当前位置:文档之家› 导数专题零点问题教师版

导数专题零点问题教师版

导数专题零点问题教师版
导数专题零点问题教师版

导数专题零点问题教师版 Modified by JEEP on December 26th, 2020.

导数专题(三)——零点问题

(2013昌平二模理)(18)(本小题满分13分)(零点问题) 已知函数2

1()ln (0).2

f x x a x a =

-> (Ⅰ)若2,a =求()f x 在(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[1,e]上的最小值;

(III )若()f x 在区间(1,e)上恰有两个零点,求a 的取值范围. (18)(本小题满分13分) 解:(I )2,a =212()2ln ,'(),2f x x x f x x x

=

-=- ()f x 在(1,(1))f 处的切线方程为2230.x y +-=………………………..3分

(Ⅱ)由2'().a x a

f x x x x

-=-=

由0a >及定义域为(0,)+∞,令'()0,f x x ==得

1,01,a ≤<≤即在(1,e)上,'()0f x >,)(x f 在[1,e]上单调递增, 因此,()f x 在区间[1,e]的最小值为1

(1)2

f =

.

②若21e,1e ,a <<<<即在

(上,'()0f x <,)(x f 单调递减;在上,

'()0f x >,)(x f 单调递增,因此()f x 在区间[1,e]上的最小值为1

(1ln ).2

f a a =

-

2e,e ,a ≥≥即在(1,e)上,'()0f x <,)(x f 在[1,e]上单调递减,

因此,()f x 在区间[1,e]上的最小值为21

(e)e 2

f a =-.

综上,当01a <≤时,min 1()2f x =;当21e a <<时,min 1

()(1ln )2

f x a a =-;

当2e a ≥时,2min 1

()e 2

f x a =-. ……………………………….9分

(III) 由(II )可知当01a <≤或2e a ≥时,)(x f 在(1,e)上是单调递增或递减函数,不可能存在两个零点.

当21e a <<时,要使()f x 在区间(1,e)上恰有两个零点,则

∴21

(1ln )0,21(1)0,21(e)e 0,2a a f f a ?-

=>???=->??

即2

e

1e 2

a a >???

(e,e ).2…………………………………………………………..13分

(2014西城期末理)18.(本小题满分13分)(零点问题)

已知函数()()e x f x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;

(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由. 18.(本小题满分13分)

(Ⅰ)解:因为()()e x f x x a =+,x ∈R ,

所以()(1)e x f x x a '=++. ……………… 2分 令()0f x '=,得1x a =--. ……………… 3分 当x 变化时,()f x 和()f x '的变化情况如下:

(5)

故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分

(Ⅱ)解:结论:函数()g x 有且仅有一个零点. ……………… 7分

理由如下:

由2()()0g x f x a x =--=,得方程2e x a x x -=,

显然0x =为此方程的一个实数解.

所以0x =是函数()g x 的一个零点. ……………… 9分 当0x ≠时,方程可化简为e x a x -=. 设函数()e x a F x x -=-,则()e 1x a F x -'=-, 令()0F x '=,得x a =.

当x 变化时,()F x 和()F x '的变化情况如下:

即()F x 的单调增区间为(,)a +∞;单调减区间为(,)a -∞.

所以()F x 的最小值min ()()1F x F a a ==-. ………………11分 因为 1a <,

所以min ()()10F x F a a ==->, 所以对于任意x ∈R ,()0F x >, 因此方程e x a x -=无实数解.

所以当0x ≠时,函数()g x 不存在零点.

综上,函数()g x 有且仅有一个零点. ………………13分

(2015上学期期末丰台理)18.(本小题共13分)(图像交点、问题转化)

已知函数()e 1x f x x -=+-. (Ⅰ)求函数()f x 的极小值;

(Ⅱ)如果直线1y kx =-与函数()f x 的图象无交点,求k 的取值范围. 18. 解:(Ⅰ)函数的定义域为R . 因为 ()1x f x x e -=+-,

所以 1

()x x e f x e

-'=.

令()0f x '=,则0x =.

所以 当0x =时函数有极小值()=(0)0f x f =极小值. ………………6分 (Ⅱ)函数1()1x

f x x e =-+

. 当0x =时01

()010f x e

=-+=,011y k =?-=-,

所以要使1y kx =-与()f x 无交点,等价于()1f x kx >-恒成立.

令1

()1(1)x g x x kx e

=-+

--,即()(1)x g x k x e -=-+, 所以 (1)1

()x x

k e g x e

--'=. ①当1k =时,1

()0x g x e

=>,满足1y kx =-与()f x 无交点;

②当1k >时,11

1111()(1)111k k g k e e k k --=-+=---, 而101k

<-,1

11k

e -<, 所以1

()01

g k <-,此时不满足1y kx =-与()f x 无交点.

③当1k <时,令(1)1

()0x x

k e g x e

--'== , 则ln(1)x k =--, 当(,ln(1))x k ∈-∞--时,()0g x '<,()g x 在(,ln(1))k -∞--上单调递减; 当(ln(1),)x k ∈--+∞时,()0g x '>,()g x 在(ln(1),)k --+∞上单调递增; 当ln(1)x k =--时,min ()(ln(1))(1)(1ln(1))g x g k k k =--=---. 由 (1)(1ln(1))0k k ---> 得11e k -<<, 即1y kx =-与()f x 无交点.

综上所述 当(1,1]k e ∈-时,1y kx =-与()f x 无交点. (13)

(2016东城上学期期末理)(19)(本小题共14分)(零点,问题转化)

已知函数()(ln )x

e f x a x x x

=--.

(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a ≤时,试求()f x 的单调区间;

(Ⅲ)若()f x 在(0,1)内有极值,试求a 的取值范围.

解:(Ⅰ)当1a =时,/

2

e (1)1()1x x

f x x x

-=-+,/

(1)0f =,(1)e 1f =-. 方程为

e 1y =-. …………………4分

(Ⅱ)2e (1)1()(1)x x f x a x x -'=-- 2e (1)(1)x x ax x x ---=, 2

(e )(1)

x ax x x --= .

当0a ≤时,对于(0,)x ?∈+∞,e 0x ax ->恒成立,

所以 '()0f x > 1x >;

'()0f x < 01x <<0.

所以 单调增区间为(1,)+∞,单调减区间为(0,1) . …………………8分 (Ⅲ)若()f x 在(0,1)内有极值,则'()f x 在(0,1)x ∈内有解. 令'

2

(e )(1)()0x ax x f x x --== e 0x

ax -= e x a x

= . 设e ()x

g x x

= (0,1)x ∈,

所以 '

e (1)

()x x g x x

-=,

当(0,1)x ∈时,'()0g x <恒成立,

所以()g x 单调递减.

又因为(1)e g =,又当0x →时,()g x →+∞, 即()g x 在(0,1)x ∈上的值域为(e,)+∞,

所以 当e a >时,'

2

(e )(1)

()0x ax x f x x

--== 有解. 设()e x H x ax =-,则 ()e 0x H x a '=-< (0,1)x ∈, 所以()H x 在(0,1)x ∈单调递减. 因为(0)10H =>,(1)e 0H a =-<, 所以()e x H x ax =-在(0,1)x ∈有唯一解0x . 所以有:

当e a ≤时,当(0,1)x ∈时,'()0f x ≥恒成立,()f x 单调递增,不成立.

综上,a 的取值范围为(e,)+∞. …………………14分

(2015海淀一模理)(18)(本小题满分13分)(问题转化、零点)

已知函数1

()ln (0)f x a x a x

=+≠.

(Ⅰ)求函数()f x 的单调区间;

(Ⅱ)若{()0}[,]x f x b c ≤=(其中b c <),求a 的取值范围,并说明[,](0,1)b c ?. (18)(共13分) 解:(Ⅰ)2211

'()(0)a ax f x x x x x

-=

-=>. ………………2分 (ⅰ)当0a <时,'()0f x <,则函数()f x 的单调递减区间是(0,)+∞.

………………3分 (ⅱ)当0a >时,令'()0f x =,得1

x a

=.

当x 变化时,'()f x ,()f x 的变化情况如下表

所以 ()f x 的单调递减区间是(0,)a ,单调递增区间是1

(,)a

+∞. ………………

5分

(Ⅱ)由(Ⅰ)知:

当0a <时,函数()f x 在区间(0,)+∞内是减函数,所以,函数()f x 至多存在一个零点,不符合题意. ………………6分

当0a >时,因为 ()f x 在1(0,)a 内是减函数,在1

(,)a

+∞内是增函数,所以

要使{()0}[,]x f x b c ≤=,必须1

()0f a

<,即1ln 0a a a +<.

所以 e a >. ………………7分

当e a >时,222211(

)ln()2ln (2ln )f a a a a a a a a a a

=+=-+=?-. 令()2ln (e)g x x x x =-≥,则22

'()1(e)x g x x x x -=-=

≥. 当e x >时,'()0g x >,所以,()g x 在[e,)+∞上是增函数. 所以 当e a >时,()2ln (e)e 20g a a a g =->=->.

所以 21

(

)0f a >. ………………9分 因为 2111a a <<,1

()0f a

<,(1)10f =>,

所以 ()f x 在211(,)a a 内存在一个零点,不妨记为b ,在1

(,1)a 内存在一个零点,

不妨记为c . ………………11分

因为 ()f x 在1(0,)a 内是减函数,在1

(,)a +∞内是增函数,

所以 {()0}[,]x f x b c ≤=.

综上所述,a 的取值范围是(e,+)∞. ………………12分 因为 2

11(

,)b a a ∈,1(,1)c a

∈, 所以 [,](0,1)b c ?. ………………13分

(2015海淀上学期期末)(19)(本小题满分13分)(零点、三角函数)

已知函数()cos sin f x a x x x =+,ππ

[,]22

x ∈-.

(Ⅰ)判断函数()f x 的奇偶性,并证明你的结论; (Ⅱ)求集合{|()0}A x f x ==中元素的个数;

(Ⅲ)当12a <<时,问函数()f x 有多少个极值点(只需写出结论) (19)(共13分)

解:(Ⅰ)函数()f x 是偶函数,证明如下: ………………1分

对于ππ[,]22x ?∈-,则ππ

[,]22

x -∈-. ………………2分

因为 ()cos()sin()cos sin ()f x a x x x a x x x f x -=---=+=,

所以 ()f x 是偶函数. ………………4分

(Ⅱ)当0a >时,因为 ()cos sin 0f x a x x x =+>,ππ

[,]22

x ∈-恒成立,

所以 集合{|()0}A x f x ==中元素的个数为0. ………………5分

当0a =时,令()sin 0f x x x ==,由ππ

[,]22

x ∈-,

得 0x =.

所以 集合{|()0}A x f x ==中元素的个数为1. ………………6分

当0a <时,因为 π

'()sin sin cos (1)sin cos 0,(0,)2

f x a x x x x a x x x x =-++=-+>∈,

所以 函数()f x 是π

[0,]2上的增函数. ………………8分

因为 ππ

(0)0,()022f a f =<=>,

所以 ()f x 在π

(0,)2

上只有一个零点.

由()f x 是偶函数可知,集合{|()0}A x f x ==中元素的个数为2. ………………10分 综上所述,当0a >时,集合{|()0}A x f x ==中元素的个数为0;当0a =时,集合

{|()0}A x f x ==中元素的个数为1;当0a <时,集合{|()0}A x f x ==中元素的个数为2.

(Ⅲ)函数()f x 有3个极值点. ………………13分

相关主题
文本预览
相关文档 最新文档