦即锚杆锚入坚硬岩石的长度,一般L3=0.3~0.4,由拉拔实验确定,当围岩松软时,L 3还要加大,取L 3为0.4m 。 为安全施工,取锚杆长度L=2100mm 长满足要求。 围岩内外围层结构的稳定性分析 巷道围岩范围内各部分岩体,由于其距巷道周边的距离和岩性的不同,对巷道稳定性的影响作用是有显著差别的。根据这种作用的大小以及一般巷道支护控制作用的范围,可将巷道围岩分为内层围岩和外层围岩两部分,然后研究内外层围岩的结构类型及其与围岩稳定性之间的关系,并提出相应的围岩控制原则。 (1)内层围岩。内层围岩是指距巷道周边较近的那部分岩体,其范围与通常意义上的松动圈范围相当。如图所示,内层围岩的结构与性质对巷道稳定性影响

最大。这部分岩体受开挖及风化等影响严重,最易出现破坏和冒落,围岩变形的绝大部分是由这部分岩体产生的,锚杆支护、注浆加固及人为卸压等措施大致上也是在该范围岩体中进行的。可见,内层围岩既是影响巷道稳定性的最关键部分,也是人为控制措施的主要的和直接的作用对象。 (2)外层围岩。外层围岩是围岩中距巷道周边较远的那部分岩体。与内层围岩相比,外层围岩受开挖及风化等影响较小,受支护控制作用的影响也较小;总的围岩变形中,外层围岩所占比例很小,对巷道稳定性的影响也较小。 (3)内外层围岩之间的关系。根据上述定义可知.内层围岩的结构与性质是影响巷道稳定性的决定因索,外层围岩的结构与性质对巷道稳定性的影响要通过内层围岩来实现;支护控制的主要对象是内层围岩。内层围岩往往与支护形成整体承裁结构,外层围岩则是上覆岩层压力向内层围岩和支护传递的中介。 巷道围岩内外层结构 2.3.2 锚杆直径: 锚杆采用20MnSiⅡ级建筑用螺纹钢系列,锚杆的直径根据杆体承载力与锚固力等强度原则确定,即

锚杆支护理论

锚杆支护理论 Document number:PBGCG-0857-BTDO-0089-PTT1998

第四讲锚杆支护理论本讲主要介绍锚杆常用支护理论(包括一些近年来比较流行和活跃的理论)、锚杆支护设计方法和国外锚杆支护主要经验,以及巷道容易冒顶的十种情况和五种应对措施。 锚杆支护的作用机理尚在探讨之中。目前己提出的观点较多,其中影响较大的有悬吊作用、组合梁(拱)作用、组合拱、减跨理论、加固(提高C、φ值)作用等几种。这几种观点都是以围岩状态和利用锚杆杆体受拉(力)为前提来解释锚杆支护作用机理的,因此,围岩状态及锚杆受拉力这两个前提的客观性是判定上述理论正确性的标准。 一、锚杆支护理论 支护:就是指为了地下巷道掘进、硐室开挖后的稳定及施工安全,而采取的支持、加强或改善围岩应力状态而打设的构件或采取的措施的总称。支护包括两个方面,一是支,就是顶住顶板,防止顶板出现大量的下沉,使顶板下沉控制在可控、安全的状态,二是护,就是保持顶板的完整性,防止出现漏矸、漏顶、巷道掉渣等现象。支和护是一个有机统一的整体,它们共同组成了支护系统。 (一)锚杆支护理论综述 1、悬吊理论

1)机理:将巷道顶板较软弱岩层悬吊在稳定岩层上,以避免较软弱岩层的破坏、失稳和塌落,锚杆所受的拉力来自被悬吊的岩层重量。 图4-1锚杆悬吊作用原理示意图2)缺点:没有考虑围岩的自承能力,而且将被锚固体与原岩体分开。 3)适用条件:在锚杆的长度范围内有一层坚硬而稳定的岩层,锚杆可以锚固到顶板坚硬稳定岩层。 图4-2a拱形巷道的锚杆悬吊作用b软弱岩层的锚杆悬吊作用 2、组合梁理论 1)机理:将锚固范围内的岩层挤紧,增加岩层间的摩擦力,防止岩石沿层面滑动,避免各岩层出现离层现象,提高其自撑能力。将几层薄岩层锁紧成一个较厚的岩层(组合梁)。在上覆岩层载荷的作用下,这种组合厚岩层内的最大弯曲应变和应力都将大大减小,组合梁的挠度亦

支护理论计算方法

1、按悬吊理论 (1)锚杆长度L, L=L 1+L 2+L 3 =50+1000+300=1350mm 式中:L 1——锚杆外露长度 L 2——软弱岩层厚度,可根据柱状图确定mm L 3——锚杆伸入稳定岩层深度一般不小于300mm (2)锚固力N:可按锚杆杆体的屈服载荷计算 N=π/4(d 2 σ屈) =0.25×3.14×(0.02)2×335×106=105KN 式中:σ屈——杆体材料的屈服极限Mpa d——杆体直径 (3)锚杆间排距 锚杆间距D≤1/2L D≤0.5×2200=1100mm 锚杆排距L 0=Nn/2kra L 2 =105×103×13/2×3×24×103×2.1×1=4.51m 式中:n——每排锚杆根数 N——设计锚固力,KN/根 K——安全系数,取2-3 r ——上覆岩层平均容重,取24KN/m 3 a——1/2巷道掘进宽度m

2、按自然平衡拱理论计算 Ⅰ、两帮煤体受挤压深度C C=((KrHB/1000fcKc)Cos(a/2)-1)h×tg(45-ψ/2) =((2.5×24×510×1/1000×2×1.0)Cos(23°/2) -1)×2.65×tg(45°-63°/2)=8.9m 式中:K——自然平衡拱角应力集中系数,与巷道断面形状有关;矩形断面,取2.8 r——上覆岩层平均容重,取24KN/m3 H——巷道埋深m B——固定支撑力压力系数,按实体煤取1 fc——煤层普氏系数, Kc——煤体完整性系数,0.9-1.0 a——煤层倾角 h——巷道掘进高度m ψ——煤体内摩擦角,可按fc反算 Ⅱ、潜在冒落高度b b=(a+c)Cosa/Kyfr =(2.1+8.9)×0.92/0.45×4=5.62m 式中:a——顶板有效跨度之半m Ky——直接顶煤岩类型性系数。当岩石f=3-4时,取0.45;f=4-6时,取0.6;f=6-9时,取0.75。 Fr——直接顶普氏系数

现阶段锚杆支护技术发展情况简介

现阶段锚杆支护技术发展情况简介 寸录 一,技术原理介绍。 二,锚杆支护的优缺点。 三,锚杆支护技术的发展历史及国外主要产煤国锚杆支护技术概况。 四,我国锚杆支护技术的现状及改进方法。 (一),我国锚杆技术发展历史。 (二),煤巷锚杆支护快速掘进技术的缺点。 (三),锚杆支护技术的改进方法。

锚杆支护技术是现在最流行的围岩支护技术。为了更好地了解该 项技术,服务于工程技术人员和与锚杆支护技术相关产品制造者、服务提供者,本文以煤矿锚杆支护技术为例,介绍了锚杆支护技术的原理、优缺点、国内外技术状况等。另外,本文还分析了我国煤巷锚杆支护技术现存的主要问题,并结合自己的工作实 际探讨了今后锚杆支护技术的发展途径和对策。 一,技术原理介绍。 在巷道开掘后,由于岩体内部应力重新分布即围岩出现应力集中,岩体的物性状态有一个由弹性状态向塑性状态转变的过程,巷道周边围岩产生塑性变形,并从周边向岩体深部扩张,出现塑性变形区,同时引起应力向围岩深部转移,导致周边围岩松散、破碎和发生位移,从而导致巷道变形。 软岩中,岩石的膨胀和崩解主要是其所表现的主要特征。软岩围岩里多为松软的粘土质岩层,巷道开掘后,粘土岩经不同程度的浸水或风化,体积增大和相应的引起压力增大,围岩松动圈和塑性变形发展很快,给巷道稳定性带来影响,不同软岩影响程度不同即围岩性质对巷道变形和破坏有决定性的影响。所以软岩巷道 掘进时受松动圈及塑性变形的影响,巷道稳定性较差。

锚杆支护对象是围岩松动发展过程中的碎胀变形,它起到阻止变形的作用。锚杆作用于围岩松动圈或塑性区中,正常情况下,锚杆能在巷道周围被加固地段内形成一定厚度的压缩带,这不仅可防止受节理等弱面切削的岩快产生滑动,而且锚杆本身也有抗剪 销钉的作用,能有效的防止层间滑动。在这种情况下,锚固层不仅能保持自身的稳定性,而且还有可能在一定程度上承受上位岩层的载荷和抑制变形和松动。根据围岩性质和结构不同,锚杆可起到悬吊、组合梁、挤压加固拱等作用。 二,锚杆支护的优缺点。 锚杆支护技术是集理念、理论、方法、软件、材料、机具、施工工艺、监测仪器和技术规范于一体的巷道支护成套技术创新体系。现在该技术已广泛应用于煤巷、岩巷、半煤岩巷、全煤巷道、冲击地压巷道、软岩巷道、深部动压巷道、无煤柱巷道、复合和松软破碎顶板等困难条件下的支护。 锚杆支护作为一种有效的采准巷道支护方式,由于对巷道围岩强 度的强化作用,可显著提高围岩的稳定性,加之具有支护成本较低、成巷速度快、劳动强度减轻、提高巷道断面利用率、简化回采面端头维护工艺、明显改善作业环境和安全生产条件等优点,

锚杆支护的作用机理和适用条件经验总结

锚杆支护的作用机理和适用条件经验总结 要】众所周知,由于杆支护方式具有其独特的优越性,矿井支护中经常用到杆支护方式。本文简要地介绍了杆支护的优越性、杆支护的作用机理,以及杆的类型、结构和适用条件。 关键词】杆;支护 1 引言 喷支护跟棚子和石材支架支护等相比较,具有明显的优越性。棚子和石材支架是在巷道岩的外部对岩石进行支撑,它只是被动地承受岩产生的压力和防止破碎的岩石落。而杆支护则是通过入岩内部的杆,改变岩本身的力学状态,在巷道周形成一个整体而又稳定的岩石带,利用杆与岩共同作用,达到维护巷道稳定的目的。它是一种积极防御的支护方法,是矿山支护技术的重大变革。 实践证明,杆不但支护效果好,且用料省,其用钢量仅为U形钢支架的1/12~1/15。另外,施工简单,有利于机械化操作,施工速度快。但是杆不能封闭岩,以防止岩风化;不能防止各杆之间裂隙岩石的剥落,因此,在岩不稳定情况下,往往需配合其他支护措施,如喷水泥砂浆、挂金属网、喷射混凝土等通常称为喷支护或喷网联合支护。随着高产高效矿井建设的加快、采准巷道大量应用杆支护技术、施工速度大大提高。 2 杆支护的作用原理 杆维护巷道的作用机理尚在探讨中,目前主要有以下几种理论。 1)加固拱作用 对于被纵横交错的弱面所切割的块状或破裂状岩,如果及时用杆加

固,就能提高岩体结构弱面的抗剪强度,在岩周边一定厚度的范内形成一个不仅能维持自身稳定、而且能阻止其上部岩松动和变形的加固拱,从而保持巷道的稳定。 通过光弹性试验,证实了加固拱的形成。在弹性体上安装具有预张力的杆后,在弹性体内便形成以头和紧固端为顶点的锥形体压缩区。挤压加固拱的形成关键在于对杆施加预张应力。由于杆预应力的作用,一方面在锥体压缩区内产生压应力,从而增大了岩块之间的内聚力(粘结力),提高了岩体强度;另一方面使压缩带内的岩石处于三向受压状态,使岩体强度得到提高。 2)悬吊作用 悬吊作用是利用杆将软弱岩层或岩吊挂于上部坚固稳定的岩层上,由杆来承担其重量。 3)组合梁作用 将平顶巷道的层状顶板看作是以巷道两帮为支点的叠合梁,在荷载作用下,层板的上下缘分别处在受压、受拉状态。但用杆将各层板紧固后,在荷载作用下,各层之间基本上不发生离层、错动,就如同一块板的变曲,大大提高了板系的抗弯强度。在层状顶板中安设杆后,各岩层由迭合梁变为组合梁,从而提高了顶板岩层的承载能力;杆本身也起着抗剪销钉的作用,有效地阻止了岩层的层间错动。 4)岩补强作用 巷道岩深部的岩石处于三向受压状态。靠近巷道周边的岩石则处于二向受力状态,故易于破坏而丧失稳定性。巷道周安设杆后,相当于岩

锚杆支护的现状与前景

锚杆支护的现状与前景 岩土锚固技术是近代岩土工程领域中的一个重要分支.锚固技术,国内习惯统称为锚杆支护技术,国外一般称锚固技术或锚杆加固技术.它是一种结构简单的主动支护,它能最大限度地保持围岩的完整性、稳定性,能有效地控制围岩变形、位移和裂缝的发展,充分发挥围岩自身的支撑作用,把围岩从荷载变为承载体,变被动支护为主动支护,且具有运输施工方便、效率高,有利于加快施工进度,且施工成本低、支护效果好、施工噪音小等优点.自1872年英国北威尔士露天页岩矿首次应用锚杆加固边坡及1912年德国谢列兹矿最先在井下巷道采用锚固技术以来,锚固技术至今已有100多年的发展历史.锚固技术作为一种技术经济优越的技术手段,越来越广泛地应用于各个工程领域,目前不仅广泛应用于世界主要产煤国家,而且也推广应用于冶金、水利水电、铁路公路、军工及建筑等工程之中,伴随着“21世纪-地下工程的世纪”的来临,可以预见,该技术必将得到更广泛深入的研究和推广应用. 1.锚杆支护的特点 与传统的支护方式相比较,锚杆锚固技术有其自身的鲜明特点.锚杆锚固是在地层中,通过锚杆将结构物与地层紧紧连锁在一起,依赖锚杆与周围地层的抗剪强度传递结构物的拉力,使地层自身得到加固,达到保持结构物和岩体稳定的目的. (1)能在地层开挖后,立即提供支护抗力,有利于保护地层的固有强度,有效阻止地层的进一步扰动,控制地层变形的发展,将结构物、地

层紧密连锁在一起,形成共同的工作体系,提高施工过程的安全性. (2)提高地层软弱结构面、潜在滑移面的抗剪强度,改善地层的力学性能、应力状态,使其向有利于稳定的方向发展. (3)锚杆的作用部位、方向、结构参数、密度和施工时机可以根据需要方便地设定和调整,能以最小的支护抗力获得最佳的稳定效果.锚杆亦可以显著节约工程材料,有效地提高场地的利用率,经济效益十分显著. 2.我国的锚杆支护现状 1872年英国北威尔士露天页岩矿首次应用锚杆加固边坡以来,从最初人们的怀疑、疑虑,发展到今天已有100多年的历史,锚杆支护凭借显著的技术经济优越性,已经几乎不受限制地广泛应用于岩土工程的各个领域. 我国于20世纪50年代开始试用锚杆支护技术,至70年代前期还处于探索阶段,直到1978年才开始重点推广,至80年代向英国学习锚杆支护技术后推广到煤巷支护,90年代又向澳大利亚学习引进成套先进的锚杆支护技术,目前已得到较广泛的推广和应用.在一些矿区的锚杆支护巷道比例达到90%以上,有些矿井甚至达到了100%,取得了较好的技术与经济效益. 我国的锚杆加固技术于20世纪50年代开始起步,在最近20年得到了快速发展,目前已经得到了广泛的应用.据估计,在1993年至1999年间,我国仅在边坡工程和深基坑工程中的锚杆年用量就达到了3000-3500km.目前,我国正在进行大规模的基础设施与各类

锚杆支护技术研究

锚杆支护技术研究 发表时间:2009-11-23T15:31:41.700Z 来源:《中小企业管理与科技》2009年6月上旬刊供稿作者:张杰轩 [导读] 锚杆支护作为一种积极主动的支护技术,在我国乃至世界范围的巷道支护中,所占的比例越来越大 张杰轩(淮南矿业集团李嘴孜煤矿) 摘要:锚杆支护作为一种积极主动的支护技术,在我国乃至世界范围的巷道支护中,所占的比例越来越大。其简便快捷的施工,简单的施工方法,良好的支护效果,较轻的劳动强度,较好的适应能力,已经得到了广泛的认可。且随着锚杆支护器具的发展,在井工采矿实践中,使其得到了更为广泛的应用。该文笔者结合现场实践的基础上,通过对锚杆支护失效原因的分析,提出了相应的应对措施,对于提高锚杆支护效果有积极的借鉴意义。 关键词:煤矿锚杆支护失效原因分析 0 引言 由锚杆支护发展起来的锚网支护、锚网带支护、锚网喷支护、锚网带支护、喷锚喷、锚杆修护技术等支护工艺在矿区围岩支护中广泛应用并且收到了良好的经济效果。但在现场的实践过程中,由于多方面的原因可能导致锚杆支护失效,甚至引起安全事故,下面笔者结合自己多年工作经验进行了具体的阐释。 1 锚杆支护失效原因分析 锚杆支护是一项技术含量相对较高的支护技术,锚杆支护效果的好坏取决于多方面的因素,无论哪一个环节出现问题,都有可能造成锚杆支护失效。为此必须综合考虑多方面的因素对锚杆支护的影响,保证有效的支护。 1.1 地质条件的变化是造成锚杆支护失效的主要原因众所周知,在巷道施工以前,技术部门要根据锚杆支护理论,通过精心设计计算,并根据具体的围岩情况计算出所用锚杆长度,并经过矿区验证后确定出合理的支护参数。锚杆长度是最重要的支护参数。锚杆长度主要是根据围岩松动圈的范围来确定的,不同的围岩条件,其围岩松动圈的范围各不相同,有的甚至相差较大。现场如果不能根据具体的地质条件进行有针对性的锚杆支护参数设计计算,就会造成实际使用的支护参数不能很好地适应地质条件的变化。现场许多矿井也正是由于简化设计或干脆采用工程类比法来进行锚杆支护参数设计,从而为锚杆支护失效埋下了隐患。为此从技术层面上完善设计,消除隐患是关键。 1.2 减少锚杆外露长度,确保有效支护长度在锚杆杆体长度一定的条件下,锚杆外露长度长,就会相应地减少有效的锚固长度。锚杆支护就是要在支护参数一定的条件下最大限度地增加锚固长度,这对于提高支护效果是有积极意义的。现场一般采用以下方法来保证有效的支护长度。①在施工中,钻孔的长度一般长于锚杆体的长度5-10cm,采用国外的一种断头锚固式锚杆,这种锚杆不露尾巴;②利用国内快速安装的锚杆,如螺母装有垫片或已固化的树脂;③利用快速安装锚杆的套筒。放置螺帽的这一段六角孔不能太长,基本要与螺帽的厚度一致;利用非快速安装专为搅拌树脂锚固剂用的套筒式,套筒深度不能太小,略大于托盘、垫圈和螺帽三者厚度即可。 1.3 锚杆杆体材料及设计对于锚杆的承载力影响很大。我国目前使用的锚杆存在的问题主要是承载能力低,且延伸量小,不能有效的控制和适应围岩的变形。采用等强锚杆式克服了锚杆尾部公称直径小(小10%-14%),强度低的问题,但是同时也存在了由于等强锚杆在加工时引起的锚尾脆性大,实际应用中容易破断的问题。在当前条件下等强锚杆在现场仍普遍应用,但随着开采深度的加大,地应力相对增加,需要研制更为新型的锚杆。 1.4 施工队伍及人员的素质对锚杆支护效果影响很大。锚杆支护工艺繁琐,人为影响因素多,如锚杆的角度、锚杆孔的深度、锚杆支护的“三经”匹配情况、锚杆预应力及锚固力的大小、托盘与煤岩壁的贴紧程度、不同凝固时间的锚固药卷的安置顺序及充分搅拌情况、锚杆间排距及位置的确定等,每一道工序的施工偏差均对锚杆支护质量有较大的影响。因而通过有效的技术培训及教育,提高施工人员的素质,消除以上人为因素的影响对于提高锚杆支护效果意义重大。 1.5 巷道开挖后的及时支护并提高锚杆预紧力对于增加围岩强度、控制围岩早期的变形和破坏、发挥围岩自身承载能力,提高锚杆支护效果具有重要意义。巷道在开掘后,顶板及两帮围岩就会发生变形。对于由多分层组成的顶板,如果不及时支护,一旦发生离层,岩体整体强度就会降低,就很难发挥其自身的承载能力。而及时支护安设锚杆,并给予合理的预紧力,就可以减少围岩拉应力区,改变围岩的应力状态,提高围岩强度。锚杆预紧力不仅可以消除锚杆的初始滑移量,而且能给围岩施加一定的预紧力,提高了岩层层面的摩擦力和粘结力,从而能提高组合梁的强度,并能充分发挥岩石自身的承载能力。 1.6 完善锚杆支护的安全监测对于保证锚杆支护的效果有重要作用。锚杆支护具有较大的隐蔽性,为此,必须加强工程质量监测及矿压监测,以便及时掌握现场的实际支护效果,围岩的动态变化,掌握巷道的变形规律,以便及时调整支护参数设计,有效指导巷道施工。并能做到超前防范,避免事故的发生。现行的监测方法一般有:施工前采用顶板光纤窥视仪,探察顶板岩性条件,施工后的巷道按一定的距离安装顶板离层指示仪,测力锚杆、围岩深部多点位移计等监测顶板下沉量。 2 结论 锚杆支护是一项系统工程,从工程地质条件评价支护参数的设计,支护材料的加工,现场施工及现场监测等方面入手,再根据反馈信息综合分析并修改支护设计要实行全方位控制,才可能更好的指导并应用于生产实践,提高锚杆支护效果。

相关主题
文本预览
相关文档 最新文档