当前位置:文档之家› 基于统一强度理论的土石坝边坡稳定分析遗传算法_李南生

基于统一强度理论的土石坝边坡稳定分析遗传算法_李南生

基于统一强度理论的土石坝边坡稳定分析遗传算法_李南生
基于统一强度理论的土石坝边坡稳定分析遗传算法_李南生

基于神经网络的图像分割

基于遗传神经网络的图像分割 摘要 针对图像分割的复杂性,利用遗传算法对BP神经网络的权值和阈值进行优化,设计出误差最小的神经网络,然后再对图像的像素进行分类识别,实现并提高了图像分割性能。仿真实验表明,与传统的图像分割方法相比,取得了比传统方法更好的图像分割效果。 关键词:图像分割;神经网络;遗传算法;遗传优化 A Study of Genetic Neural Network Used in Image Segmentation ABSTRACT Because of the complexity of image segmentation, the optimization of the weights and thresholds of BP neural network are realized by genetic algorithm, and a BP neural network with minimum error is designed. It classify the image pixels, implement and improve the performance of image segmentation. The results of simulation show that the algorithm neuralnetwork can better achieve the image segmentation, compared with the traditional method. Key word :Image segmentation;Neural Network;Genetic algorithm;Genetic optimization 一、遗传算法 1.1基本概念 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。 对于一个求函数最大值的优化问题(求函数最小值也类同),一般可以描述为下列数学规划模型:

遗传算法在图像处理中的应用

遗传算法在图像处理中的应用 束道胜 P201002117 1引言 遗传算法( genetic algorithm, GA)是一种自适应启发式群体型概率性迭代式的全局收敛搜索算法,其基本思想来源于生物进化论和群体遗传学,体现了适者生存、优胜劣汰的进化原则。使用遗传算法求解科学研究工作和工程技术中各种组合搜索和优化计算问题这一基本思想早在20世纪60年代初期就由美国Michigan大学的Holland教授提出,其数学框架也于20世纪60年代中期形成。由于GA的整体搜索策略和优化计算不依赖于梯度信息,所以它的应用范围非常广泛,尤其适合于处理传统方法难以解决的高度复杂的非线性问题。它在自适应控制、组合优化、模式识别、机器学习、规划策略、信息处理和人工生命等领域的应用中越来越展示出优越性。 图像处理是计算机视觉中的一个重要研究领域,在图像处理过程中,如扫描、特征提取、图像分割等不可避免地会存在一些误差,从而影响图像的效果。如何使这些误差最小是使计算机视觉达到实用化的重要要求, GA 在这些图像处理中的优化计算方面找到了用武之地,目前已在图像分割、图像恢复、图像重建、图像检索和图像匹配等方面得到了广泛的应用。 2 遗传算法的原理、基本性质和改进 GA把问题的解表示成染色体(也称串) , GA的求解步骤如下: (1) 编码定义问题的解空间到染色体编码空间的映射,一个候选解(个体)用一串符号表示。 (2) 初始化种群在一定的限制条件下初始化种群,该种群是解空间的一个子空间。 (3) 设计适应度函数将种群中的每个染色体解码成适于计算机适应度函数的 形式,计算其数值。 (4) 选择根据适应度大小选择优秀个体繁殖下一代,适应度越高,则选择概率越大。 (5) 交叉随机选择两个用于繁殖下一代的个体的相同位置,在选中的位置实行交换。 (6) 变异对某个串中的基因按突变概率进行翻转。 (7) 从步骤4开始重复进行,直到满足某一性能指标或规定的遗传代数。 步骤1、2和3是实际应用中的关键,步骤4~步骤6进行3种基本基因操作,选择实现

第三章-遗传算法的理论基础

第三章 遗传算法的理论基础 遗传算法有效性的理论依据为模式定理和积木块假设。模式定理保证了较优的模式(遗传算法的较优解)的样本呈指数级增长,从而满足了寻找最优解的必要条件,即遗传算法存在着寻找到全局最优解的可能性。而积木块假设指出,遗传算法具备寻找到全局最优解的能力,即具有低阶、短距、高平均适应度的模式(积木块)在遗传算子作用下,相互结合,能生成高阶、长距、高平均适应度的模式,最终生成全局最优解。Holland 的模式定理通过计算有用相似性,即模式(Pattern)奠定了遗传算法的数学基础。该定理是遗传算法的主要定理,在一定程度上解释了遗传算法的机理、数学特性以及很强的计算能力等特点。 3.1 模式定理 不失一般性,本节以二进制串作为编码方式来讨论模式定理(Pattern Theorem)。 定义3.1 基于三值字符集{0,1,*}所产生的能描述具有某些结构相似性的0、1字符串集的字符串称作模式。 以长度为5的串为例,模式*0001描述了在位置2、3、4、5具有形式“0001”的所有字符串,即(00001,10001) 。由此可以看出,模式的概念为我们提供了一种简洁的用于描述在某些位置上具有结构相似性的0、1字符串集合的方法。 引入模式后,我们看到一个串实际上隐含着多个模式(长度为 n 的串隐含着2n 个模式) ,一个模式可以隐含在多个串中,不同的串之间通过模式而相互联系。遗传算法中串的运算实质上是模式的运算。因此,通过分析模式在遗传操作下的变化,就可以了解什么性质被延续,什么性质被丢弃,从而把握遗传算法的实质,这正是模式定理所揭示的内容 定义3.2 模式H 中确定位置的个数称作该模式的阶数,记作o(H)。比如,模式 011*1*的阶数为4,而模式 0* * * * *的阶数为1。 显然,一个模式的阶数越高,其样本数就越少,因而确定性越高。 定义3.3 模式H 中第一个确定位置和最后一个确定位置之间的距离称作该模式的定义距,记作)(H δ。比如,模式 011*1*的定义距为4,而模式 0* * * * *的定义距为0。 模式的阶数和定义距描述了模式的基本性质。 下面通过分析遗传算法的三种基本遗传操作对模式的作用来讨论模式定理。令)(t A 表示第t 代中串的群体,以),,2,1)((n j t A j =表示第t 代中第j 个个体串。 1.选择算子 在选择算子作用下,与某一模式所匹配的样本数的增减依赖于模式的平均适值,与群体平均适值之比,平均适值高于群体平均适值的将呈指数级增长;而平均适值低于群体平均适值的模式将呈指数级减少。其推导如下: 设在第t 代种群)(t A 中模式所能匹配的样本数为m ,记为),(t H m 。在选择中,一个位串 j A 以概率/j j i P f f =∑被选中并进行复制,其中j f 是个体)(t A j 的适应度。假设一代中群体 大小为n ,且个体两两互不相同,则模式H 在第1+t 代中的样本数为:

图像分割的遗传算法操作

基于有监督分类的地物识别 姓名:周钟娜学号:SA04006104 一实验原理: 图像识别是计算机视觉研究中一个重要而困难的任务。常用的方法很多,有统计模式识别,集群分类等等。其中统计模式识别是根据统计规律进行推测、判断,得出结论。句法模式识别是按照句法分析方法进行判别。图像识别还可以根据有无监督分为有监督分类和无监督分类。有监督分类是有已知训练样本,要通过学习,得出样本的特征和规律等信息,再根据这些信息对图像进行分类识别。无监督分类则没有已知样本,是基于物以类聚来分类。 图像识别方法还可以分为参数方法和非参数方法。参数方法是假设已知函数形式,只要求出其待定的参数。非参数方法没有函数形式,通常用邻近方法来判断。 模式识别的一般步骤如图1所示: 图1 模式识别的一般步骤 下图2所示为监督分类基本步骤。 图2 监督分类基本步骤

二实验步骤 本实验使用的软件环境为Visual C++,采用有监督分类的方法对遥感图像的地物进行识别。使用的源图像为同一区域的12幅遥感综合图象(n1~n12), 并有该地区各类地貌实况数据_图(GT)。 具体步骤如下: 1.事先在GT图中选取一部分作为样本,以图像格式保存在名字为yb.bmp的 文件中。打开该文件,将样本中各类的点分别存在一数组内。 2.分别读入12幅遥感综合图象。 3.样本学习。将每一类的点计算其对应在12幅遥感综合图象中的灰度平均 值。确定迭代次数为5次,则各类的平均灰度趋于稳定。本实验图像中共有7类地物,每类地物在12幅遥感综合图象各有其灰度平均值。 4.分类。将得到的稳定的平均灰度值作为参考值,对每一个点都进行如下计 算:首先计算其在每幅遥感综合图象中的灰度值与每一类灰度平均值的差值,每类对应有12个差值;再将各类的12个差值归一化,即除以对应的灰度平均值;将各类对应归一化的12个差值分别相加,最后选取差值和最小的那一类作为该点的类别,如果差值过大,则认为不属于以上7类。 5.如果该点在12幅遥感综合图象的灰度值均为0则认为该点是水域(海洋 或湖泊)。 三实验结果 采用的原始样本如图3所示,样本学习得到的各地物在各光谱波段的灰度均值在本文末页,根据学习训练得到全图的地物分布如图4所示。 图3 各区域样本图4 实验结果 实验结果图像中,蓝色为水体,黑色部分不属于要分的7类,红色部分为冻土地和苔原,黄色部分为山林,白色部分为草地,绿色部分为灌木,紫色部分为混合农作物,草绿色部分为无作物区域。从结果可以看出分割的效果还比较理想。

遗传算法在图像处理中的应用

. . 课程:新技术讲座 题目:遗传算法在图像处理中的应用姓名: 学号:

目录 摘要 (2) 1.引言 (3) 2.遗传算法的基本原理和基本性质 (3) 3.遗传算法在图像处理中的应用 (5) 3.1在图像增强中的应用 (5) 3.2在图像恢复中的应用 (6) 3.3在图像分割中的应用 (7) 3.4在图像压缩中的应用 (8) 3.5在图像匹配中的应用 (9) 4.遗传算法在图像处理中的问题及发展方向 (10) 参考文献 (10)

遗传算法在图像处理中的应用 摘要 遗传算法是一种模拟生命进化机制,基于生物自然选择与遗传机理的随机搜索与优化方法。近几年来,遗传算法广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法得到快速发展,尤其是在计算机科学人工智能领域中。本文将在系统并且深入的介绍遗传算法基本理论的基础上,重点综述遗传算法在数字图像处理中的主要应用,深入研究目前遗传算法在图像处理领域中存在的问题,并对这些问题作出了一些个人的见解,阐述了遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理 Abstract Genetic Algorithm is a simulation of the life evolution mechanism, random search and optimization method which is based on the natural selection and genetic mechanism.In recent years,due to the enormous potential of solving complex optimization problems and the successful applications in the industrial field,the Genetic Algorithm developed rapidly,Especially in the field of artificial intelligence in computer science.This article not only describes the basic theoretical foundation of genetic algorithms,but also focus on Genetic Algorithm in digital image processing.Moreover,it studies the problems of the Genetic Algorithm in the field of image processing and the direction of development in the future,Moreover,the author elaborates the personal opinion in the end. keyword :Genetic Algorithm,Digital image processing

遗传算法在图像处理中应用

课程:新技术讲座 题目:遗传算法在图像处理中的应用XX: 学号:

目录 摘要2 1.引言3 2.遗传算法的基本原理和基本性质4 3.遗传算法在图像处理中的应用6 3.1在图像增强中的应用6 3.2在图像恢复中的应用7 3.3在图像分割中的应用8 3.4在图像压缩中的应用10 3.5在图像匹配中的应用11 4.遗传算法在图像处理中的问题及发展方向12 参考文献12

遗传算法在图像处理中的应用 摘要 遗传算法是一种模拟生命进化机制,基于生物自然选择与遗传机理的随机搜索与优化方法。近几年来,遗传算法广泛应用在生物信息学、系统发生学、计算科学、工程学、经济学、化学、制造、数学、物理、药物测量学和其他领域之中,这种算法得到快速发展,尤其是在计算机科学人工智能领域中。本文将在系统并且深入的介绍遗传算法基本理论的基础上,重点综述遗传算法在数字图像处理中的主要应用,深入研究目前遗传算法在图像处理领域中存在的问题,并对这些问题作出了一些个人的见解,阐述了遗传算法在图像处理应用的发展方向。 关键词:遗传算法,数字图像处理 Abstract Genetic Algorithm is a simulation of the life evolution mechanism,random search and optimization method which is based on the natural selection and genetic mechanism.In recent years,due to the enormous potential of solving plex optimization problems and the successful applications in the industrial field,the Genetic Algorithm developed rapidly,Especially in the field of artificial intelligence in puter science.This article not only describes the basic theoretical foundation of genetic algorithms,but also focus on

基于数据挖掘的遗传算法

基于数据挖掘的遗传算法 xxx 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘遗传算法 Genetic Algorithm Based on Data Mining xxx Abstract:This paper defines the concepts and theories of genetic algorithm source, Introducing genetic algorithm research directions and application areas, explaining the concepts of genetic algorithms, coding rules, the three main operator and fitness function,describing genetic algorithm parameter selection process and criteria,in addition in the given combination of genetic algorithm based on the practical application. Key words: Data Mining genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1]发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研 究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结 构对象的优化过程中显示出比传统优 化方法更为独特的优势和良好的性能。 它利用其生物进化和遗传的思想,所以 它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是 作用于由参数集进行了编码的个体 上。此编码操作使遗传算法可以直接 对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组 解,采用同时处理群体中多个个体的 方法,降低了陷入局部最优解的可能 性,易于并行化。

遗传算法的基本原理

第二章 遗传算法的基本原理 2.1 遗传算法的基本描述 2.1.1 全局优化问题 全局优化问题的定义:给定非空集合S 作为搜索空间,f :S —>R 为目标函数,全局优化问题作为任务)(max x f S x ∈给出,即在搜索空间中找到至少一个使目标函数最大化的点。 全局最大值(点)的定义:函数值+∞<=)(**x f f 称为一个全局最大值,当且仅当x ? S x ∈,(ρi i b a <,i 12)定义适应度函数f(X); 3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。 4)生成初始种群P ; 5)计算群体中各个体的适应度值; 6)按照遗传策略,将遗传算子作用于种群,产生下一代种群; 7)迭代终止判定。 遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。

2.1.3 遗传编码 由于GA 计算过程的鲁棒性,它对编码的要求并不苛刻。原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。 由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。 对于给定的优化问题,由GA 个体的表现型集合做组成的空间称为问题(参数)空间,由GA 基因型个体所组成的空间称为GA 编码空间。遗传算子在GA 编码空间中对位串个体进行操作。 定义:由问题空间向GA 编码空间的映射称为编码,而有编码空间向问题空间的映射成为译码。 1)2)3)它们对1) 2) k =1,2,…,K; l =1,2,…,L; K=2L 其中,个体的向量表示为),,,(21kL k k k a a a a =,其字符串形式为kL k k k a a a s 21=,s k 称为个体a k 对应的位串。表示精度为)12/()(--=?L u v x 。 将个体又位串空间转换到问题空间的译码函数],[}1,0{:v u L →Γ的公式定义为: 对于n 维连续函数),,2,1](,[),,,,(),(21n i v u x x x x x x f i i i n =∈=,各维变量的二进制

遗传算法基本理论实例

目录 _ 一、遗产算法的由来 (2) 二、遗传算法的国内外研究现状 (3) 三、遗传算法的特点 (5) 四、遗传算法的流程 (7) 五、遗传算法实例 (12) 六、遗传算法编程 (17) 七、总结 ......... 错误!未定义书签。附录一:运行程序.. (19)

遗传算法基本理论与实例 一、遗产算法的由来 遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学和人工系统的新思想、新方法。很多学者对关于从生物进化和遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术——生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索和研究。John H.Holland教授及其学生首先提出的遗传算法就是一个重要的发展方向。 遗传算法借鉴了达尔文的进化论和孟德尔、摩根的遗传学说。按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。,直至消亡。达尔文把这一过程和现象叫做“自然选择,适者生存”。按照孟德尔和摩根的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的

遗传算法基本理论与方法

摘要:基本遗传算法的操作是以个体为对象,只使用选择、交叉和变异遗传算子,遗传进化操作过程的简单框架。模式定理和积木块假设是解释遗传算法有效性的理论基础,理论分析与实际应用都表明基本的遗传算法不能处处收敛于全局最优解,因此基本遗传算法有待进一步改进。 关键词:遗传算法;遗传算法的改进 1.标准遗传算法 基本遗传算法包括选择、交叉和变异这些基本遗传算子。其数学模型可表示为: sag=(c,e,p0,n,φ,г,ψ,t) 其中c为个体的编码方法;e为个体适应度评价函数;p0为初始种群;n为种群大小;φ为选择算子;г为交叉算子;ψ为变异算子;t为遗传运算终止条件; 2 遗传算法基本方法及其改进 2.1编码方式 编码方式决定了个体的染色体排列形式,其好坏直接影响遗传算法中的选择算子、交叉算子和变异算子的运算,也决定了解码方式。 二进制编码 二进制编码使用的字符号{0,1}作为编码符号,即用一个{0,1}所组成的二进制符号串构成的个体基因型。二进制编码方法应用于遗传算法中有如下优点: 1)遗传算法中的遗传操作如交叉、变异很容易实现,且容易用生物遗传理论来解释; 2)算法可处理的模式多,增强了全局搜索能力; 3)便于编码、解码操作; 4)符合最小字符集编码原则; 5)并行处理能力较强。 二进制编码在存着连续函数离散化的映射误差,不能直接反应出所求问题的本身结构特征,不便于开发专门针对某类问题的遗传运算算子。 2.2初始种群的设定 基本遗传算法是按随机方法在可能解空间内产生一个一定规模的初始群体,然后从这个初始群体开始遗传操作,搜索最优解。初始种群的设定一般服从下列准则:1)根据优化问题,把握最优解所占空间在整个问题空间的分布范围,然后,在此分布范围内设定合适的初始群体。 2)先随机生成一定数目的个体,然后从中挑出最好的个体加入到初始群体中。该过程不断迭代,直到初始群体中个体数目达到了预先确定的种群大小。 2.3选择算子的分析 选择算子的作用是选择优良基因参与遗传运算,目的是防止有用的遗传信息丢失,从而提高全局收敛效率。常用的遗传算子: (1)轮盘赌选择机制 轮盘赌选择也称适应度比例选择,是遗传算法中最基本的选择机制,每个个体被选择进入下一代的概率为这个个体的适应度值占全部个体适应度值之和的比例。但是轮盘赌选择机制选择误差较大,不是所有高适应度值的个体都能被选中,适应度值较低但具有优良基因模式的个体被选择的概率也很低,这样就会导致早熟现象的产生。 (2)最优保存选择机制 最优保存选择机制的基本思想是直接把群体中适应度最高的个体复制到下一代,而不进行配对交叉等遗传操作。具体步骤如下: 1)找出当前群体中适应度值最高和最低的个体的集合;

谈谈遗传算法的原理

谈谈遗传算法的原理 发表时间:2011-08-24T09:52:45.450Z 来源:《魅力中国》2011年7月上供稿作者:朱小宝 [导读] 从上表中可以看出,群体经过一代进化之后,其适应度的最大值、平均值都得到了明显的改进。 朱小宝 (南昌航空大学飞行器工程学院江西南昌 330029) 中图分类号:TP301.6 文献标识码:A 文章编号:1673-0992(2011)07-0000-01摘要:自从霍兰德于1975年在他的著作《Adaption im Natural and artificial Systems》中首次提出遗传算法以来,经过了近30年的研究,现在已经发展到了一个比较成熟的阶段,并且在实际中得到了很好的应用。为了更好的了解遗传算法,本文通过最简单的一个手工计算实例来还原遗传算法的全过程。 关键词:遗传算法生物进化染色体种群 自然界的生物进化是按“适者生存,优胜劣汰”规律进行的,而遗传算法就是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。其基本思想是力求充分模仿这一自然寻优过程的随机性、鲁棒性和全局性,这是一种全局优化搜索算法,因为其直接对结构对象进行操作,不存在求导和函数连续性的限定。 遗传算法采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体),即种群。这里每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应值比例的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化一代代演化下去,直到满足期望的终止条件为止。 遗传算法主要步骤: (1)编码:由于遗传算法不能直接处理解空间的数据,必须通过编码将它们表示成遗传空间的基因型串结构数据。 (2)选择初始种群:随机产生N个初始串结构数据,每个串结构数据称为一个个体,也称为染色体,N个个体体构成了一个种群。 (3)选择适应度函数:遗传算法在搜索过程中一般不需要其他外部信息或知识,仅用适应度函数来评价个体的适应度。 (4)选择:利用选择概率再随机的选择个体和复制数量。选择算子的设计可依据达尔文适者生存的进化论原则,选择概率大的被选中的机会较多。 (5)杂交:对被选中的个体进行随机配对并随机的选择基因交换位,交换基因后产生新的个体,全体新个体构成新的(下一代)种群。 (6)变异:变异操作是按位进行求反,对二二进制编码的个体而言,就是对随机选中的某位进行求反运算,即“0”变“1”,“1”变大“0”。 (7)一代种群通过遗传,即选择、杂交和变异产生下一代种群。新种群又可重复上述的选择、杂交和变异的遗传过程。 为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。 求下述二元函数的最大值: Max f(x1,x2)= x12+ x22 S,t, x1∈{1,2,3,4,5,6,7} x2∈{1,2,3,4,5,6,7} (1) 个体编码 遗传算法的运算对象是表示个体的符号串,所以必须把变量 x1, x2 编码为一种符号串。本题中,用无符号二进制整数来表示。因 x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可行解。例如,基因型 X=101110 所对应的表现型是:x=[5,6]。个体的表现型x和基因型X之间可通过编码和解码程序相互转换。 (2) 初始群体的产生 群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。 如:011101,101011,011100,111001 (3) 适应度汁算 目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接用目标函数值作为个体的适应度。 (4) 选择运算 我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中的数量。其具体操作过程是: 1.先计算出群体中所有个体的适应度的总和 fi ( i=1.2,…,M ); 2.fi其次计算出每个个体的相对适应度的大小 fi / ,它即为每个个体被遗传到下一代群体中的概率, 3.每个概率值组成一个区域,全部概率值之和为1; 4.最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。

遗传算法的数据挖掘综述

基于遗传算法的数据挖掘综述 朱玲 (江西理工大学信息工程学院,赣州市中国 341000) 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘;遗传算法 Data Mining Based on Genetic Algorithm Zhu Ling (College of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, China 341000) Abstract:This paper defines the concept of genetic algorithm and the source of the theory, introduces the research direction and application field of genetic algorithm, explains the related concepts, coding rules, three main operators and fitness functions of genetic algorithm, describes the genetic algorithm calculation process and Parameter selection criteria, and in the given genetic algorithm based on the combination of practical applications to be explained. Key words: data mining; genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1] 发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结构对象的优化过程中显示出比传统优化方法更为独特的优势和良好的性能。它利用其生物进化和遗传的思想,所以它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是作用于由参数集进行了编码的个体上。此编码操作使遗传算法可以直接对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组解,采

遗传算法的原理及MATLAB程序实现

1 遗传算法的原理 1.1 遗传算法的基本思想 遗传算法(genetic algorithms,GA)是一种基于自然选择和基因遗传学原理,借鉴了生物进化优胜劣汰的自然选择机理和生物界繁衍进化的基因重组、突变的遗传机制的全局自适应概率搜索算法。 遗传算法是从一组随机产生的初始解(种群)开始,这个种群由经过基因编码的一定数量的个体组成,每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部表现(即基因型)是某种基因组合,它决定了个体的外部表现。因此,从一开始就需要实现从表现型到基因型的映射,即编码工作。初始种群产生后,按照优胜劣汰的原理,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助于自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集的种群。这个过程将导致种群像自然进化一样,后代种群比前代更加适应环境,末代种群中的最优个体经过解码,可以作为问题近似最优解。 计算开始时,将实际问题的变量进行编码形成染色体,随机产生一定数目的个体,即种群,并计算每个个体的适应度值,然后通过终止条件判断该初始解是否是最优解,若是则停止计算输出结果,若不是则通过遗传算子操作产生新的一代种群,回到计算群体中每个个体的适应度值的部分,然后转到终止条件判断。这一过程循环执行,直到满足优化准则,最终产生问题的最优解。图1-1给出了遗传算法的基本过程。 1.2 遗传算法的特点 1.2.1 遗传算法的优点 遗传算法具有十分强的鲁棒性,比起传统优化方法,遗传算法有如下优点: 1. 遗传算法以控制变量的编码作为运算对象。传统的优化算法往往直接利用控制变量的实际值的本身来进行优化运算,但遗传算法不是直接以控制变量的值,而是以控制变量的特定形式的编码为运算对象。这种对控制变量的编码处理方式,可以模仿自然界中生物的遗传和进化等机理,也使得我们可以方便地处理各种变量和应用遗传操作算子。 2. 遗传算法具有内在的本质并行性。它的并行性表现在两个方面,一是遗传

基本遗传算法及应用举例

基本遗传算法及应用举例 遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。遗传算法是多学科相互结合与渗透的产物。目前它已发展成一种自组织、自适应的多学科技术。 针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。基本遗传算法只使用选择、交叉、变异三种基本遗传操作。遗传操作的过程也比较简单、容易理解。同时,基本遗传算法也是其他一些遗传算法的基础与雏形。 1.1.1 编码方法 用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。 编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。迄今为止人们已经设计出了许多种不同的编码方法。基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。一般染色体的长度L 为一固定的数,如 X=1010100 表示一个个体,该个体的染色体长度L=20。 二进制编码符号串的长度与问题所要求的求解精度有关。假设某一参数的取值范围是[a ,b],我们用长度为L 的二进制编码符号串来表示该参数,总共能产生L 2种不同的编码,若参数与编码的对应关系为 00000000000……00000000=0 →a 00000000000……00000001=1 →a+δ ? ? ? ……=L 2-1→b 则二进制编码的编码精度1 2--= L a b δ 假设某一个个体的编码是kl k k k a a a x 21=,则对应的解码公式为 )2(121 ∑=---+=L j j L kj L k a a b a x 例如,对于x ∈[0,1023],若用长度为10的二进制编码来表示该参数的话,则下述符号串:

遗传算法基本原理111

第二章遗传算法的基本原理 2.1 遗传算法的基本描述 2.1.1 全局优化问题 全局优化问题的定义:给定非空集合S作为搜索空间,f:S—>R为目标函数,全局优化问题作为任务给出,即在搜索空间中找到至少一个使目标函数最大化的点。 全局最大值(点)的定义:函数值称为一个全局最大值,当且仅当成立时,被称为一个全局最大值点(全局最 大解)。 局部极大值与局部极大值点(解)的定义: 假设在S上给定了某个距离度量,如果对,,使得对, ,则称x’为一个局部极大值点,f(x’)为一个局部极大 值。当目标函数有多个局部极大点时,被称为多峰或多模态函数(multi-modality function)。 主要考虑两类搜索空间: 伪布尔优化问题:当S为离散空间B L={0,1}L,即所有长度为L且取值为0或1的二进制位串的集合时,相应的优化问题在进化计算领域称为伪布尔优化问题。 连续参数优化问题:当取S伪n维实数空间R n中的有界集合,其中,i = 1, 2, … , n时,相应的具有连续变量的优化问题称为连续参数优化问题。 对S为B L={0,1}L,常采用的度量时海明距离,当时,常采用的度量就是欧氏距离。 2.1.2 遗传算法的基本流程

遗传算法的基本步骤如下: 1)选择编码策略,把参数集合X和域转换为位串结构空间S; 2)定义适应度函数f(X); 3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。 4)生成初始种群P; 5)计算群体中各个体的适应度值; 6)按照遗传策略,将遗传算子作用于种群,产生下一代种群; 7)迭代终止判定。 遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。 2.1.3 遗传编码 由于GA计算过程的鲁棒性,它对编码的要求并不苛刻。原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。 由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。 对于给定的优化问题,由GA个体的表现型集合做组成的空间称为问题(参数)空间,由GA基因型个体所组成的空间称为GA编码空间。遗传算子在GA

基于遗传算法的图像分割

基于遗传算法的图像分割研究 摘要:遗传算法是对生物进化论中自然选择和遗传学机理中生物进化过程的模拟来计算最优解的方法。遗传算法具有众多的优点,如鲁棒性、并行性、自适应性和快速收敛,可以应用在图像处理技术领域中图像分割技术来确定分割阈值。图像分割是图像处理技术的研究对象之一,它对于图像特征提取、图像识别等图像处理技术等有着重要意义。主要研究基于遗传算法的图像分割效果,采用Matlab 软件进行仿真实验,对不同图像分割算法的效果进行比较。实验表明,遗传算法是处理图像分割的优秀算法,图像分割效果相比于传统的图像分割算法效果更佳。 关键词:图像分割; 阈值计算; 遗传算法; 图像特征 指导老师签名:

Study on Image segmentation based on genetic algorithm Abstract:Genetic algorithm is an optimal solution method of using natural selection in biological evolution and biological evolution in genetic mechanism. Genetic algorithm has many advantages such as robustness , parallel , adaptive , and fast convergence , can be used in the field of image processing to determine the threshold value. Image segmentation is one of the object s of image processing , it is meaningful to the image feature extraction , image recognition and other image processing technologies. The image segmentation effect based on genetic algorithm of using MATLAB software to simulate the different image segmentation algorithms and compare the result . Experiments indicate that the genetic algorithm is out standing to deal with the image segmentation ,the result s is more outstanding than traditional image segmentation algorithm. Keywords : image segmentation ;threshold computation ;genetic algorithm; image feature Signature of supervisor:

相关主题
文本预览
相关文档 最新文档