当前位置:文档之家› 温湿度传感器的工作原理

温湿度传感器的工作原理

温湿度传感器的工作原理
温湿度传感器的工作原理

温湿度传感器的工作原理

随着科技的飞速发展和普及,高性能设备越来越多,各行各业对温湿度的要求也越来越高。传统的温湿度监测模式是以人为基础,依靠人工轮流值班,人工巡回查看等方式来测量和记录环境状况信息。

环境温湿度的监控包括以下步骤:感应环境温湿度;判断感应到的温湿度是否异常;若感应到的温湿度异常,判断异常是否超过预设时间;若异常超过预设时间,则输出异常信号至主控机;异常报警;判断异常是否处理完毕;以及若异常处理完毕,解除报警。并可以利用控制器和主控机来达到机房温湿度的远程控制,从而实现环境温湿度管理的实时性和有效性。

温湿度传感器采集到的信号通过经过串口服务器的传输转换输入到电脑,在经过以太网的方式进行LED 显示,或者报警

大学物理实验-温度传感器实验报告

关于温度传感器特性的实验研究 摘要:温度传感器在人们的生活中有重要应用,是现代社会必不可少的东西。本文通过控制变量法,具体研究了三种温度传感器关于温度的特性,发现NTC电阻随温度升高而减小;PTC电阻随温度升高而增大;但两者的线性性都不好。热电偶的温差电动势关于温度有很好的线性性质。PN节作为常用的测温元件,线性性质也较好。本实验还利用PN节测出了波 尔兹曼常量和禁带宽度,与标准值符合的较好。 关键词:定标转化拟合数学软件 EXPERIMENTAL RESEARCH ON THE NATURE OF TEMPERATURE SENSOR 1.引言 温度是一个历史很长的物理量,为了测量它,人们发明了许多方法。温度传感器通过测温元件将温度转化为电学量进行测量,具有反应时间快、可连续测量等优点,因此有必要对其进行一定的研究。作者对三类测温元件进行了研究,分别得出了电阻率、电动势、正向压降随温度变化的关系。 2.热电阻的特性 2.1实验原理 2.1.1Pt100铂电阻的测温原理 和其他金属一样,铂(Pt)的电阻值随温度变化而变化,并且具有很好的重现性和稳定性。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器,通常使用的铂电阻温度传感器零度阻值为100Ω(即Pt100)。铂电阻温度传感器精度高,应用温度范围广,是中低温区(-200℃~650℃)最常用的一种温度检测器,本实验即采用这种铂电阻作为标准测温器件来定标其他温度传感器的温度特性曲线,为此,首先要对铂电阻本身进行定标。 按IEC751国际标准,铂电阻温度系数TCR定义如下: TCR=(R100-R0)/(R0×100) (1.1) 其中R100和R0分别是100℃和0℃时标准电阻值(R100=138.51Ω,R0=100.00Ω),代入上式可得到Pt100的TCR为0.003851。 Pt100铂电阻的阻值随温度变化的计算公式如下: Rt=R0[1+At+B t2+C(t-100)t3] (-200℃

挑选温湿度传感器的四大因素

挑选温湿度传感器的四大要素 现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也就可以确定了。测量结果的成败,在很大程度上取决于传感器的选用。下面一起随着云里物里科技来看下,如何挑选温湿度传感器。 选择温湿度传感器的四大要素 1、频率响: 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。 2、根据测量对象与测量: 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研究。 3、线性范围: 传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满意。 4、灵敏度: 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽员减少从外界的影响。 精度是传感器的一个重要的性能指针,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的使用。 其实说这么多,都只是一个参考,因为有些人需要的是成品,有些人需要的是芯片。根据不同人有不同的需求,如果应用在大棚,气象台,实验室等可采用S1温湿度传感器。这是属于iBeacon类型的成品传感器,方便安装,操作简单。

温湿度传感器可行性研究报告

可行性研究报告 一、概述,行业背景 (2) 二解决方案 (3) 三项目开发实施路线图 (6) 四项目开发实施技术解决方案论证 (10) 4.1.1传感器方案 (10) 4.1.2无线网络搭建方案 (13) 4.2.1运营支撑平台 (19) 4.3.1手机客户端解决方案 (20) 4.4.1 web服务器人机交互平台(PC网页客户端) (22) 4.5.1 政府监测模块 (22) 五、项目成熟程度 ........................................... 错误!未定义书签。 六、市场需求情况和风险分析 ....................... 错误!未定义书签。

可行性研究报告 一、立项的背景和意义 一、概述,行业背景 物联网被认为是继计算机、互联网与移动通信网之后的世界信息产业第三次浪潮。物联网以感知为前提,实现人与人、人与物、物与物全面互联的网络。在物体上生产作业中植入各种微型芯片,用这些传感器获取物理世界的各种信息,再通过局部的无线网络、互联网、移动通信网等各种通信网路交互传递,从而实现对世界的感知。物联网在农业上的应用将会使农业生产方式产生重大变革,会急速促进我国农业生产上面临的种种问题的解决。 发展农业是我国的基本国策,在工业化、城镇化深入发展中同步推进农业现代化,是“十二五”时期的一项重大任务。我国十二五振兴农业规划中,明确提出“加快农业科技创新:发展农业信息技术,提高农业生产经营信息化水平”。信息化是同步推进农业现代化的重要手段,也是转变农业发展方式的重要途径。本项目温室大棚联网系统通过传感设备实时采集农业大棚生产过程中植物生长最关键的温度、湿度、种

温湿度传感器SHT21的应用介绍

温湿度传感器SHT21的应用介绍 近年来,随着智能手机、平板电脑等移动设备的迅速发展,其中内置的微机电系统(MEMS)的比例越来越高。根据市调机构Juniper Research公布的最新研究报告,预计到2016年应用到移动设备中的MEMS器件收入将超过60亿美金。其中除了已经大规模应用的加速度计、陀螺仪、重力感应计、麦克风、射频器件等,还包括刚进入商用不久的压力传感器、扬声器、轨迹球、微型投影机、温湿度传感器等。其中温湿度传感器等新兴的MEMS器件则有望成为智能手机硬件差异化的重要部件。 "目前,我们公司的传感器每年的出货量已经超出了几千万片,全球业务增长幅度近年来都在40%左右。"总部位于瑞士的深圳盛思锐(Sensirion)公司总经理Paul Chia表示,作为全球领先的传感器制造商,盛思锐公司早在七年前就已经进入中国市场,并向中国厂商推广温湿度传感器。"我们的产品在中国市场主要分三大应用:第一是安防监控;第二是节能,普遍应用到家电,汽车等领域;第三则是舒适度,主要应用于消费类电子产品领域。"在2009年,盛思锐公司推出了一款当时世界上最小的数字湿度和温度传感器--SHT21,引起市场广泛关注。 一直以来,盛思锐在推广温湿度传感器的过程中,都非常注重于宣传舒适度概念。"之前的客户只有温度的概念,而没有湿度概念。其实相对湿度是与温度密切相关的,只有对同一测量点的湿度和温度进行数据采集,才能保证相对湿度的准确性。"Paul Chia表示,人体对空气湿度的舒适感应空间较窄,因此需要通过感应器来感知湿度,随时补充或降低水分。 在2009年,盛思锐公司推出了一款当时世界上最小的数字湿度和温度传感器-SHT21,引起市场广泛关注。 盛思锐是业内第一家将温、湿度传感器集成到一起的厂商。"我们不仅仅是提供一个感应器,而是把温度补偿和标定数据都集成在一个电路里面。我们的温湿度传感器在出厂前都经过完全标定,客户只需将其跟单片机通讯就可以直接采集到数据。"据介绍,温湿度传感器作为电子技术和物理化学原理的复合技术,硬件因素只占其中50%,另一个重要因素

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

基于智能手机的温湿度传感器应用

一、基于智能手机的温湿度传感器应用 1、应用系统简介 由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。市场上的温湿度传感器一般是测量温度量和相对湿度量。温湿度传感器不仅广泛的应用在工控行业、食品药物储存行业、档案管理行业中,也可安装在我们的手机上。温湿度传感器的传统应用是天气预报以及室内监测,手机中如果集成这种应用这就极大的方便了客户的出行。 2、应用体系结构 (1)感知层 感知层通过温湿度传感器采集数据,其中包括温度、湿度。 (2)网络层 网络层将传感器采集的数据传给手机应用系统进行处理分析。 (3)应用层 应用层中应用系统将数据处理后的数据展示给用户。 3、信息感知(采集)、传输、处理等方面的技术 温湿度传感器选用湿敏电容型传感器,图1为该传感器的结构。该传感器是温湿感应元件共体,具有防电磁干扰的性能。测温是一个标准的铂电阻Pt100,以四线制方式测量,减少长引线带来的测量误差。 图1 HMC45A温湿传感器外型图 工作原理 传感器主要由湿敏电容和转换电路两部分组成。湿敏电容的结构见图2所示。它由玻璃底衬、下电极、湿敏材料、上电极几部分组成。两个下电极与湿敏材料,上电极构成的两个电容成串联连接。湿敏材料是一种高分子聚合物,它的介电常数随着环境的相对湿度变化而变化。当环境湿度发生变化时,湿敏元件的电容量随之发生改变,即当相对湿度增大时,湿敏电容量随之增大,反之减小(电容量通常在48~56pf间)。传感器的转换电路把湿敏电容变化量转换成电压量变化,对应于相对湿度0~100%RH的变化,传感器的输出呈0~1v的线性变化。

基于KL25温湿度传感器设计报告

嵌入式系统及应用报告 题目:DHT11温湿度传感器设计 组员:齐亨 班级:物联1301 学号:13516110 2016年07月15日

摘要 在工业生产中,电流、电压、温度、湿度和开关量都是常用的主要被控参数。其中,温湿度控制也越来越重要。在工业生产的很多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。采用KL25芯片对温湿度进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。因此,KL25芯片对温湿度的控制问题是一个工业生产中经常会遇到的控制问题。 温湿度控制系统在国内各行各业的应用虽然己经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的温湿控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并广泛应用的控制仪表较少.随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家,企业的研发中心,开展创新性研究,使我国仪表工业得到了迅速的发展。 目前,温湿度控制器产品从模拟、集成温度控制器发展到智能数码温度控制器。智能温控器(数字温控器)是微电子技术、计算机技术和自动测试技术的结合,特点是能输出温度数据及相关的温度控制量,适配各种控制器,并且它是在硬件的基础上通过软件来实现控制功能的,其智能化程度也取决于软件的开发水平,现阶段正朝着高精度高质量的方向发展,相信以我国的实力,温湿控技术在不久的将来一定会为于世界前列! DHT11温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器,它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性和卓越的长期稳定性。产品为4针单排引脚封装,连接方便。

DS18B20温度传感器使用方法以及代码

第7章DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1.DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 ℃。固有测温分辨率为0.5 ℃。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2.引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式DS18B20的原理图。 3.工作原理 单片机需要怎样工作才能将DS18B20中的温度数据独取出来呢?下面将给出详细分析。

温度采集实验报告

课程设计任务书 题目基于AD590的温度测控系统设计 系(部) 信息科学与电气工程学院 专业电气工程及其自动化 班级电气092 学生姓名刘玉兴 学号090819210 月日至月日共周 指导教师(签字) 系主任(签字) 年月日

摘要 温度是工业生产和自动控制中最常见的工艺参数之一。过去温度检测系统设计中,大多采用模拟技术进行设计,这样就不可避免地遇到诸如传感器外围电路复杂及抗干扰能力差等问题;而其中任何一环节处理不当,就会造成整个系统性能的下降。随着半导体技术的高速发展,特别是大规模集成电路设计技术的发展, 数字化、微型化、集成化成为了传感器发展的主要方向。 以单片机为核心的控制系统.利用汇编语言程序设计实现整个系统的控制过程。在软件方面,结合ADC0809并行8位A/D转换器的工作时序,给出80C51单片机与ADC0908并行A /D转换器件的接口电路图,提出基于器件工作时序进行汇编程序设计的基本技巧。本系统包括温度传感器,数据传输模块,温度显示模块和温度调节驱动电路,其中温度传感器为数字温度传感器AD590,包括了单总线数据输出电路部分。文中对每个部分功能、实现过程作了详细介绍。 关键词:单片机、汇编语言、ADC0809、温度传感器AD590

Abstract Temperature is the most common one of process parameters in automatic control and industrial production. In the traditional temperature measurement system design, often using simulation technology to design, and this will inevitably encounter error compensation, such as lead,complex outside circuit,poor anti-jamming and other issues, and part of a deal with them Improperly, could cause the entire system of the decline. With modern science and technology of semiconductor development, especially large-scale integrated circuit design technologies, digital, miniaturization, integration sensors are becoming an important direction of development. In the control systems with the core of SCM,assembly language programming is used to achieve the control of the whole system.Combining with the operation sequence of ADC0809,the interface circuit diagrams of 80C51 SCM and ADC0809 parallel A/D conveger ale given.The basic skills of assembly language programming based on the operation se—quenee of the chip ale put forward.This system include temperature sensor and data transmission, the moduledisplays

浅谈温湿度传感器的未来发展重点

浅谈温湿度传感器的未来发展重点 温湿度传感器市场究竟有多大? 2017年全球市场规模增长至1955亿美元 2018年突破2000亿美元 随着新基建、智慧城市、5G等多种项目推进, 未来5年全球市场将保持8%左右的速度增长 市场规模将会超过3000亿美元!!! 圈内有句老话叫:站在对的风口,猪都可以起飞! 回顾我们的主角 温湿度传感器,一个主要用于监测环境温度、湿度的仪器。 目前,已经广泛应用与医药化工、电子通讯、气象、食品、仓储、农业以及文物保护等领域。

进入21世纪后,温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。 未来的温湿度传感器市场尤其是在消费电子及物联网等领域拥有广阔的前景。 温湿度传感器作为电子技术和物理化学原理的复合技术,硬件因素只占其中50%,另一个重要因素则是标定。如果要保证测出来的值是准确的,则需要保证每次检测的标定值永远在一个固定范围内,这是非常难做到的。精度高,性能稳定一直是温湿度传感器的硬性指标。 那么未来温湿度传感器有哪些发展重点? 1、应用机器智能的故障探测和预报。任何系统在出现错误并导致严重后果之前,必须对其可能出现的问题作出探测或预报。目前非正常状态还没有准确定义的模型,非正常探测技术还很欠缺,急需将传感信息与知识结合起来以改进机器的智能。 2、正常状态下能高精度、高敏感性地感知目标的物理参数;而在非常态和误动作的探测方面却进展甚微。因而对故障的探测和预测具有迫切需求,应大力开发与应用。 3、目前传感技术能在单点上准确地传感物理或化学量,然而对多维状态的传感却困难。如环境测量,其特征参数广泛分布且具有时空方面的相关性,也是迫切需要解决的一类难题。因此,要加强多维状态传感的研究与开发。 4、目标成分分析的远程传感。化学成分分析大多在基于样本物质,有时目标材料的采样又很困难。如测量同温层中臭氧含量,远程传感不可缺少,光谱测定与雷达或激光探测技术的结合是一种可能的途径。没有样本成分的分析很容易受到传感系统和目标组分之间的各种噪音或介质的干扰,而传感系统的机器智能有望解决该问题。 5、用于资源有效循环的传感器智能。现代制造系统已经实现了从原材料到产品的自动化生产过程,当产品不再使用或被遗弃时,循环过程既非有效,也非自动化。如果

温度传感器实验报告

温度传感器实验 姓名学号 一、目的 1、了解各种温度传感器(热电偶、铂热电阻、PN 结温敏二极管、半导体热敏电阻、集成温度传感器)的测温原理; 2、掌握热电偶的冷端补偿原理; 3、掌握热电偶的标定过程; 4、了解各种温度传感器的性能特点并比较上述几种传感器的性能。 二、仪器 温度传感器实验模块 热电偶(K 型、E 型) CSY2001B 型传感器系统综合实验台(以下简称主机) 温控电加热炉 连接电缆 万用表:VC9804A,附表笔及测温探头 万用表:VC9806,附表笔 三、原理 (1)热电偶测温原理 由两根不同质的导体熔接而成的闭合回路叫做热电回路,当其两端处于不同温度时则回路中产生一定的电流,这表明电路中有电势产生,此电势即为热电势。

图1中T 为热端,To 为冷端,热电势 本实验中选用两种热电偶镍铬—镍硅(K 分度)和镍铬—铜镍(E 分度)。 (2)热电偶标定 以K 分度热电偶作为标准热电偶来校准E 分度热电偶,被校热电偶热电势与标准热电偶热电势的误差为 式中:——被校热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶在标定点温度下测得的热电势平均值。 ——标准热电偶分度表上标定温度的热电势值。

——被校热电偶标定温度下分度表上的热电势值。 ——标准热电偶的微分热电势。 (3)热电偶冷端补偿 热电偶冷端温度不为0℃时,需对所测热电势值进行修正,修正公式为: E(T,To)=E(T,t1)+E(T1,T0) 即:实际电动势=测量所得电势+温度修正电势 (4)铂热电阻 铂热电阻的阻值与温度的关系近似线性,当温度在0℃≤T≤650℃时, 式中:——铂热电阻T℃时的电阻值 ——铂热电阻在0℃时的电阻值 A——系数(=3.96847×10-31/℃) B——系数(=-5.847×10-71/℃2) 将铂热电阻作为桥路中的一部分在温度变化时电桥失衡便可测得相应电路的输出电压变化值。 (5)PN结温敏二极管 半导体PN 结具有良好的温度线性,根据PN 结特性表达公式 可知,当一个PN 结制成后,其反向饱和电流基本上只与温度有关,温度每升高一度,PN 结正向压降就下降2mv,利用PN 结的这一特性可以测得温度的变化。 (6)热敏电阻 热敏电阻是利用半导体的电阻值随温度升高而急剧下降这一特性制成的热敏元件。它呈负温度特性,灵敏度高,可以测量小于0.01℃的温差变化。图2为金属铂热电阻与热敏电阻温度曲线的比较。

温度传感器的历史发展与研究现状

温度传感器的历史发展与研究现状 摘要:本文通过查阅各类文献并进行分析总结,简述了温度传感器的意义和作用,介绍了温度传感器的发展历史,列举并分析了常用温度传感器的类型,对比了国内外温度传感器设计和研究领域的现状与发展,着重阐述了国外先进的CMOS模拟集成温度传感器的主要原理。最后,文章对温度传感器的未来发展方向做出了说明。 关键词:温度传感器,IC温度传感器,CMOS集成温度传感器 一、背景介绍 1.1绪言 人们为了从外界获取信息,必须借助于感觉器官,而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中,它们的功能就远远不够了。为适应这种情况,就需要传感器。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。[1]传感器是以一定的精度和规律把被测量转换为与之有确定关系的、便于应用的某种物理量的测量装置。它是实现自动测量和自动控制的首要环节。[2]温度是反映物体冷热状态的物理参数,它与人类生活环境有着密切关系。早在2000多年前,人类就开始为检测温度进行了各种努力,并开始使用温度传感器检测温度。[3]在人类社会中,无论工业、农业、商业、科研、国防、医学及环保等部门都与温度有着密切的关系。 [4]在工业生产自动化流程中,温度测量点一般要占全部测量点的一半左右。[5]因此,人类离不开温度传感器。传感器技术因而成为许多应用技术的基础环节,成为当今世界发达国家普遍重视并大力发展的高新技术之一,它与通信技术、计算机技术共同构成了现代信息产业的三大支柱。[6] 1.2温度传感器的发展历史和主要分类 人们研究温度测量的历史已经相当的久远了。公元1600年,伽利略研制出气体温度计。

温度传感器

实验九温度传感器设计 传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。传感器一般由敏感元件、转换元件和基本转换电路三部分组成。其中,敏感元件用于感知被测量,并输出与被测量成确定关系的某一物理量;转换元件将敏感元件的输出量转换成电路参量;转换电路将上述电路参量转换成电学量进行输出。 物理学中的温度用以表征物体的冷热程度。而温度在具体的计量时,一般需要通过物体随温度变化的某些特性来间接测量。温度传感器就是将温度信息转换成易于传递和处理的电信号的传感器。 在科技日新月异的今天,温度传感器的应用尤其广泛。在工业方面,温度传感器可应用于各种对温度有要求的产业,如金属冶炼,用于控制加热熔炉的温度以及冷却金属;航天领域,用于检测顶流罩、航天服等的耐热及耐寒程度等。在化学方面,关于对温度有严格要求的化学反应,需要高精度的温度传感器帮助控制反应过程中的特定温度。在农业方面,温度传感器可以应用在温室培养的温度控制,对于农作物新品种开发及温室栽培起着重要作用。在军事方面,可应用温度传感器对热源进行探测,起到侦查作用。在医疗方面,温度传感器可用于体温探热器等探测体温的仪器。 【实验目的】 1、了解Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。 2、学习运用不同的温度传感器设计测温电路。 【实验原理】 热电阻传感器是利用导体的电阻随温度变化的特性,对温度和温度有关的参数进行检测的装置。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。大多数热电阻在温度升高1℃时电阻值将增加0.4% ~ 0.6%。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在也逐渐采用镍、锰和铑等材料制造热电阻。能够用于制作热电阻的金属材料必须具备以下特性:(1)电阻温度系数要尽可能大和稳定,电阻值与温度之间应具有良好的线性关系;(2)电阻率高,热容量小,反应速度快;(3)材料的复现性和工艺性好,价格低;(4)在测量范围内物理和化学性质稳定。 1、Pt100铂电阻的测温原理 金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。利用铂的此种物理特性制成的传感器称为铂电阻温度传感器。铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,

传感器测试实验报告

实验一 直流激励时霍尔传感器位移特性实验 一、 实验目的: 了解霍尔式传感器原理与应用。 二、基本原理: 金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场和电流的方向上将产生电动势,这种物理现象称为霍尔效应。具有这种效应的元件成为霍尔元件,根据霍尔效应,霍尔电势U H =K H IB ,当保持霍尔元件的控制电流恒定,而使霍尔元件在一个均匀梯度的磁场中沿水平方向移动,则输出的霍尔电动势为kx U H ,式中k —位移传感器的灵敏度。这样它就可以用来测量位移。霍尔电动势的极性表示了元件的方向。磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。 三、需用器件与单元: 霍尔传感器实验模板、霍尔传感器、±15V 直流电源、测微头、数显单元。 四、实验步骤: 1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板的插座中,实验板的连接线按图9-1进行。1、3为电源±5V , 2、4为输出。 2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。 图9-1 直流激励时霍尔传感器位移实验接线图 3、测微头往轴向方向推进,每转动0.2mm 记下一个读数,直到读数近似不变,将读数填入表9-1。 表9-1 X (mm ) V(mv)

作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。 五、实验注意事项: 1、对传感器要轻拿轻放,绝不可掉到地上。 2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。 六、思考题: 本实验中霍尔元件位移的线性度实际上反映的时什么量的变化? 七、实验报告要求: 1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。 2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。

温湿度计说明书

使用电池:AAA1.5V 1节 HTC-1温湿度计用户手册 产品规格: 湿度分辨率:1% 温度测量范围:-10℃~70℃ 温度测量精度:约±1.0℃(1.8 oF)温度分辨率:0.1℃(0.2 oF) 湿度测量范围:30%RH~99%RH。 湿度测量精度:±5%(30%-70%) ±7%(其他) 基本功能: 温度/湿度显示 ℃/ oF温度切换显示 最高/最低温湿度记忆功能 12/24小时制时钟 整点报时功能 每日闹钟功能 日历显示功能 操作方法: 1、依机背指示方向推开电池门,取出电池隔片,然后装回电池门,该机即可用。 2、按键功能:(MODE)切换时钟与闹钟显示模式/设定当前时间、

闹钟、12或24小时制、日期(ADJ)调整被设项目的数值;(MEMORY)显示记忆中的最高/最低温湿度值/清除记忆的最高/ 最低温湿度值;(℃/ oF)切换温度单位以℃(摄氏度)或oF(华氏度)显示;(RESET)清除所有设定/记忆值,返回初始状态。 3、在初始状态下按住(MODE)1秒,当前时间的分钟数开始闪动,按(ADJ)可以调节分钟数,连续按(MODE)可以分别设定“时钟”、“12/24”、“月(M)”、“日(D)” 4、在当前时钟模式下,(时钟与分钟之间的两点每秒闪动一次)切换显示为闹钟模式(时钟与分钟之间的两点不闪动),此时按(ADJ)可以切换“闹钟”(Alarm)功能/“整点报时”()功能的开与关,再按住(MODE)2秒,可以设定闹铃时间,同时启动“整点极时”功能,()符号出现。 5、在闹钟模式下,若无任何操作则一分钟后自动返回当前时钟,此时按一次(ADJ)切换至日历显示,3秒后自动返回当前时钟按 MAX/MIN钮,显示温/湿度最后次清除(CLEAR)以来的最大值。 6、按(MEMORY)可以显示记忆的温/湿度最大值(MAX)和最小值(MIN),按住(MEMORY)超过2秒可清除记忆的最大/最小值。 注意事项: 1、初次使用/更换电池时请按一次(RESET)(在机背后); 2、若该机出现任何不良,请按一次(RESET) 3、电池用完后请放回政府指定地点

温湿度传感器项目投资简介

第一章基本情况 一、项目概况 (一)项目名称 温湿度传感器项目 (二)项目选址 xx高新区 节约土地资源,充分利用空闲地、非耕地或荒地,尽可能不占良田或少占耕地;应充分利用天然地形,选择土地综合利用率高、征地费用少的场址。所选场址应避开自然保护区、风景名胜区、生活饮用水源地和其他特别需要保护的环境敏感性目标。项目建设区域地理条件较好,基础设施等配套较为完善,并且具有足够的发展潜力。对周围环境不应产生污染或对周围环境污染不超过国家有关法律和现行标准的允许范围,不会引起当地居民的不满,不会造成不良的社会影响。 (三)项目用地规模 项目总用地面积27733.86平方米(折合约41.58亩)。 (四)项目用地控制指标 该工程规划建筑系数56.61%,建筑容积率1.15,建设区域绿化覆盖率6.80%,固定资产投资强度195.19万元/亩。 (五)土建工程指标

项目净用地面积27733.86平方米,建筑物基底占地面积15700.14平 方米,总建筑面积31893.94平方米,其中:规划建设主体工程20220.75 平方米,项目规划绿化面积2168.86平方米。 (六)设备选型方案 项目计划购置设备共计104台(套),设备购置费2803.84万元。 (七)节能分析 1、项目年用电量1125210.41千瓦时,折合138.29吨标准煤。 2、项目年总用水量10418.79立方米,折合0.89吨标准煤。 3、“温湿度传感器项目投资建设项目”,年用电量1125210.41千瓦时,年总用水量10418.79立方米,项目年综合总耗能量(当量值)139.18 吨标准煤/年。达产年综合节能量46.39吨标准煤/年,项目总节能率 29.09%,能源利用效果良好。 (八)环境保护 项目符合xx高新区发展规划,符合xx高新区产业结构调整规划和国 家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施, 严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明 显的影响。 (九)项目总投资及资金构成 项目预计总投资9831.10万元,其中:固定资产投资8116.00万元, 占项目总投资的82.55%;流动资金1715.10万元,占项目总投资的17.45%。

温湿度传感器在家庭中的应用

家庭当中常用的传感器主要有温度传感器、气体传感器、光传感器、超声波传感器以及红外线传感器等等。其中温湿度传感器在家电应用最为普遍,它不仅给生活带来极大的便利,还能使家庭内外的空气相平衡。 随着生活水平的提高,家具智能化的需求逐步显现,温度、湿度等数据采集的应用也开始显现出越来越大的市场潜力。通过温湿度传感器,C8051F985低功耗MCU,CP2403 LCD 驱动,和LCD显示器构建一个用于家庭等温度、湿度数据采集的系统,该系统主要用于方便、及时的获取室内、外的温度、湿度等数据(也可和其他传感器集成扩展数据采集应用范围)。家庭数据采集系统的工作原理 使用温湿度传感器,C8051F985低功耗处理器,CP2403 LCD驱动,都具有I C通信接口,可做成模块,只需要选用自己的LCD显示器即可。 典型应用如下:室内、室外各放置温湿度传感器(以下简称采集节点)一个,定时唤醒采集温度、湿度原始数据,经过温湿度传感器内部的AD转换器,和出厂校准的原始数据处理,转换成温、湿度最终数据,经由I C总线传递到低功耗处理器C8051F985处理。C8051F985低功耗处理器决定启用哪个采集节点,以此降低功耗,并控制CP2403 LCD驱动,将数据最终显示LCD显示器上。本文使用的Si7001温湿度传感器,C8051F985低功耗处理器,CP2403 LCD驱动,都具有I2C通信接口,可做成模块,只需要选用自己的LCD显示器即可。典型应用如下:室内、室外各放置2个Si7001温湿度传感器(以下简称采集节点),定时唤醒采集温度、湿度原始数据,经过Si7001内部的AD转换器,和出厂校准的原始数据处理,转换成温、湿度最终数据,经由I2C总线传递到低功耗处理器C8051F985处理。C8051F985低功耗处理器决定启用哪个采集节点,以此降低功耗,并控制CP2403 LCD驱动,将数据最终显示LCD显示器上。 家庭数 据采集系统的性 能- 各节点 功耗① Si7001的功耗 Si7001湿度测量 周期内典型的电 流为240uA,温度 测量周期内典型 的电流为320uA, 睡眠电流0.2uA, 每分钟进行一次 温、湿度测量的平 均功耗仅为1uA。 ②C8051F985的功 耗C8051F985睡眠电流10nA,工作电流150uA/MHz ③CP2403的功耗。睡眠电流0.02μA,工作电流<3uA。以每分钟测量一次,工作频率4MHz进行计算,平均功耗为不超过15uA,非常适合电池供电

AD590温度测试系统实验报告

AD590温度测试系统实验报告 一实验感想与总结 经过一个多月的实验,从开始的温度传感器到最后的接口总线,16单片机,TLC2543,串口等等的学习,完成了一个小的智能开换系统的了解,制作与测试。同时也让我学到了不少知识及动手操作能力,第一次感觉自己在课间时间也学到了东西,也见识到了一些简单的器材,机械,这样的感觉真的特别好,我希望这样的实验可以多安排一些,能让我们好好学一番,在这里先谢谢老师啦,谢谢! 1 具体的一些感想: (1)我是从原理图打印出来以后开始对这个实验了解的。画原理图时不能为了快单纯的画线,要注意图中接口处的标注,每个接口的功能是不一样的,要提前认识原件的接口设置。 (2)假如不借用标准号直接Update生成pCB图时,画线要注意每根线的连接必须正确,否则将导致PCB图无法显示或整个设计的错误;另外,就是可以借助标准号直接生成。 (3)在设置原理图时,每个元器件的封装必须要有,否则就会和我们一样,在Update后元器件就没有,无法进行布线连接。另外就是在对每个元器件画封装的时候,要注意管脚处的数字标号设置,应该完全按照器件结构去描述(我们在设置AD590封装设计时,标号用‘0’和‘1’显然在封装时就无法显示,导致AD590就只有一根连接线,无法完成正确的布线连接) (4)在Update后进行布线时,我看着视频学了一下,可当自己

操作时,一点都不如意(开始的第一次安放元器件后,布线开始,有好多线要跳接,线看着还凌乱)。又试着做了四五次之后才真正体会到“话真不是说说的,自己操作后才知道它的难啊”。最后实验室回来,按照老师发的那个PCB布线图,自己再开始尝试,遇到一个新问题,布线时,那些GND,VCC,+5v线的连接用的是一些不规则图形布线,我还是无法触及。 (5)焊接电路板,自己完成了通孔的打眼,焊点的焊接。 (6)测试时,发现自己做的电路板没有电源显示的LED灯,当测试时不能醒目的了解电路是否供电;电路通过一个7805T输入9.25v电压输出5.11v使电路正常工作;部分器件的安放还是不太好,电路板整体看上去比较凌乱。 (7)我们还没进行程序调试,在后八周会好好完成。 2 总结 经过一个月的实验学习,从刚开始的AD590温度测试原理图的分析,到最后电路板的制作测试,我们小组完成了一个小型的智能测试系统的制作,不进让我们体会到理实验是检验真理的唯一标准,还让我们认识到了一部分的元器件,学习到了一些经验。读AD590手册制作指出,AD590的工作电压是4到30v,如果是4.8v是不能实现的,必须通过实验才让我们记得更确切。一个月的学习制作,让我从实验中领悟到了课本上无法学到的很多东西,知道了真实制作和想想是很大区别的,用理论联系实际,从实践中学习,总结过去的错误,注重现实制作的重要,读懂更

温度传感器的应用及原理

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC 的温度等等,下面介绍几种常用的温度传感器。温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。热敏电阻器用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。 表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为14.050K Ω。 虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏

相关主题
文本预览
相关文档 最新文档