当前位置:文档之家› 2006年高考物理第一轮复习万有引力定律

2006年高考物理第一轮复习万有引力定律

2006年高考物理第一轮复习万有引力定律
2006年高考物理第一轮复习万有引力定律

2006年高考物理第一轮复习万有引力定律 人造地球卫星三

●知识梳理

一、万有引力定律

1.万有引力定律的内容和公式

自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比.

公式:F =G 221r

m m ,其中G =6.67×10-

11 N ·m 2/kg 2,叫引力常量,它是在牛顿发现万有引

力定律一百多年后由英国物理学家卡文迪许利用扭秤装置测出的.

2.适用条件:公式适用于质点间的相互作用.当两个物体间的距离远远大于物体本身的大小时,物体可视为质点.均匀的球体也可视为质量集中于球心的质点,r 是两球心间的距离.

二、应用万有引力定律分析天体的运动

1.基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供.

G

2

R Mm

=m R v 2=m ω2R =m (T

π2)2R

应用时可根据具体情况选用适当的公式进行分析或计算. 2.天体质量M 、密度ρ的估算

测出卫星绕天体做匀速圆周运动的半径R 和周期T ,由G 2

R

Mm =m

2

2π4T

R 得M =

2

32π4GT

R ,

ρ=V M

=30

π3

4R M =3

023π3R GT R (R 0为天体的半径).

当卫星沿天体表面绕天体运行时,R =R 0,则ρ=2

π3GT

.

3.卫星的绕行速度、周期与半径R 的关系 (1)由G 2

R Mm =m R v 2得v =R

GM

,由此可知,卫星的轨道半径R 越大,其绕行的线速度

v 越小.

(2)由G

2

R

Mm =m

22π4T R 得T =GM

R 3

2π4(注意:这与开普勒定律是一致的),所以轨道

半径R 越大的卫星,其周期T 就越大.

4.三种宇宙速度

(1)第一宇宙速度(环绕速度):v 1=7.9 km/s ,是人造地球卫星的最小发射速度,也是人造地球卫星绕地球做圆周运动的最大速度.

(2)第二宇宙速度(脱离速度):v 2=11.2 km/s ,是使物体挣脱地球引力束缚的最小发射速度. (3)第三宇宙速度(逃逸速度):v 3=16.7 km/s ,是使物体挣脱太阳引力束缚的最小发射速度.

5.地球同步卫星

所谓地球同步卫星,是指相对于地面静止的、和地球自转具有相同周期的卫星,T =24 h.同步卫星必须位于赤道正上方距地面高度h =3.6×104 km 处.

●疑难突破

1.重力和万有引力

重力是地面附近的物体受到地球的万有引力而产生的.物体的重力和地球对该物体的万有

引力差别很小,一般可认为二者大小相等,即mg =G

2

R Mm ,式中g 为地球表面附近的重力加速

度,R 0为地球的半径.所以在求第一宇宙速度时,可以用G

2

0R Mm =m 021R v ,也可以用mg =m 0

21R v .

2.随地球自转的向心加速度和环绕运行的向心加速度

放于地面上的物体随地球自转所需的向心力由地球对物体的引力和地面支持力的合力提供;而环绕地球运行的卫星所需的向心力完全由地球对它的引力提供.两个向心力的数值相差很多.如质量为1 kg 的物体在赤道上随地球自转所需的向心力只有0.034 N ,而它所受地球引力约为9.8 N.

对应的两个向心加速度的计算方法也不同.譬如放于赤道上的物体随地球自转的向心加速

度a 1=ω2R 0=(

T π2)2

R 0,式中T 为地球自转周期,R 0为地球半径;卫星绕地球环绕运行的向心加速度a 2=2r

GM

,式中M 为地球质量,r 为卫星与地心的距离.

3.运行速度和发射速度 对于人造地球卫星,由G

2

r Mm =m r v 2得v =r

GM ,该速度指的是人造地球卫星在轨道上

的运行速度....

,其大小随轨道半径的增大而减小.但由于人造地球卫星发射过程中要克服地球引力做功,势能增大,所以向高轨道发射卫星比向低轨道发射卫星要困难,将卫星发射到离地球越远的轨道上,在地面所需要的发射速度....就越大. ●典例剖析

【例1】 假如一颗做匀速圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做匀速圆周运动,则

A.根据公式v =ωr 可知,卫星运动的线速度将增大到原来的2倍

B.根据公式F =m r v 2可知,卫星所需的向心力将减小到原来的21

C.根据公式F =G 2r

Mm 可知,地球提供的向心力将减小S 到原来的41

D.根据上述B 项和C 项给出的公式,可知卫星运动的线速度将减小到原来的2/2 剖析:半径增大2倍,线速度也随之增大2倍的结论是在角速度不变的情况下才有的.由G

2

r Mm =m ω2r 得ω=

3

r GM ,可知当卫星的轨道半径增大时,其绕行的角速度将减小,所以不

能得出卫星的线速度将随之增大的结论.由G

2

r Mm =m r v 2可得卫星的线速度v =r

GM

,由此式

可知,当卫星的轨道半径增大2倍时,卫星的线速度将减小,变为原来的2

2

.所以选项A 是错误的,选项D 是正确的.

由于在卫星半径变化的同时,卫星的线速度也发生了变化,所以不能直接由F =m r

v 2

得出

向心力减小到原来的1/2这一结论.因是地球对卫星的万有引力提供了卫星所需的向心力,所以

由F =G 2r

Mm

来判断向心力的变化比较方便,由此式可知向心力将减小到原来的1/4.B 选项错

误,C 选项正确.所以本题的正确选项是CD.

说明:本单元与圆周运动的知识结合紧密,涉及的公式较多.由于公式杂乱,所以在处理一些问题时,往往会有让人不知从何处入手的感觉.正确选用公式的前提是要对各个公式的内涵和外延有较深刻的理解,另外还要了解各个公式间的相互联系,能熟练地进行变换.在讨论一个物理量随另一个物理量变化的关系时,一定要注意它们之间的函数关系是一元的还是多元的.如果是多元的,或者是几个自变量之间存在协变关系,就要考虑是否可以通过公式变换将多元函数变换成一元函数,这样才便于分析讨论得出结论.

【例2】 地核的体积约为整个地球体积的16%,地核的质量约为地球质量的34%.经估

算,地核的平均密度为_______kg/m 3.(结果取两位有效数字,引力常量G =6.7×10-

11 N ·m 2/kg 2,地球半径R =6.4×106 m )

剖析:题目中将地核的体积和质量分别与地球的体积和质量联系起来,本身就对解题思路作了明显的提示,即应先求地球的密度再求地核的密度.由于是估算,可以利用地球表面的重力加速度与地球质量、半径的关系进而确定地球的密度.

设g 为地球表面的重力加速度,由mg =G

2

R Mm 得地球质量M =G

gR 2

,则地球平均密度

ρ=V M =32π3

4/R G

gR =GR g π43

代入G 、R 的数值得

ρ=6

11104.6107.614.348

.93??????- kg/m 3 =5.5×103 kg/m 3

设地核的平均密度为ρ′,则 V M V M //''='ρρ=M M '·V V ' =

16.034.0=8

17

ρ′=

817ρ=817

×5.5×103 kg/m 3 =1.2×104 kg/m 3.

说明:在一些天体运行方面的估算题中,常存在一些隐含条件,应加以利用.如在地球表面物体受到地球的引力近似等于重力,地面附近的重力加速度g =9.8 m/s 2,地球自转周期T =24 h ,公转周期T ′=365 d ,月球绕地球运行的周期约为30 d 等.

【例3】 一火箭内的实验平台上放有测试仪器,火箭启动后以加速度g /2竖直加速上升,达到某高度时,测试仪器对平台的压力减为启动前的17/18.求此时火箭距地面的高度.(取地球半径R =6.4×103 km )

剖析:在分析物体受力时,要根据具体情况来确定万有引力的影响.本题中,物体所受的万有引力和平台对其支持力的合力是改变物体运动状态的原因,研究方法与动力学分析问题的方法相同.

分析仪器受力情况:启动前,仪器是在地面处,所受地球引力亦即重力,此时仪器处于平

衡状态,则有1N F =F 1引=G 2R

Mm

=mg

到达待求高度时仪器受到地球引力设为F 2引,则

F 2引=

G 2

(h R Mm

+ 设此时平台支持力为2N F ,对仪器由牛顿第二定律有

2N F -F 2引=m ·

2

g 由题给条件:2N F =8171N F =18

17

mg 由以上各式可得

1

2引引F F =(

h R R +)2=9

4 解得h =

2

R

=3.2×103 km. 思考讨论

我们知道,在地面附近,物体若向上加速运动,所受支持力大于重力,即所谓“超重”.这个问题中,加速上升的火箭内仪器所受支持力却减小了,是地面上的运动规律对远离地面的火箭不适用了吗?

答案:仪器的运动仍由牛顿运动定律支配,此时仪器发生的仍是“超重”现象.只是由于在高度增大时仪器所受万有引力减小,即“重量”减小,对平台的压力比在地面上时小了,故仪器所受支持力比在地面上时小了.

说明:天体运动问题也涉及到“超重”和“失重”现象.例如当卫星进入预定轨道前加速上升以及卫星返回地面时减速下降,卫星上的物体处于“超重”状态,与地面上的升降机里情况完全相同.进入轨道后只在地心引力作用下做圆周运动时,则出现“完全失重”,此时,卫星或卫星上的物体所受地心引力全部作为环绕地球运动的向心力,因而不会产生与其他物体挤压、拉伸等形变效果.因此,卫星所携仪器凡工作原理与重力作用效果有关的,在卫星上均无法使用,如天平、水银气压计等.

【例4】 2000年1月26日我国发射了一颗同步卫星,其定点位置与东经98°的经线在同一平面内.若把甘肃省嘉峪关处的经度和纬度近似取为东经98°和北纬α=40°,已知地球半径R 、地球自转周期T 、地球表面重力加速度g (视为常量)和光速c .试求该同步卫星发出的微波信号传到嘉峪关处的接收站所需的时间(要求用题给的已知量的符号表示).

剖析:由于微波在大气层中是以光速传播的,所以若能求得从同步卫星到嘉峪关的距离L ,则由运动学知识就能得到从该同步卫星发出的微波信号传到位于嘉峪关的接收站所需的时间

t =

c

L ① 怎么求这个距离L 呢?首先应知道同步卫星是位于赤道上空的,其次应注意到题中说明,该同步卫星的定点位置是与东经98°的经度线在同一平面内,而且嘉峪关位于东经98°、北纬40°,如图4-3-1所示.这说明该同步卫星P 、嘉峪关Q 和地心O 在同一个平面内,构成一个三角形△PQO ,且角度∠QOP 就是嘉峪关的纬度角α=40°,嘉峪关Q 到地心O 的距离QO 就是地球半径R ,卫星P 到地心O 的距离PO 就是该卫星的轨道半径r .这样由余弦定理就得到

R L

卫星

地心

r

O Q P

图4-3-1

L =αcos 222rR R r -+

地球同步卫星绕地球运动的周期应该等于地球的自转周期T .若以m 、M 分别表示该卫星、地球的质量,则由万有引力定律和牛顿第二定律得到

G 2r Mm =m (r π2)2r ③

由于G 、M 不是题中的已知量,所以应采用已知量来作代换.由在地面附近质量为m 的物

体受到的重力mg 就是该物体受到的地球作用于它的万有引力,则有

mg =G 2R

Mm

得GM =gR 2(解答万有引力问题时经常用到此代换式,一定要熟练掌握哟!) ④ 由式①~④得

t =c 1αcos π

42π431

2

222

32222)()(gT R R R gT R -+. ⑤

特别提示

画出几何图示是解答此题的关键.

说明:这是一道同步卫星的题目,涉及到万有引力、牛顿定律、圆周运动、同步卫星的定

义等概念和规律.但此题的重点是考查学生理论联系实际的能力,涉及到地球经、纬度的知识和如何确定卫星和嘉峪关之间的距离.

●教师下载中心 教学点睛

1.应用万有引力定律研究天体、人造地球卫星的运动是单元Ⅲ的重点.要使学生熟练地应用G

2

r Mm =m r v 2=m ω2r =m 22π4T r 及地球表面附近mg =G 20

R Mm 等公式来求解天体及卫星问题.要训练

学生能够熟练地运用比例法解题.

2.要让学生知道卫星的运行速度、发射速度和环绕速度三者的区别.要知道卫星的轨道越高,其运行速度(v =

r

GM

)越小,但发射时所需要的发射速度却越大. 3.在[典例剖析]中,配置例1的目的是想通过该题让学生加深对基本公式的理解,知道讨论问题选用公式的基本依据是什么,不乱套公式.通过例2复习重力跟万有引力的关系,并

能根据mg =G 2R

Mm

计算地球质量进而求其密度;练习利用常识性数据解答估算题的方法.配置例

3的目的主要是想通过牛顿定律和万有引力定律的应用来提高学生综合运用知识解决问题的能力,也想通过该题来提醒学生,在离地球表面较高时就不能用G =mg (g =9.8 m/s 2)来计算物体所受的重力了.例4则是一个典型的同步卫星问题,对学生提出了较高的能力要求,一是要求学生要理解同步卫星的意义,二是要掌握处理卫星问题时常用的公式代换方法,三是要求学生要具有较强的空间想象力,能综合运用初中曾学过的地理知识,能自觉地画出几何图示.

拓展题例

【例1】 在研究宇宙发展演变的理论中,有一种说法叫做“宇宙膨胀说”,认为引力常量G 在缓慢地减小.根据这种理论,试分析现在太阳系中地球的公转轨道半径、周期、速率与很久很久以前相比变化的情况.

解析: 若地球在半径为R 的圆形轨道上以速率v 运动的过程中,引力常量G 减小了一个

微小量,由于m 、M 、R 均未改变,万有引力G

2

R Mm 必然随之减小,并小于轨道上该点所需的

向心力m R

v 2

(速度不能突变),由于惯性,地球将做离心运动,即向外远离太阳,半径R 增

大.地球在远离太阳的过程中,克服太阳引力做功,引起速率减小,运行周期T =

v

R

π2增大.由此可以判断,在很久很久以前,太阳系中地球公转的轨道半径比现在小,周期比现在小,速率比现在大,也就是说,随着引力常量G 的缓慢减小,宇宙在不断地膨胀.

【例2】 一艘宇宙飞船飞近某一个新发现的行星,并进入靠近该行星表面的圆形轨道运行数圈后,着陆在该行星上.宇宙飞船上备有以下实验器材:停(秒)表一只、质量为m 的物体一个、弹簧秤一个、天平一架(附砝码一套).已知宇航员在靠近该行星表面的圆形轨道上绕行星及着陆后各做了一次测量,依据测量数据可以求出该行星的质量M 和半径R (已知引力常量为G ).试分析:

(1)宇航员两次测量所选用的器材和测量的物理量:______________________________. (2)由题述已知量和测量的物理量推导出该行星的质量M =_______,半径R =_______. 解析:(1)用停表测量飞船在行星表面运行的周期T ,着陆后用弹簧秤测量质量为m 的物体的重力F .

(2)由G

2

R Mm

=m 2

2

π4T R ,mg ′=G 2R

Mm

,g ′=m F

可求得该行星的质量M =3243π16Gm T F ,行

星的半径R =m

FT 2π42

.

答案:(1)用停表测量飞船在行星表面运行的周期T ,着陆后用弹簧秤测量质量为m 的物体的重力mg ′.

(2)M =

34

3π16Gm T F 2 R =m

FT 22

π4

【例3】 (2000年上海)下图为一名宇航员“漂浮”在地球外层空间的照片,根据照片展现的情景提出两个与物理知识有关的问题(所提的问题可以涉及力学、电磁学、热学、光学、原子物理学等各个部分.只需提出问题,不必作出回答和解释).

例:这名“漂浮”在空中的宇航员相对地球是运动还是静止的? (1)___________________________________________. (2)___________________________________________.

答案:只要属于与照片情景有关的物理问题均可.例如(1)宇航员是否受地球吸引力作用? (2)此宇航员受力是否平衡?(3)宇航员背后的天空为什么是黑暗的?

2018年高考物理一轮复习 专题17 万有引力定律与航天(练)(含解析)

专题17 万有引力定律与航天 1.如图所示,A 、B 为地球的两个轨道共面的人造卫星,运行方向相同,A 为地球同步卫星,A 、B 卫星的轨道半径的比值为k ,地球自转周期为0T ,某时刻A 、B 两卫星距离达到最近,从该时刻起到A 、B 间距离最远所经历的最短时间为: ( ) A B C D 【答案】C 【名师点睛】星A 、B 绕地球做匀速圆周运动,由开普勒第三定律得出半径与周期的关系,当卫星B 转过的角度与卫星A 转过的角度之差等于π时,卫星相距最远,注意只有围绕同一个中心天体运动才可以使用开普勒第三定律,难度不大,属于基础题. 2.“神舟”五号载人飞船在绕地球飞行的第五圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道S ,已知飞船的质量为m ,地球半径为R ,地面处的重力加速度为g .则飞船在上述圆轨道上运行的动能k E : ( ) A .等于mg (R 十h )/2 B .小于mg (R 十h )/2 C .大于mg (R 十h )/2 D .等于mg h 【答案】B

【名师点睛】运用黄金代换式2 GM gR =求出问题是考试中常见的方法.向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用 3.在空中飞行了十多年的“和平号”航天站已失去动力,由于受大气阻力作用其绕地球转动半径将逐渐减小,最后在大气层中坠毁.若“和平号”航天站每一时刻的飞行都可近似看作圆周运动,在此过程中下列说法不正确的是: ( ) A 航天站的速度将加大 . B .航天站绕地球旋转的周期加大. C .航天站的向心加速度加大 . D .航天站的角速度将增大. 【答案】B 【解析】 根据2 2Mm v G m r r =得:v =A 正确.根据 2224Mm r G m r T π=得:T 知轨道半径减小,周期减小.故B 错误.根据2Mm G ma r =得:2GM a r = ,知轨道半径减小,向心加速度增大.故C 正确.根据2 2Mm G m r r ω=得: ω= ,知轨道半径减小,角速度增大.故D 正确.本题选不正确的,故选B. 【名师点睛】解决本题的关键掌握万有引力提供向心力2222 4Mm v r G ma m m r r T π===,会根 据该规律判断线速度、角速度、周期、向心加速度与轨道半径的关系。 4.(多选)通过观测冥王星的卫星,可以推算出冥王星的质量。假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量。这两个物理量可以是: ( )

万有引力定律公式总结

万有引力公式 线速度 角速度 向心加速度 向心力 两个基本思路 1.万有引力提供向心力:r m r n m ma r T m r m r v m r M G ωππω======22222 2244m 2.忽略地球自转的影响: mg R GM =2 m (2 g R GM =,黄金代换式) 一、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2= ) 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r 。(r m r Mm G 2 2ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T 。(T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度: 已知环绕天体的质量m 、周期T 、轨道半径r 。中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力

r T m r Mm G 2224π= 则2 324GT r M π= ——① 又3 3 4R V M πρρ? == ——② 联立两式得:3 23 3R GT r πρ= 当R=r 时,有2 3GT π ρ= 二、星球表面重力加速度、轨道重力加速度问题 1.在星球表面: 2 R GM mg =(g 为表面重力加速度,R 为星球半径) 2.离地面高h: 2 ) (h R GM g m += '(g '为h 高处的重力加速度) 联立得g'与g 的关系: 2 2 )('h R gR g += 三、卫星绕行的向心加速度、速度、角速度、周期与半径的关系 1.ma r M G =2m ,则2 a r M G =(卫星离地心越远,向心加速度越小) 2.r v m r Mm G 2 2=,则r GM v = (卫星离地心越远,它运行的速度越小) 3.r m r Mm G 22ω=,则3r GM =ω(卫星离的心越远,它运行的角速度越小) 4.r T m r Mm G 22 24π=,则GM T 3 2r 4π= (卫星离的心越远,它运行的周期越大)

高一下册万有引力与宇宙单元测试卷附答案(1)

一、第七章 万有引力与宇宙航行易错题培优(难) 1.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转的速率,如果超出了该速率,星球的万有引力将不足以维持其赤附近的物体随星球做圆周运动,由此能得到半径为R,密度为ρ、质量为M 且均匀分布的星球的最小自转周期T ,下列表达式正确的是:( ) A .332R T GM π= B .32R T GM π= C .3T G πρ = D .T G πρ = 【答案】BC 【解析】 【分析】 【详解】 AB.当周期小到一定值时,压力为零,此时万有引力充当向心力,即 2224m GMm R R T π= 解得: 32R T GM π = ① 故B 正确,A 错误; CD. 星球的质量 34 3 M ρV πρR == 代入①式可得: 3T G πρ = 故C 正确,D 错误. 2.2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 A .在轨道Ⅱ上经过A 的速度小于经过 B 的速度 B .在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能

C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期 D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度 【答案】ABC 【解析】 【分析】 【详解】 本题考查人造地球卫星的变轨问题以及圆周运动各量随半径的变化关 系. 2 2 v Mm m G r r = ,得v= 的距离减小而增大,所以远地点的线速度比近地点的线速度小,v A

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

第六章万有引力定律单元测试含答案

第六章单元测试 (时间:90分钟 满分:100分) 一、选择题(本题共10小题,每小题5分,共50分.有的小题只有一个选项正确,有的小题有多个选项正确,把正确选项前的字母填在题后的括号内) 1.万有引力定律首次揭示了自然界中物体间一种相互作用的基本规律,以下说法正确的是( ) A .物体的重力不是地球对物体的万有引力引起的 B .人造地球卫星离地球越远,受到地球的万有引力越大 C .人造地球卫星绕地球运动的向心力由地球对它的万有引力提供 D .宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用 解析:选C.由重力的定义由于地球的吸引(万有引力)而使物体受到的力,可知选项A 错 误;根据F 万=GMm r2可知卫星离地球越远,受到的万有引力越小,则选项B 错误;卫星绕地球做圆周运动.其所需的向心力由万有引力提供,选项C 正确;宇宙飞船内的宇航员处于失重状态是由于万有引力用来提供他自身做圆周运动所需要的向心力,选项D 错误. 2.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己静止不动,则这两位观察者的位置以及两颗人造卫星到地球中心的距离可能是( ) A .一人在南极,一人在北极,两卫星到地球中心的距离一定相等 B .一人在南极,一人在北极,两卫星到地球中心的距离可以相等也可不等 C .两人都在赤道上,两卫星到地球中心的距离一定相等 D .两人都在赤道上,两卫星到地球中心的距离可能相等也可能不等 解析:选C.两卫星是同步卫星. 3.如图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M 、半径为R .下列说法正确的是( ) A .地球对一颗卫星的引力大小为错误! B .一颗卫星对地球的引力大小为GMm r2 C .两颗卫星之间的引力大小为Gm23r2 D .三颗卫星对地球引力的合力大小为3GMm r2

万有引力定律典型例题解析

万有引力定律·典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值; GM R GM r g 22αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求 的值.α g 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力 G Mm r mg G Mm r m 2 2α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2 π 【例】月球质量是地球质量的 ,月球半径是地球半径的,在21811 38. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力

加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月 地地地 =.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表 面需用时间为==×=. 月月g 1.75m /s S gt t 4s 2 2 12 2214 175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量分布均匀,大小分别为m 1、m 2,则两球间的万有引力大小为: [ ] A .Gm 1m 2/r 2 B .Gm 1m 2/r 12 C .Gm 1m 2/(r 1+r 2)2 D .Gm 1m 2/(r 1+r 2+r)2

2021版高考物理大一轮复习通用版第1章 第1节 描述运动的基本概念

[高考导航] 考点内容要 求 高考(全国卷)三年命题情况对照分析 201720182019命题分析 参考系、质点Ⅰ 卷Ⅰ·T22: 实验:水滴 计时器、瞬 时速度、加 速度 卷Ⅱ·T22: 实验:平均 速度、速度 公式、v-t 图象卷Ⅱ·T19: 根据v-t图 象分析追 及相遇问 题 卷Ⅲ·T18: x-t图象的 理解及应 用 T22:自由 落体运动 及相关的 知识点 卷Ⅰ·T18:以扣 篮为背景的竖 直上抛运动 卷Ⅱ·T22:实 验:求瞬时速 度和加速度 卷Ⅲ·T22:实 验:测重力加 速度 1.高考命题 以选择题和 实验题为 主,以计算 题副。 2.命题热点 为运动学基 本规律的应 用和图象问 题,实验题 以测瞬时速 度和加速度 为主。 位移、速度和 加速度 Ⅱ匀变速直线 运动及其公 式、图象 Ⅱ 实验一:研究 匀变速直线 运动 核心素养物理观念:参考系、质点、位移、速度、加速度、匀变速直线运动、自由落体运动。 科学思维:在特定情境中运用匀变速直线运动模型、公式、推论及图象解决问题(如2018全国卷Ⅱ·T19、Ⅲ·T18)。 科学探究:研究匀变速直线运动的特点(如2017全国Ⅰ卷·T22 , 2019Ⅱ卷·T22)。 科学态度与责任:以生产、生活实际为背景的匀变速直线运动规律的应用(如2019全国Ⅰ卷·T18)。 第1节描述运动的基本概念

一、参考系质点 1.参考系 (1)定义:为了研究物体的运动而假定不动的物体。 (2)选取原则:可任意选取,但对同一物体的运动,所选的参考系不同,对它运动的描述可能会不同。通常以地面为参考系。 2.质点 (1)定义:用来代替物体的有质量的点。 (2)物体可看做质点的条件:研究一个物体的运动时,物体的大小和形状对研究问题的影响可以忽略。 二、位移速度 1.位移和路程 (1)位移描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量。 (2)路程是物体运动轨迹的长度,是标量。 2.速度和速率 (1)平均速度:物体的位移与发生这段位移所用时间的比值,即v=Δx Δt,其 方向与位移的方向相同,是矢量。 (2)瞬时速度:运动物体在某一时刻或某一位置的速度,方向沿轨迹上物体所在点的切线方向指向前进的一侧,是矢量。 (3)速率:瞬时速度的大小,是标量。 (4)平均速率:路程与时间的比值,不一定等于平均速度的大小。 三、加速度 1.定义:速度的变化量与发生这一变化所用时间的比值。 2.定义式:a=Δv Δt。 3.方向:与速度变化的方向相同,是矢量。

高中物理公式大全全集万有引力

五、万有引力 1、开普勒三定律: ⑴开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上 ⑵开普勒第二定律(面积定律):太阳和行星的连线在相等的时间内扫过相等的面积 ⑶开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 对T 1、T 2表示两个行星的公转周期,R 1、R 2表示两行星椭圆轨道的半长轴,则周期定律可表示为32 312221R R T T = 或k T R =3 3,比值k 是与行星无关而只与太阳有关的恒量 【注意】:⑴开普勒定律不仅适用于行星,也适用于卫星,只不过此时k T R =33 ‘ ,比值k ’ 是 由行星的质量所决定的另一恒量。 ⑵行星的轨道都跟圆近似,因此计算时可以认为行星是做匀速圆周运动 ⑶开普勒定律是总结行星运动的观察结果而总结归纳出来的规律,它们每一条都 是经验定律,都是从观察行星运动所取得的资料中总结出来的。 例题:飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需要的时间。 解析:依开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时,其半长轴的三次方跟周期平方和比值,飞船椭圆轨道的半长轴为 2 R R +,设飞船沿椭圆轨道运动的周期一、知识网络 二、 画龙点睛 概念

苏版万有引力定律与航天单元测试

苏版万有引力定律与航天单元测试 【一】选择题〔本大题共8小题,每题5分,共40分。在每题给出的四个选项中. 1 6题只有一项符合题目要求;7 8题有多项符合题目要求。全部选对的得5分,选对但不全的得3分,有选错的得0分。〕 1.由于受太阳系中辐射出的高能射线和卫星轨道所处的空间存在极其稀薄的大气影响,对我国神州飞船与天宫目标飞行器在离地面343km 的近圆形轨道上的载人空间交会对接.下面说法正确的选项是〔 〕 A 、如不加干预,在运行一段时间后,天宫一号的动能可能会减小 B 、如不加干预,天宫一号的轨道高度将缓慢降低 D 、航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用 2.如下图,〝嫦娥三号〞的环月轨道可近似看成是圆轨道,观察〝嫦娥三号〞在环月轨道上的运动,发现每经过时间t 通过的弧长为l ,该弧长对应的圆心角为θ弧度.万有引力常量为G ,那么月球的质量是〔 〕 A 、l2G θ3t B 、θ3Gl2t C 、l3G θt2 D 、t2 G θl3 3.据报道,有 学家支持让在2019年被除名的冥王星重新拥有〝行星〞称号。下表是关于冥王星的一些物理量〔万有引力常量G 〕,可以判断以下说法正确的选项是〔 〕 A 、冥王星绕日公转的线速度比地球绕日公转的线速度大 B 、冥王星绕日公转的加速度比地球绕日公转的加速度大 C 、根据所给信息,可以估算太阳的体积的大小 D 、根据所给信息,可以估算冥王星表面重力加速度的大小 4.甲、乙、丙为三颗围绕地球做圆周运动的人造地球卫星,轨道半径之比为1:4:9,那么: A 、甲、乙、丙三颗卫星围绕地球的线速度之比为1:2:3 B 、甲、乙、丙三颗卫星围绕地球的角速度之比为1:81 : 27 1 C 、甲、乙、丙三颗卫星围绕地球的周期之比为1:21 :31 D 、甲、乙、丙三颗卫星围绕地球的向心加速度之比为1:41 :91

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析

高考物理万有引力定律的应用技巧和方法完整版及练习题含解析 一、高中物理精讲专题测试万有引力定律的应用 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

高三物理高考第一轮专题复习——电磁场(含答案详解)

高三物理第一轮专题复习——电磁场 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少? 电子自静止开始经M 、N 板间(两板间的电压 为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中, 电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁 场的磁感应强度.(已知电子的质量为m ,电量为e ) 高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0 =80m/s 的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算: (1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少?

制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。两个D 型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零。 (1)为了使正离子每经过窄缝都被加速,求交变电压的频率; (2)求离子能获得的最大动能; (3)求离子第1次与第n 次在下半盒中运动的轨道半径之比。 如图甲所示,图的右侧MN 为一竖直放置的荧光屏,O 为它的中点,OO’与荧光屏垂直,且长度为l 。在MN 的左侧空间内存在着方向水平向里的匀强电场,场强大小为E 。乙图是从甲图的左边去看荧光屏得到的平面图,在荧光屏上以O 为原点建立如图的直角坐标系。一细束质量为m 、电荷为q 的带电粒子以相同的初速度 v 0从O’点沿O’O 方向射入电场区域。粒子的重力和粒子间的相互作用都可忽略不计。 (1)若再在MN 左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点O 处,求这个磁场的磁感强度的大小和方向。 (2)如果磁感强度的大小保持不变,但把方向变为与电场方向相同,则荧光屏上的亮点位于图中A 点处,已知A 点的纵坐标 l y 3 3 ,求它的横坐标的数值。 E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里。一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程。求: (1)中间磁场区域的宽度d ; (2)带电粒子从O 点开始运动到第一次回到O 点所用时间t 。 如下图所示,PR 是一块长为L= 4m 的绝缘平板,固定在水平地面上,整个空间有一个平行 B B l O 甲 乙

高中物理 第三章 万有引力定律及其应用单元测试 粤教版必修2

第三章 万有引力定律及其应用 章末综合检测(粤教版必修2) (时间:90分钟,满分:100分) 一、单项选择题(本题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一个选项是正确的) 1.有一个星球的密度与地球的密度相同,但它表面处的重力加速度是地球表面重力加速度的4倍,则该星球的质量是地球质量的( ) A.1 4 B .4倍 C .16倍 D .64倍 解析:选D.设它们的密度为ρ,星球和地球的半径分别为R 1、R 2,在其表面质量为m 的物体重力等于万有引力,即4mg =GM 星m R 21,mg =GM 地m R 22,而M 星=ρ·43πR 31,M 地=ρ·43 πR 3 2, 由此可得R 1=4R 2,M 星∶M 地=64∶1,D 正确. 2.(2011年梅州联考)万有引力定律首次揭示了自然界中物体间的一种基本相互作用.以下说法正确的是( ) A .物体的重力不是地球对物体的万有引力引起的 B .人造地球卫星离地球越远,受到地球的万有引力越大 C .人造地球卫星绕地球运动的向心力由地球对它的万有引力提供 D .宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用 解析:选C.物体的重力是地球的万有引力产生的,万有引力的大小与质量的乘积成正比,与距离的平方成反比,所以A 、B 错;人造地球卫星绕地球运动的向心力是万有引力提供的,宇宙飞船内的宇航员处于失重状态是因为宇航员受到的万有引力全部提供了宇航员做圆周运动所需的向心力,所以C 对、D 错. 3.(2011年高考福建卷)嫦娥二号”是我国月球探测第二期工程的先导星.若测得“嫦娥二号”在月球(可视为密度均匀的球体)表面附近圆形轨道运行的周期为T ,已知引力常量 为G ,半径为R 的球体体积公式V =43 πR 3 ,则可估算月球的( ) A .密度 B .质量 C .半径 D .自转周期 解析:选A.对“嫦娥二号”由万有引力提供向心力可得:GMm R 2=m 4π2 T 2R ,故月球的质量 M = 4π2R 3 GT 2 ,因“嫦娥二号”为近月卫星,故其轨道半径为月球的半径R ,但由于月球半径未 知,故月球质量无法求出,月球质量未知,则月球的半径R 也无法求出,故B 、C 项均错; 月球的密度ρ=M V =4π2R 3GT 243 πR 3=3π GT 2,故A 正确. 4.(2011年南通模拟)我国自行研制发射的“风云一号”、“风云二号”气象卫星的飞行轨道是不同的,“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为T 1=12 h ;“风云二号”是同步卫星,其轨道平面就是赤道平面,周期为T 2=24 h ;两颗卫星相比( ) A .“风云一号”离地面较高 B .“风云一号”每个时刻可观察到的地球表面范围较大 C .“风云一号”线速度较大 D .若某时刻“风云一号”和“风云二号”正好同时在赤道上某个小岛的上空.那么再过12小时,它们又将同时到达该小岛的上空 解析:选C.因T 1

最新万有引力定律 经典例题

1.天体运动的分析方法 2.中心天体质量和密度的估算 (1)已知天体表面的重力加速度g和天体半径R G Mm R2=mg? ? ? ?天体质量:M=gR2G 天体密度:ρ= 3g 4πGR (2)已知卫星绕天体做圆周运动的周期T和轨道半径r ?? ? ??①G Mm r2=m 4π2 T2r?M= 4π2r3 GT2 ②ρ= M 4 3 πR3 = 3πr3 GT2R3 ③卫星在天体表面附近飞行时,r=R,则ρ= 3π GT2 1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知() A.太阳位于木星运行轨道的中心 B.火星和木星绕太阳运行速度的大小始终相等 C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积 解析:由开普勒第一定律(轨道定律)可知,太阳位于木星运行轨道的一个焦点上,A 错误;火星和木星绕太阳运行的轨道不同,运行速度的大小不可能始终相等,B错误;根据开普勒第三定律(周期定律)知所有行星轨道的半长轴的三次方与它的公转周期的平方的比值是一个常数,C正确;对于某一个行星来说,其与太阳连线在相同的时间内扫过的面积相等,不同行星在相同的时间内扫过的面积不相等,D错误. 答案:C 2.(2016·郑州二检)据报道,目前我国正在研制“萤火二号”火星探测器.探测器升空

后,先在近地轨道上以线速度v 环绕地球飞行,再调整速度进入地火转移轨道,最后再一次调整速度以线速度v ′在火星表面附近环绕飞行.若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7,设火星与地球表面重力加速度分别为g ′和g ,下列结论正确的是( ) A .g ′∶g =4∶1 B .g ′∶g =10∶7 C .v ′∶v = 528 D .v ′∶v = 514 解析:在天体表面附近,重力与万有引力近似相等,由G Mm R 2=mg ,M =ρ43 πR 3 ,解两式得g =4 3G πρR ,所以g ′∶g =5∶14,A 、B 项错;探测器在天体表面飞行时,万有引力 充当向心力,由G Mm R 2=m v 2R ,M =ρ4 3πR 3,解两式得v =2R G πρ 3 ,所以v ′∶v =528 ,C 项正确,D 项错. 答案:C 3.嫦娥三号”探月卫星于2013年12月2日1点30分在西昌卫星发射中心发射,将实现“落月”的新阶段.若已知引力常量G ,月球绕地球做圆周运动的半径r 1、周期T 1,“嫦娥三号”探月卫星绕月球做圆周运动的环月轨道(见图)半径r 2、周期T 2,不计其他天体的影响,则根据题目条件可以( ) A .求出“嫦娥三号”探月卫星的质量 B .求出地球与月球之间的万有引力 C .求出地球的密度 D.r 13T 12=r 23T 2 2 解析:绕地球转动的月球受力为GMM ′r 12=M ′r 14π2 T 1 2得T 1= 4π2r 13 GM =4π2r 13 Gρ43πr 3.由于不知道地球半径r ,无法求出地球密度,C 错误;对“嫦娥三号”而言,GM ′m r 22 =mr 24π2 T 2 2,T 2=4π2r 23 GM ′ ,已知“嫦娥三号”的周期和半径,可求出月球质量M ′,但是所

高考物理第一轮复习方法汇总

2019高考物理第一轮复习方法汇总 2019高考物理第一轮复习方法 高考复习,一般可分为三轮。第一轮复习是最细致的复习,目的是夯实学生的基础,提高学生的思维,第二、三轮复习则属于查漏补缺,因而第一轮复习是整个高三阶段最重要的一个环节。那么,如何才能达到第一轮复习的最佳效果呢?好方法是复习的必备。 一、结合考试说明全面复习知识点 在第一轮复习中,要求仔细研究考纲,按照考试说明把每一个知识点都分析透彻,不要有遗漏,做到所有的知识点心中有数。那么,如何研究考纲和考试说明呢?北京新东方优能一对一部老师建议同学们必须做到以下三点:一、研究命题思想,近年来的物理学科命题思想基本上是保持一致的,突出强调联系实际、回归教材、注重基础、体现思想等特征; 二、研究考试内容,考试内容包括学科知识和解题能力;三是要研究考试说明的变化,关注内容的增减和考察能力的变化情况。只有把考纲和考试说明以及高考真题研究透彻,才能定制出合理的备考计划,为迎接高考做好充分的准备。 二、以课本为基础,夯实各个知识点 第一轮复习的目标,就是梳理基本知识。什么是基础?当然是课本。第一轮复习要对照教材梳理每一个知识点,不留空白。对于概念不要死记硬背,而是理解记忆。从定义、

定义式、物理意义等多个角度把握。对于习题,新东方一对一老师不建议采用题海战术,第一轮的复习要认真研读课本上的习题和书后题。夯实好基础,在二、三轮的复习上才能有质的飞跃。 三、总结知识结构,形成网状知识体系 课本中的物理知识点都是有相互关联的内在联系的,考试说明中明确规定:"高考对能力的考核放在首位,因此高考题的编制绝非只考一个知识点,而是考查学生的知识迁移能力。在第一轮复习中一定要整合物理模型,把具体的问题抽象为模型,这对于提高解题能力和解题速度会有很大的帮助。因此,新东方一对一老师叮嘱同学们在复习中,既要注重物理知识的积累也要注意物理模型的总结。 四、归纳总结基础题型及变形 在第一轮复习的做题环节,要有意识的将所做过的物理试题进行分类整合。对于某一类题目的答题方法、技巧要心中有数。善于归纳总结,尤其是自己经常出现问题的地方。养成良好的总结习惯,以不变应万变,无论高考的题目怎样变化,都是由基础的题型演变而来的。多总结题型,将会使复习环节变得非常轻松,避免题海战术! 五、养成良好的解题习惯 解题习惯的养成并非一朝一夕可以完成的,因而同学们在第一轮复习中要对自己有一个清晰的认识,给自己一个明

(完整版)万有引力与航天重点知识、公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二.两种学说 1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律 1.开普勒定律: 第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的面积。 第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公 转周期T 的二次方的比值都相等。 表达式为:)4(2 23 π GM K K T R == k 只与中心天体质量有关的 定值与行星无关 2.牛顿万有引力定律 1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式: r F Mm G 2 =万 ⑶.适用条件: a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为两球心间的距离) b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c. 认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附 近的物体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在 空间的性质无关,与周期及有无其它物体无关. (5)引力常数G :

天体运动单元测试(万有引力定律)

1.发现万有引力定律和测出引力常量的科学家分别是() A.开普勒、卡文迪许B.牛顿、伽利略 C.牛顿、卡文迪许D.开普勒、伽利略 2.若已知太阳的一个行星绕太阳运转的轨道半径为r,周期为'T,引力常量为G,则可求得()A.该行星的质量B.太阳的质量 C.该行星的平均密度D.太阳的平均密度 3.我国是世界上能够发射地球同步卫星的少数国家之一,关于同步卫星正确的说法是()A.可以定点在南京上空 B.运动周期与地球自转周期相同的卫星肯定是同步卫星 C.同步卫星内的仪器处于超重状态 D.同步卫星轨道平面与赤道平面重合 4.地球上有两位相距非常远的观察者,都发现自己的正上方有一颗人造地球卫星,相对自己而言静止不动,则这两位观察者的位置以及两颗人造地球卫星到地球中心的距离可能是() A.一人在南极,一人在北极,两卫星到地球中心的距离一定相等 B.一人在南极,一个在北极,两卫星到地球中心的距离可以不等,但应成整数倍 C.两人都在赤道上,两卫星到地球中心的距离一定相等 D.两人都在赤道上,两卫星到地球中心的距离可以不等,但应成整数倍 5.地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上物体“飘”起来,则地球的转速应为原来的( ) A.g a B C D 6.火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆。已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比() A.火卫一距火星表面较近B.火卫二的角速度较大 C.火卫一的运动速度较大D.火卫二的向心加速度较大 7.两个行星A和B各有一颗卫星a和b。卫星的圆轨道接近各自行星的表面。如果两行星质量之比M A : M B = p,两行星半径之比R A : R B = q,则两卫星周期之比T a : T b为() A .B .C .D 8.已知地球和火星的质量之比:8:1 M M= 地火,半径比:2:1 R R= 地火 ,表面动摩擦因数均为0.5,用一根绳在地 球上拖动一个箱子,箱子能获得10m/s2的最大加速度,将此箱和绳送上火星表面,仍用该绳子拖动木箱(使用同样大的力),则木箱产生的最大加速度为() A.10m/s2B.12.5m/s2C.7.5m/s2D.15m/s2 9.2003年2月1日美国“哥伦比亚”号航天飞机在返回途中解体,造成人类航天史上又一悲剧。若“哥伦比亚”号航天飞机是在赤道上空飞行,轨道半径为r,飞行方向与地球的自转方向相同。设地球的自转角速度为ω0,地球半径为R,地球表面重力加速度为g。在某时刻航天飞机通过赤道上某建筑物的上方,则到它下次通过该建筑物上方所需时间为() A . 2/) πωB . 1 2) π ω C .2D . 2/) πω 10.地球绕太阳公转的轨道半径r = 1.49×1011m,公转周期T = 3.16×107s,万有引力恒量G = 6.67×10-11N·m2/kg2。 则太阳质量的表达式M = __________,其值约为_________kg。(取一位有效数字) 11.空间探测器进入某行星引力范围以后,在靠近该行星表面的上空做圆周运动。测得运动周期为T,则这个

高一物理 万有引力定律 典型例题解析

万有引力定律 典型例题解析 【例1】设地球的质量为M ,地球半径为R ,月球绕地球运转的轨道半径为r ,试证在地球引力的作用下: (1)g (2)(3)r 60R 地面上物体的重力加速度= ;月球绕地球运转的加速度=;已知=,利用前两问的结果求的值;GM R GM r g 2 2αα (4)已知r =3.8×108m ,月球绕地球运转的周期T =27.3d ,计算月球绕地球运转时的向心加速度a ; (5)已知地球表面重力加速度g =9.80m/s 2,利用第(4)问的计算结果, 求的值.αg 解析: (1)略;(2)略; (3)2.77×10-4; (4)2.70×10-3m/s 2 (5)2.75×10-4 点拨:①利用万有引力等于重力的关系,即=.②利用万有引力等于向心力的关系,即=.③利用重力等于向心力G Mm r mg G Mm r m 22α 的关系,即mg =ma .以上三个关系式中的a 是向心加速度,根据题目 的条件可以用、ω或来表示.v r r T 2224r 2π

【例】月球质量是地球质量的,月球半径是地球半径的,在2181138. 距月球表面14m 高处,有一质量m =60kg 的物体自由下落. (1)它落到月球表面需用多少时间? (2)它在月球上的“重力”和质量跟在地球上是否相同(已知地球表面重力加速度g 地=9.8m/s 2)? 解析:(1)4s (2)588N 点拨:(1)物体在月球上的“重力”等于月球对物体的万有引力,设 mg G M m R mg G M m R 22月月月地地地=.同理,物体在地球上的“重力”等于地球对物体的 万有引力,设=. 以上两式相除得=,根据=可得物体落到月球表面需用时间为==×=.月月g 1.75m /s S gt t 4s 2212 2214175S g . (2)在月球上和地球上,物体的质量都是60kg .物体在月球上的“重力”和在地球上的重力分别为G 月=mg 月=60×1.75N =105N ,G 地=mg 地=60×9.8N =588N . 跟踪反馈 1.如图43-1所示,两球的半径分别为r 1和r 2,均小于r ,两球质量

相关主题
文本预览
相关文档 最新文档