当前位置:文档之家› 理论力学概述

理论力学概述

理论力学概述
理论力学概述

绪论1

绪论

1.理论力学的内容

在高等工业学校里,理论力学是一门理论性较强的技术基础课,它在经典力学的范围内研究宏观物体机械运动的普遍规律及其在一般工程中的应用。

经典力学是一门成熟的科学,它的基本定律早巳由伽利略提出,并由牛顿最后精确地归纳为完备的形式。三个世纪的实践证明,经典力学的定律有着极其广泛的适用性。只是到上世纪末,物理学上的一些重大新成就揭示出经典力学不适用于物体接近光速时的运动,从而在本世纪初出现了较经典力学更为精确的相对论力学。但是,在一般工程技术中宏观物体的速度远小于光速,因此这里所遇到的力学问题仍宜于用经典力学来研究。本书按照高等工业学校多学时理论力学的基本要求和教学大纲,系统叙述本课程的基本内容,包括理论力学的基本理论及其典型应用。根据循序渐进的原则,采用传统的体系,本书的内容包括

第一篇静力学,研究物体机械运动的特殊情形二平衡问题;

第二篇运动学,从几何观点出发描述物体运动的进行方式及其特征;

第三篇动力学,联系物理原因研究物体的运动特点及其相互之间的机械作用

理论力学的系统知识以及运用这些知识分析问题、解决问题的能力,是学习一系列后继课程,如材料力学、机械原理、机械设计等课程的重要基础。这个基础也是一般工程技术人员掌握科技新成就并从事更深入的研究工作所需要的。学习本课程时,务必重视理论与实践相结合的原则。同时,要结合理论力学的学科特点,注意培养辩证唯物主义世界观

2.理论力学的研究方法

在力学发展的过程中,形成了一整套符合科学认识规律的方法。最初,力学基本概念的形成和基本定律的建立是以对自然界的直接观察以及从生活、生产中的直接经验作为出发点的。以后,系统地组织实验,成为研究工作的重要一环。在了解事物和现象的内部联系后,就需要而且可能撇开次要的东西抽象出最主要的特征来加以研究,这种方法称为抽象化方法。

通过抽象化方法,使我们得以建立物质对象的一些初步近似的模型。例如,撇开物体的变形,就得到刚体的概念,撇开物体的尺寸大小,就得到质点的概念,等等。当问题在所采取的简化条件解决后,可以重新考虑那些在初步近似中舍掉的因素,建立起更接近真实的模型,以便作更深入的研究。这种由简到繁,由粗到精的研究方法,在力学以及其他科学中都是广泛采用的,这是因为当思维从具体的东西上升到概念上的东西时,能更接近真理,更正确、更完全地反映自然。

以后通过分析、综合、归纳,找出了力学现象的普遍规律性,从而建立起一些最基本的公理(或定律、原理),作为整个经典力学的基础。

建立起力学公理后,就可据此通过推理而得出反映力学现象规律性各个侧面的定理和各种适用于特殊情形的推论。当然,在推理过程中往往需要引入一些新概念,这些概念反映了人们对事物本质的新的认识。理论力学里的推理工作广泛地利用数学这种有效工具。这就是数学演绎的方法,它有助于我们更深入地理解力学规律的实质,从而发掘出隐藏其间的内在联系。与此同时,数学还是计算的手段,它是力学走向工程应用所不可缺少的。

因此,计算技术对力学的应用有着十分巨大的作用。在今天电子计算机的时代,由于计算技术的巨大威力,使得有可能解决越来越复杂.的力学问题。显然,力学不只单方面地受惠于数学,它反过来也对数学的发展有很大的促进。

在力学的今后研究中,有必要更广泛地考虑物质对象的复杂性,以便更深入地探索力学现象的物质本质,从而建立起更符合实际的新模型和相应的力学规律。只有这样,力学的内容才能不断地丰富起来。

科学的目的不只在于认识世界,更重要的是在于改造世界.从实践到理论是认识的一个飞跃,而从理论到实践则更是重要的一个飞跃。实践是认识的唯一目的,同时又是认识的唯一标准。任何科学理论,包括力学,都必须在它指导实践时加以验证。只有当它足够精确地符合客观实际时,才能被认为正确可靠,也只有这样的理论才有实际意义。

这样,理论力学的研究方法概括起来就是从生动的直观到抽象的思维,并从抽象的思维返回实践的认识真理、认识客观现实的辩证的途径。

3.力学发展史简明要点

力学是最早产生并获得发展的科学之一。早在叙述我国古代伟大学者墨子(公元前468~382年)学说的《墨经》里就有关于力学原理的记载,如“秤”的原理。古希腊学者亚里斯多德(公元前384~322年)也曾作过有关力学的研究。杰出的西拉库兹(地中海)学者阿基米德(约公元前287~212年)总结了古代的静力学知识,奠定了静力学的基础。在他的《论比重》一书中给出了杠杆平衡问题的正确

解答,还有平行力合成、分解的理论以及重心等学说。此后,直到14世纪的漫长时期中,由于封建与神权的统治,生产力受到束缚,一切科学,包括力学,都陷于停顿状态。

15世纪后半期,欧洲进入了文艺复兴时期。当时由于商业资本的兴起,手工业、城市建筑、航海造船和军事技术等各方面所提出的许多迫切问题,激励了科学的迅速发展。多才多艺和学识渊博的意大利艺术家、物理学家和工程师辽纳多·达·芬奇(1452~1519年)就是这个时代的杰出代表。他曾作过有关新型城市建设的工程设计,还研究过物体沿斜面的运动和滑动摩擦。

不久以后,波兰学者哥白尼(1473~1543年)在总结前人天文观察的基础上,创造了宇宙的太阳中心学说。这学说推翻了托勒密的陈旧的地球中心学说,引起了人们宇宙观的根本变革,严重地打击了神权统治,从此自然科学便开始从神权中解放出来。约翰·开普勒(1571~1630年)根据哥白尼学说及大量的天文观测,发现了行星运动三定律。这些定律是后来牛顿发现万有引力定律的基础。意大利学者伽利略(1564~1642年)首先在力学中应用了有计划的科学实验,创立了科学的研究方法。·他根据实验明确地提出了惯性定律的内容,得出了真空中落体运动的正确结论,引进了加速度的概念并解决了真空弹道问题。他把抛射体的运动看成是水平匀速运动和铅直匀变速运动的合成,由此可以看到力的独立作用定律的萌芽。伽利略的工作开辟了科学史上的新时代,他对奠定动力学基础作出了卓越的贡献。

由伽利略开始的动力学奠基工作,经过法国学者笛卡尔(1596~1650年)、荷兰学者惠更斯(1629~1695年)等人的努力,后来由英国的物理学家、数学家牛顿(1642~1727年)完成;牛顿在其名著《自然哲学的数学原理)(1687年)中完备地建立了经典力学的基本定律,并从这些定律出发,将动力学理论作了系统的叙述。牛顿运动定律是经典力学的基础为了建立质量的概念,牛顿曾利用单摆做过大量的精密实验。他还把关于“力”的各个分散,互相矛盾的概念统一起来,加以普遍化,从而建立了力的科学概念。牛顿发现了万有引力定律,这个定律后来给天体力学的发展奠定了基础。牛顿解决了许多新的数学和力学的问题,创立了物体在阻尼介质中运动的理论。

在力学史上,17世纪被看成是动力学的奠基时期,与此同时,在17世纪到1.9世纪初,静力学也获得了进一步的成熟。曾由达·芬奇研究过的力平行四边形定律经过荷兰学者斯蒂芬(1548—1620年)、德国学者罗伯瓦尔(1602~1675年)的工作最后形成。达·芬奇引入的力矩概念,经法国,学者伐里农(1654~1722年)发展,最后形成完整的力矩定理。法国学者布安索(1777~1859年)创立了完整的力偶理论,他制定了静力学的现代形式,他还使力学中的几何方法得到了巨大的进展。

18世纪转入动力学的发展时期。德国学者莱伯尼兹(1646—1716年)与牛顿彼此独立地发明了微积分

原理,对18世纪力学朝着分析方向的发展提供了基础。瑞士学者约翰·伯努里(1667~1748年)最先提出了以普遍形式表示的静力学基本原理,即虚位移原理:数学力学家欧拉(1707~1783年)首先把牛顿第二定律表示为分析形式,并开始建立刚体动力学理论,他所导出的理想流体动力学基串方程奠定了流体力学的基础。不久,法国学者达朗贝尔(1717~1785年)给出了一个解决动力学问题的普遍原理,即所谓达朗贝尔原理,从而奠定非自由质点动力学的基础。此后,法国数学家、力学家拉格朗日(1736~1813年)等人奠定并发展了分析力学。拉格朗日于1783年发表的《分析力学》一书是牛顿以来力学发展的新的里程碑。从而建立了拉格朗日力学体系。后来,英国学者哈密顿(1805~1865年)又建立丁哈密顿力学。

19世纪初到中叶,因大量使用机器而引进的效率问题,促进“功”的概念形成。“能”的概念也逐渐在物理学、工程学中普遍形成。在这时期发现了能量守恒和转化定律,这个定律不仅对技术应用有着特别重大的意义,而且在力学和其他科学之间,在物质运动的各种形式之间,起了沟通作用,使力学的发展在许多方面和物理学紧密地交织在一起。

由于机器的大量使用,技术的迅速进步,促使了工程力学的形成和发展。相应地,力学的几何方法也获得了很大的发展和应用。19世纪中,先后形成了一系列力学专门学科,如图解力学、机器与机构理论、振动理论。运动学成为理论力学的一个独立部分也是在这个时期形成的。

20世纪以来,与航空工业及其他技术的发展紧密相关,力学的许多专门分支如弹塑性理论、流体与气体动力学、非线性振动理论、自动控制、运动稳定性理论、陀螺仪理论、变质量力学和飞行力学等各方面都取得了迅速发展和巨大成就。特别是20世纪中叶以后,航天工程的兴起又向力学提出了许多新的极为复杂的理论和技术问题。依靠电子数字计算机的协助,巳解决了宇宙火箭的发射、人造卫星、航天飞机的轨道计算、稳定性与控制等一系列重大问题。所有这些都充分说明了现代力学的高度发展水平。

20世纪的特点是出现了大批新的边缘学科,力学正在越来越多地渗入其他有关学科中。由于生产需要的促进和研究手段的改善,力学的模型也越来越复杂,能够更全面地考虑各种物理因素,并进行更为复杂的实验、计算等的综合研究。这样,力学的领域还在继续扩大,形成了一系列新的力学学科,如化学流体力学、电磁流体力学、物理力学、生物力学,以及系统力学等。力学的发展史内容极为丰富,更详细的叙述,可参阅有关力学史的专门著作。

理论力学考试知识点总结

《理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系与平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束与球铰链的性质。 3、熟练掌握如何计算力的投影与平面力对点的矩,掌握空间力对点的矩与力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶与力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法与简化结果。 3、熟练掌握如何计算主矢与主矩;掌握力的平移定理与空间一般力系与平面力系的简化方法与简化结果。 4、掌握合力投影定理与合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法与负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系与空间力偶系)的平衡条件求解单个物体与简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系与平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体与物体系的平衡问题。 3、了解静定与静不定问题的概念。 4、掌握平面静定桁架计算内力的节点法与截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法与弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动

理论力学选择题第一组

理论力学选择题第一组 1、楔形块A、B自重不计,并在光滑的mm和nn 平面相接触,若其上分别作用有两个大小相等,方向相反,作用线相同的力F和F',如图所示,则A、B两个刚体是否处于平衡状态? 题1图 A.A、B都不平衡B.A、B都平衡C.A平衡,B不平衡D.A不平衡,B平衡 2、如图,x轴和y轴的夹角为,设一力系在xy平面内,对y轴上的A点和x轴上的B点有,且但 已知OA = l则点B在x 轴的位置为: 题2图 3、如图所示若尖劈两侧与槽之间的摩擦角均为,则欲使尖劈被打入后不致自动滑出, 角应为多大? 题3图 4、点作圆周运动,如果知道其法向加速度越来越小,则点的运动速度:

A.越来越小B.越来越大C.大小不变D.不能确定 5、如图所示机构中曲柄O1A一端连固定支座O1,另一端铰接一滑块A,滑块A可在摇杆 O2B上滑动。已知:相对速度Vr,杆O1A的角速度1,杆O2B的角速度2。试求滑块A的科式加速度: 题5图 A.方向垂直O1A向上B.方向垂直O1A向下 C.方向垂直O2B向上D.方向垂直O2B向下 6、如图所示的曲柄连杆机构中,已知曲柄长OA=r,角速度为,连杆长AB=2r,则在图示位置时,连杆的角速度为: 题6图 7、如图所示长2的细直杆由钢和木两段组成,各段的质量各为m1和m2,且各为均质,问它们对z轴的转动惯量Jz等于多少? 题7图

8、半径为R的固定半圆环上套上一个质量为m的小环M,曲杆ABC的水平段BC穿过小环,AB段以匀速u在倾角600的导槽内滑动,如图所示,试问在图示位置时,小环的动量P 等于多少? 题8图 9、如图所示,均质正方体ABCD,质量为m,边长为b,对质心的转动惯量,已知点C的速度,则刚体对转动轴A的动量矩大小L A为 题9图 10、如图所示,质量为m的物块A相对于三角块B以加速度沿斜面下滑,三角块B 又以加速度相对于地面向左运动,则物块A的惯性力F I为:

理论力学复习总结(重点知识点)

第一篇静力学 第 1 章静力学公理与物体的受力分析 1.1 静力学公理 公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F' 工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理 4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理 5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。 1.2 约束及其约束力 1.柔性体约束 2?光滑接触面约束 3.光滑铰链约束

第2章平面汇交力系与平面力偶系 1. 平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和 方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=^ F 2. 矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3. 力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的转动效应 用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo ( F) =± Fh) 4. 把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶, 记为(F,F')。 例2-8 如图2.-17 (a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩 为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17( b) 所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB) 构成一力偶与矩为M的力偶平衡(见图2-17 (c))。由平面力偶系的平衡方程刀Mi=0,得-Fad+M=0 500 则有FA=FB ' N=471.40N 由于FA、FB'为正值,可知二力的实际方向正为图2-17 ( c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB '471.40N,方向如图2-17 ( b)所示。 第3章平面任意力系 1. 合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中 各力对于同一点之矩的代数和。 2. 平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时 为零,即F R'=0,M O=0. 3. 平面任意力系的平衡方程:刀Fx=0,刀Fy=O,刀Mo(F)=0.平面任意力系平衡的解析条件是,力系 中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零 例3-1 如图3-8 (a)所示,在长方形平板的四个角点上分别作用着四个力,其中F仁4kN , F2=2kN , F3=F4=3kN,平板上还作用着一力偶矩为M=2kN ? m的力偶。试求以上四个力及 一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。 解(1)求主矢FR'建立如图3-8 (a)所示的坐标系,有 F 'Rx=刀Fx= - F2cos60° +F3+F4cos30 ° =4.598kN

理论力学复习题

1.图示结构中的各构件自重不计。已知P =5 kN ,M=5 kN. m,q = 2.5kN/m 。 试求固定端A及滚动支座B处的约束反力。 2、一重W的物体置于倾角为α的斜面上,若摩擦系数为f, 且tgα

整理理论力学复习总结知识点教学提纲

此文档收集于网络,如有侵权,请联系网站删除 第一篇静力学 第1 章静力学公理与物体的受力分析 1.1 静力学公理 公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充 分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F'工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡 力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于 同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平 衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。1.2 约束及其约束力 1.柔性体约束 2.光滑接触面约束 3.光滑铰链约束

精品文档. 此文档收集于网络,如有侵权,请联系网站删除 第2章平面汇交力系与平面力偶系 1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即 FR=F1+F2+…..+Fn=∑F 2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3.力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo(F)=±Fh) 4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F')。 例2-8 如图2.-17(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17(b)所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB'构成一力偶与矩为M的力偶平衡(见图2-17(c))。由平面力偶系的平,得衡方程∑Mi=0﹣Fad+M=0 则有FA=FB' N=471.40N 由于FA、FB'为正值,可知二力的实际方向正为图2-17(c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB'=471.40N,方向如图2-17(b)所示。 第3章平面任意力系 1.合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中各力对于同一点之矩的代数和。 2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q 的主矩同时为零,即FR`=0,Mo=0. 3.平面任意力系的平衡方程:∑Fx=0, ∑Fy=0, ∑Mo(F)=0.平面任意力系平衡的解析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零. 精品文档. 此文档收集于网络,如有侵权,请联系网站删除

理论力学复习总结(知识点)

第一篇静力学 第1 章静力学公理与物体的受力分析 1.1 静力学公理 公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F’ 工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理5 钢化原理:变形体在某一力系作用下平衡,若将它

钢化成刚体,其平衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。 1.2 约束及其约束力 1.柔性体约束 2.光滑接触面约束 3.光滑铰链约束 第2章平面汇交力系与平面力偶系 1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用 线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即FR=F1+F2+…..+Fn=∑F 2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴 上的投影的代数和。

理论力学复习题

1.物体重P=20KN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞D上,如图所示,转动绞,物体便能升起。设滑轮的大小,AB与CD杆自重及摩擦忽略不算,A,B,C三处均为铰链链接。当物体平衡时,求拉杆AB和支杆CB所受的力。 2.在图示刚架的点B作用一水平力F尺寸如图,钢架重量忽略不计,求支座A,D的约束力 Fa和Fd。 3.已知梁AB上作用一力偶,力偶矩为M,梁长为L,梁重不计,求在图a,b,c三种情况下,

支座A,B的约束力。 4.无重水平梁的支撑和载荷如图a,b所示,已知力F,力偶矩M的力偶和强度为q的均布载荷,求支座A,B处的约束力。

5.由AC和CD构成的组合梁通过铰链C链接,它的支撑和受力如图所示,已知均布载荷强度q=10kN/m,力偶矩M=40kN·m,不计梁重,求支座A,B,D的约束力和铰链C处的所受的力。 6.在图示构架中,各杆单位长度的重量为300N/m,载荷P=10kN,A处为固定端,B,C,D,处为铰链,求固定端A处及B,C铰链处的约束力。

7..杆OA长L,有推杆推动而在图面内绕点O转动,如图所示,假定推杆的速度为v,其弯头高为a。求杆端A的速度大小(表示为x的函数)。

8.平底顶杆凸轮机构如图所示,顶杆AB课沿导槽上下移动,偏心圆盘绕轴O转动,轴O 位于顶杆轴线上。工作时顶杆的平底始终接触凸轮表面。该凸轮半径为R,偏心距OC=e,凸轮绕轴O 转动的角速度为w,OC与水平线成夹角φ。当φ=0°时,顶杆的速度。 9.图示铰接四边形机构中,O1A=O2B=100mm,又O1O2=AB,杆O1A以等角速度w=2rad/s绕轴O1转动。杆AB上有一套筒C,此套筒与杆CD相铰接。机构的各部件都在同一铅直面内。求φ=60°时,杆CD的速度和加速度。

理论力学复习公式

静力学知识点 静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或

4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。 力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法 ( 2 )间接投影法(图形见课本) 2. 力矩的计算 ( 1 )力对点的矩是一个定位矢量, ( 2 )力对轴的矩是一个代数量,可按下列两种方法求得: ( a )

理论力学知识点总结静力学篇

静力学知识点 第一章静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。

第二章平面力系 本章总结 1. 平面汇交力系的合力 (1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 (2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 (1 )平衡的必要和充分条件: (2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 (3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为

一般以逆时针转向为正,反之为负。 或 4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。 力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系

理论力学选择题集含答案

《理论力学》 1-1.两个力,它们的大小相等、方向相反和作用线沿同一直线。这是 (A)它们作用在物体系统上,使之处于平衡的必要和充分条件; (B)它们作用在刚体系统上,使之处于平衡的必要和充分条件; (C)它们作用在刚体上,使之处于平衡的必要条件,但不是充分条件; (D)它们作用在变形体上,使之处于平衡的必要条件,但不是充分条件; 1-2. 作用在同一刚体上的两个力F1和F2,若F1 = - F2,则表明这两个力 (A)必处于平衡; (B)大小相等,方向相同; (C)大小相等,方向相反,但不一定平衡; (D)必不平衡。 1-3. 若要在已知力系上加上或减去一组平衡力系,而不改变原力系的作用效果,则它们所作用的对象必需是 (A)同一个刚体系统; (B)同一个变形体; (C)同一个刚体,原力系为任何力系; (D)同一个刚体,且原力系是一个平衡力系。 1-4. 力的平行四边形公理中的两个分力和它们的合力的作用范围 (A)必须在同一个物体的同一点上; (B)可以在同一物体的不同点上; (C)可以在物体系统的不同物体上; (D)可以在两个刚体的不同点上。 1-5. 若要将作用力沿其作用线移动到其它点而不改变它的作用,则其移动范围 (A)必须在同一刚体内; (B)可以在不同刚体上; (C)可以在同一刚体系统上; (D)可以在同一个变形体内。 1-6. 作用与反作用公理的适用范围是 (A)只适用于刚体的内部; (B)只适用于平衡刚体的内部; (C)对任何宏观物体和物体系统都适用; (D)只适用于刚体和刚体系统。

1-7. 作用在刚体的同平面上的三个互不平行的力,它们的作用线汇交于一点,这是刚体平 衡的 (A) 必要条件,但不是充分条件; (B) 充分条件,但不是必要条件; (C) 必要条件和充分条件; (D) 非必要条件,也不是充分条件。 1-8. 刚化公理适用于 (A) 任何受力情况下的变形体; (B) 只适用于处于平衡状态下的变形体; (C) 任何受力情况下的物体系统; (D) 处于平衡状态下的物体和物体系统都适用。 1-9. 图示A 、B 两物体,自重不计,分别以光滑面相靠或用铰链C 相联接,受两等值、反 向且共线的力F 1、F 2的作用。以下四种由A 、B 所组成的系统中,哪些是平衡的? 1-10. 图示各杆自重不计,以下四种情况中,哪一种情况的BD 杆不是二力构件? 1-11.图示ACD 杆与BC 杆,在C 点处用光滑铰链连接,A 、B 均为固定铰支座。若以整 体为研究对象,以下四个受力图中哪一个是正确的。 1-12.图示无重直角刚杆ACB ,B 端为固定铰支座,A 端靠在一光滑半圆面上,以下四图中 哪一个是ACB 杆的正确受力图。 B ( F B ( C B ( B (

理论力学复习题

1.For personal use only in study and research; not for commercial use 2. 3.物体重P=20KN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞D上,如图所示,转动绞,物体便能升起。设滑轮的大小,AB与CD杆自重及摩擦忽略不算,A,B,C三处均为铰链链接。当物体平衡时,求拉杆AB和支杆CB所受的力。 2.在图示刚架的点B作用一水平力F尺寸如图,钢架重量忽略不计,求支座A,D的约束力Fa和Fd。 3.已知梁AB上作用一力偶,力偶矩为M,梁长为L,梁重不计,求在图a,b,c三种情况下,支座A,B的约束力。 4.无重水平梁的支撑和载荷如图a,b所示,已知力F,力偶矩M的力偶和强度为q的均布载荷,求支座A,B处的约束力。 5.由AC和CD构成的组合梁通过铰链C链接,它的支撑和受力如图所示,已知均布载荷强度q=10kN/m,力偶矩M=40kN·m,不计梁重,求支座A,B,D的约束力和铰链C处的所受的力。 6.在图示构架中,各杆单位长度的重量为300N/m,载荷P=10kN,A处为固定端,B,C,D,处为铰链,求固定端A处及B,C铰链处的约束力。 7..杆OA长L,有推杆推动而在图面内绕点O转动,如图所示,假定推杆的速度为v,其弯头高为a。求杆端A的速度大小(表示为x的函数)。 8.平底顶杆凸轮机构如图所示,顶杆AB课沿导槽上下移动,偏心圆盘绕轴O转动,轴O 位于顶杆轴线上。工作时顶杆的平底始终接触凸轮表面。该凸轮半径为R,偏心距OC=e,凸轮绕轴O 转动的角速度为w,OC与水平线成夹角φ。当φ=0°时,顶杆的速度。 9.图示铰接四边形机构中,O1A=O2B=100mm,又O1O2=AB,杆O1A以等角速度w=2rad/s 绕轴O1转动。杆AB上有一套筒C,此套筒与杆CD相铰接。机构的各部件都在同一铅直面内。求φ=60°时,杆CD的速度和加速度。 10半径为R的半圆形凸轮D以等速Vo沿水平线向右运动,带动从动杆AB沿铅直方向上升,如图所示,求φ=30°时杆AB相对于凸轮的速度和加速度。 11.图示直角曲子杆OBC绕O轴转动,使在其上的小环M沿固定支杆OA滑动,已知:OB=0.1m,OB与BC垂直,曲杆的角速度w=0.5rad/s,角加速度为零,求当φ=60°时,小环M的速度和加速度。 12.如图所示,平面图形上的亮点A,B的速度方向能是这样吗?为什么? 13.平面图形在其平面内运动,某瞬时其上有两点的加速度矢相同,试判断下述说法是否正确:(1)其上各点速度在该瞬时一定都相等。 (2)其上各点加速度在该瞬时一定都相等。 14.如图所示,车轮沿着曲面滚动,已知轮心O在某一瞬时的速度V o和加速度a0,问车轮的角加速度是否等于a0cosβ/R?速度瞬心C的加速度大小和方向如何确定? 15.如图所示各平面图形均作平面运动,问图示各种运动状态是否可能? 16.汽车以36km/h的速度在水平直到上行驶,设车轮在制动后立即停止转动,问车轮对地面的动滑动摩擦因数f应为多大方能使汽车制动后6s停止。 17.跳伞者质量为60KG,自停留在高空中的直升飞机中挑出,落下100M后,将降落伞打开,设开伞前的空气阻力忽略不计,伞重不计,开伞后所受的阻力不变,经5S后跳伞者的速度减为4.3m/s。求阻力大小。 18.图示水平面上放一均质三棱柱A,在其斜面上又放一个均质三棱柱B。两三棱柱的横截面均为直角三角形,三棱柱A的质量为Ma为三棱柱B的三倍,其尺寸如图所示,设各处摩擦不计,初始时系统静止,求当三棱柱B沿三棱柱A华夏接触到水平面时,三棱柱A移动的距离。

理论力学基础知识

《理论力学教程》基础知识 第一章 质点力学 在求解平面曲线运动问题时,可采用平面极坐标系,常将速度矢量分解为径 副法向:0 F b R b o 7. 质心运动定理反映了质点组运动的总趋势,而质心加速度完全取决于作用在 1. 2. 向速度和横向速度,其表达式分别为: v r r : v 为径向加速度和横向加速度,其表达式分别为a r 求解线约束问题,通常用内禀方程,它的优点是 以分开解算,这套方程可表示为,切向: md t ;将加速度矢量分解 a r 2r 。 运动规律和约束反作用力可 2 v m F n R n : 3. 试写出直角坐标系表示的质点运动微分方程式 mx F x 、my F y 、mz F z o 4. 质点在有心力作用下,只能在 垂直于动量矩J 的平面内运动,它的两个动力 学特征是:(1)对力心的动量矩守恒:(2)机械能守恒 5. 牛顿运动定律能成立的参考系,叫做惯性系:牛顿运动定律不能成立的参考 系,叫做非惯性系,为了使得牛顿运动定律在此参考系中仍然成立,则需加 上适当的惯性力。 6. 在平面自然坐标系中,切向加速度的表达式为a d ,它是由于速度大小改 变产生的;法向加速度的表达式为a n 2 —,它是由于速度方向改变产生 2

质点组上的外力,而内力不能使质心产生加速度 8.一质量为m的小环穿在光滑抛物线状的钢丝上并由A点向顶点0运动,其 2 建立起的运动微分方程为:吩 mgsin ; m- R mgcos。 注:此题答案不唯一。 9.一物体作斜抛运动,受空气阻力为R mkv,若采用直角坐标系建立其在任意时刻的运动微分方程为:證 mkv x ;瞪 mg mkv y ;若采用自 mg cos 。 10 .动量矩定义表达式为J r mv,它在直角坐标系中的分量式为 J x m yz zy、J y m zx xz、J z m xy yx。 然坐标系建立其在任意时刻的运动微分方程为: dv m一 dt mkv mg sin ; 第9题图

理论力学重点复习题-2020.04

理论力学重点复习题整理(2020.04) 一.填空 1.力是物体间相互的作用,这种作用使物体的状态发生变化。 2.平面任意力系向平面内任选一点O简化,一般情况下,可得一个力和一个力偶,这个力等于该力系的,这个力偶的矩等于该力系对于点O的。 3.力偶矩的大小与的位置无关。 4.止推轴承的约束反力有个正交分量。 5.静力学是研究物体在力系作用下的的科学。 6.在已知力系上加上或减去任意的平衡力系,并不改变原力系对刚体的。 7.计算桁架杆件内力的方法通常有法和法两种。 8.在平面力系情况下,固定端的约束反力可简化为两个约束力和一个约束。 9.作用于刚体上的力的三要素是:、、。 10.约束反力的方向必与该约束所能够阻碍的位移方向。 11.只在两个力作用下平衡的构件,称为。 12.平衡是指物体相对于惯性参考系保持或作运动。 13.在已知力系上加上或减去任意的,并不改变原力系对刚体的作用。 14.工程中常见的力系,按其作用线所在的位置,可以分为力系和力系。 15.平面力偶系平衡的必要和充分条件是:所有各力偶矩的代数和。 16.变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡状态保持。 17.平面汇交力系平衡的必要和充分条件是:该力系的力多边形。 18.常见的约束类型有:柔索、、、等。(任写三种即可) 19.由两个相等,方向相反且的平行力组成的力系,称为力偶。力偶可在它的作用面内任意移转,而不改变它对刚体的作用。 20.理论力学是研究物体一般规律的科学。 21.空间任意力系向任一点简化后的主矢与简化中心的位置。 22.平面汇交力系的平衡方程的数目为;而平面力偶系则只有个平衡方程。 23.力螺旋就是由一个力和一个力偶组成的,其中的力力偶的作用面。 24.力对点的矩矢在通过该点的某轴上的,等于力对该轴的。 25.当主动力的合力作用线在之内时发生现象。 26.刚体内任意一点在运动过程中始终与某一平面保持的距离,这种运动称为刚体的平面运动。27.当刚体作平动时,刚体内各点的形状都相同,且相互平行;同一瞬时各点都具有相同的速度和。28.运动学是研究物体运动的性质的科学。 29.刚体的平面运动是和的合成运动。 30.动点相对于定参考系的运动,称为;动点相对于的运动,称为相对运动;动参考系相对于的运动,称为牵连运动。 31.点的切向加速度只反映速度的变化,法向加速度只反映速度的变化。 32.角速度ω和转速n的关系为。 33.刚体的平面运动可简化为在它自身平面内的运动。 34.刚体在运动时,其上或其扩展部分有两点保持不变,则这种运动称为刚体。 35.转动刚体内任一点的切向加速度的大小,等于刚体的与该点到轴线垂直的乘积。 36.角加速度矢为角速度矢对时间的。 37.当牵连运动为任意运动时,动点在某瞬时的绝对加速度等于该瞬时它的相对加速度、加速度和加速度的矢量和。 38.在某一瞬时,平面图形内速度等于零的点称为。 39.研究点的运动学通常有三种方法:、和。 40.牵连点是指在参考系上与动点相的那一点。 41.平面运动可取任意基点而分解为平移和转动,其中平移的速度和加速度与基点的选择,而平面图形绕基点转动的角速度和角加速度与基点的选择。42.作平面运动的刚体的动能,等于随质心的动能与绕质心的动能的和。 43.质点系仅在有势力的作用下运动时,其保持不变,此类质点系称为保守系统。 44.如果约束方程中不包含坐标对时间的导数,或者约束方程中的微分项可以积分为形式,这类约束称为完整约束。 45.质点的达朗贝尔原理是:在任一瞬时,作用在质点上的主动力,约束反力和虚加的____ 在形式上组成平衡力系。 46.如果作用于质点系的外力的主矢恒等于零,质点系的动量。 47.质点系在某瞬时的动能与的和称为机械能。 48.回转半径(或惯性半径)定义为。 49.对于具有理想约束的质点系,其平衡的充分必要条件是:作用于质点系的所有主动力在任何中所作虚功的和等于零。 50.质点动力学可分为两类问题:(1)已知质点的运动,求作用于质点的;(2)已知作用于质点的力,求质点的。 51.如果物体在力场内运动,作用于物体的力所作的功只与力作用点的初始位置和终了位置,而与该点的轨迹形状无关,这种力场称为。 52.力在虚位移中所作的功称为。 53.质点系重力作功仅与其质心运动始末位置的有关。 54.当外力对于某定点(或某定轴)的主矩等于零时,质点系对于该点(或该轴)的动量矩。 55.质点系中每个质点上作用的主动力、约束力和它的在形式上组成平衡力系,这称为质点系的达朗贝尔原理。 56.能够静平衡的定轴转动刚体不一定能够实现平衡。 57.在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移称为。 58.机械效率是功率与功率的比值。 59.质点系重力作功与质心的运动轨迹形状。 60.转动惯量是刚体转动的度量。 61.约束力作功等于零的约束称为约束。 62.不受力作用的质点,将保持或作运动。 63.质点系动能定理的积分形式为:质点系在某一段运动过程中,起点和终点的动能的,等于作用于质点系的全部力在这段过程中所作的和。 二.选择题 1.根据题图(不计杆件的重量),AB杆的受力图正确的是:() (C) (B) (A) A F F A 题图 2.根据题图(不计杆件的重量), AB杆的受力图正确的是:() A F A 题图(A)(B)(C) 3.根据题图(不计杆件的重量),AB杆的受力图正确的是:()

太原理工大学理论力学知识点集合

平面力系 1. 平面汇交力系可简化为以合力,其大小和方向等于各分力的矢量和,合力的 作用线通过汇交点。 2. 平面汇交力系平衡的充要条件为合力等于零,与任意力系不同,任意力系由 于不能汇交,会产生力偶,必须得满足主矢主矩都等于零才平衡。 3. 平面汇交力系可以通过解析法,即将各力分解到直角坐标系上,再求合力。 4. 力对点取矩:是一个代数量,绝对值等于力的大小与力臂的乘积: Fd F Mo =)( 5. 合力矩定理:平面力系的合力对于平面内任一点的矩等于所有分力对该点的 矩的代数和。 6. 力偶、力偶矩:力偶由两个大小相等,方向相反,作用线不在同一直线上的 平行力组成。力偶矩等于平行力的大小乘上平行力的间距,逆时针为正,顺时针为负。 7. 力偶的等效定理:在同一平面内,只要力偶矩的大小和转向不变,力偶的作 用效果就不变。 8. 平面力系的简化:平面任意力系向一点的简化结果为一合力和一合力偶,合 力称为主矢,合力偶为主矩。主矢作用线过简化中心。 9. 平面任意力系平衡的充要条件:???==00'Mo F R ,其平衡方程为∑=0x F ,∑=0y F , ∑=0)(Fi Mo ,是三个独立的方程,可以求解三个未知数。 10. 静定问题:当系统中的未知量数目等于独立平衡方程的数目,则所有未知数 都能解出,这种问题称为静定问题。反之为非静定问题。

空间力系 11. 空间汇交力系的合力等于各分力的矢量和,合力的作用线过汇交点。可得合 力的大小和方向余弦:()()()222∑∑∑++Fz Fy Fx R F ,() R R F Fx i F ∑=,cos ,其余类似。 12. 空间汇交力系平衡的充要条件为该力系的合力为零,或所有分力在三个坐标 轴上投影的代数和为零,∑∑∑===0,0,0Fz Fy Fx ,可求三个未知数。 13. 力对点的矩矢等于该力作用点的矢径与该力的矢量积:()F r F M ?=o ;若k Fz j Fy i Fx F k z j y i x r ++=++=,,由行列式可得,()()()()k y F x x F y j x F z z F x i z F y y F z F Mo -+-+-=,在坐标轴上的投影为()[]y F z z F y F Mo x -=,()[]xFz zFx F Mo y -=,()[]yFx xFy F Mo z -=。 14. 力对轴的矩是一个代数量,其绝对值等于该力在垂直于该轴的平面上的投影 对于这个平面与该轴的交点的矩,而正负号只表示其转向。 15. 力对点的矩与力对通过该点的轴的矩的关系:()[]()F M F Mo x x =。 16. 空间力偶矩矢是自由矢量,而空间力偶对刚体的作用效果完全由力偶来确定,于是存在空间力偶等效定理:作用在同一刚体上的两个空间力偶,如果其力偶矩矢相等,则它们彼此等效。 17. 等效定理表明:空间力偶可以平移到与其作用面平行的任意平面而不改变力 偶对刚体的作用,只要力偶矩矢的大小方向不改变,其作用效果不改变。力偶矩矢d F M ?=,其中d 为'F F 和的间距。 18. 空间力偶系平衡的充要条件为:该力偶系的合力偶矩等于零或在各坐标轴上 的投影代数和分别为零。 19. 空间力系向任一点的简化同平面力系一样得到主矢和主矩,而主矢与简化中

大学理论力学试题

一、单项选择题 1、若要在已知力系上加上或减去一组平衡力系,而不改变原力系的作用效果,则它们 所作用的对象必需是 ( C ) A 、同一个刚体系统; B 、同一个变形体; C 、同一个刚体,原力系为任何力系; D 、同一个刚体,且原力系是一个平衡力系。 2、以下四个图所示的是一由F1 、F2 、F3 三个力所组成的平面汇交力系的力三角形, 哪一个图表示此汇交力系是平衡的 ( A ) 3、作用在刚体的任意平面内的空间力偶的力偶矩是 ( C ) A 、一个方向任意的固定矢量; B 、一个代数量; C 、一个自由矢量; D 、一个滑动矢量。 4、图示平面内一力系(F1, F2, F3, F4) F1 = F2 = F3 = F4 = F ,此力系简化的最后结果为 ( C ) A 、作用线过 B 点的合力; B 、一个力偶; C 、作用线过O 点的合力; D 、平衡。 5、如图所示,用钢契劈物,接触面间的摩擦角为?m ,劈入后欲使契子不滑出,契子的夹角α应为 ( B ) A 、α>2?m B 、α<2?m C 、α>?m D 、α=?m 6、如图示的力分别对x 、y 、z 三轴之矩为 ( A ) A 、 mx(F)= - 3P, my(F)= - 4P, mz(F)=2.4P; B 、mx(F)=3P, my(F)=0, mz(F)= - 2.4P; C 、 mx(F)= - 3P, my(F)=4P, mz(F)=0; D 、 mx(F)=3P, my(F)=4P, mz(F)= - 2.4P; 7、若点作匀变速曲线运动,则 ( B ) F 1 F 2 F 3 A F 1 F 2 F 3 B F 1 F 2 F 3 C F 1 F 2 F 3 D B A O F 4 F 3 F 2 F 1 α P 5 4 3 x y z

理论力学考试知识点总结

理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。 3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶和力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。 3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。 4、掌握合力投影定理和合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力

系平衡条件求解单个物体和物体系的平衡问题。 3、了解静定和静不定问题的概念 4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动 1、掌握刚体平动和定轴转动的特征;掌握刚体定轴转动的转动方程、角速度和角加速度;掌握定轴转动刚体角速度矢量和角加速度矢量的概念以及刚体内各点的速度和加速度的矢积表达式。 2、熟练掌握如何计算定轴转动刚体的角速度和角加速度、刚体内各点的速度和加速度。 第七章点的复合运动 1、掌握运动合成和分解的基本概念和方法。 2、理解哥氏加速度的原理。 3、熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理的应用。

理论力学选择题集-判断题

《理论力学》 1-1. 两个力,它们的大小相等、方向相反和作用线沿同一直线。这是D (A)它们作用在物体系统上,使之处于平衡的必要和充分条件; (B)它们作用在刚体系统上,使之处于平衡的必要和充分条件; (C)它们作用在刚体上,使之处于平衡的必要条件,但不是充分条件; (D)它们作用在变形体上,使之处于平衡的必要条件,但不是充分条件; 1-2. 作用在同一刚体上的两个力F1和F2,若F1 = - F2,则表明这两个力C (A)必处于平衡; (B)大小相等,方向相同; (C)大小相等,方向相反,但不一定平衡; (D)必不平衡。 1-3. 若要在已知力系上加上或减去一组平衡力系,而不改变原力系的作用效果,则它们所作用的对象必需是C (A)同一个刚体系统; (B)同一个变形体; (C)同一个刚体,原力系为任何力系; (D)同一个刚体,且原力系是一个平衡力系。 1-4. 力的平行四边形公理中的两个分力和它们的合力的作用范围A (A)必须在同一个物体的同一点上; (B)可以在同一物体的不同点上; (C)可以在物体系统的不同物体上;

(D)可以在两个刚体的不同点上。 1-5. 若要将作用力沿其作用线移动到其它点而不改变它的作用,则其移动范围A (A)必须在同一刚体内; (B)可以在不同刚体上; (C)可以在同一刚体系统上; (D)可以在同一个变形体内。 1-6. 作用与反作用公理的适用范围是C (A)只适用于刚体的内部; (B)只适用于平衡刚体的内部; (C)对任何宏观物体和物体系统都适用; (D)只适用于刚体和刚体系统。 1-7. 作用在刚体的同平面上的三个互不平行的力,它们的作用线汇交于一点,这是刚体平衡的A (A)必要条件,但不是充分条件; (B)充分条件,但不是必要条件; (C)必要条件和充分条件; (D)非必要条件,也不是充分条件。 1-8. 刚化公理适用于D (A)任何受力情况下的变形体; (B)只适用于处于平衡状态下的变形体;

相关主题
文本预览
相关文档 最新文档