当前位置:文档之家› 强化混凝技术研究与发展方向

强化混凝技术研究与发展方向

强化混凝技术研究与发展方向
强化混凝技术研究与发展方向

1.2 强化混凝机理

强化混凝主要是通过改善混凝条件使有机物去除范围和去除率进一步扩大和提高,对于大多数金属盐混凝剂去除有机物的机理主要是:通过改善混凝处理条件,在低pH、高混凝剂用量的强化混凝条件下形成大量金属氢氧化物,改善混凝剂水解产物的形态且使其正电荷密度上升,同时低pH 条件会影响有机物离解度和改变水中有机物存在形态。有机物质子化程度提高,电荷密度降低,进而降低其溶解度及亲水性,成为较易被吸附的形态。Randtke认为强化混凝去除有机物的机理主要包括胶体状自然有机物(NOM) 的电中和作用,腐殖酸和富里酸聚合体的沉淀作用,以及吸附于金属氢氧化物表面上的共沉淀作用.对水中溶解性的有机物而言,依靠后一种作用即吸附于混凝剂的金属沉淀物上而去除。

2 强化混凝研究发展方向

关于强化技术的发展,主要研究混凝剂和反应过程的强化。

2.1 混凝剂研究与进展

混凝剂是混凝技术应用中关键之所在。混凝剂主要可分为无机与有机两大类,另外无机、有机之间的混合型、复合型混凝剂当前也有一定的发展。对于不同的水质,混凝剂的选择有所不同,但是总体上来说无机(铁盐及铝盐) 混凝剂对TOC 去除效果比有机絮凝剂好,这是因为有机阳离子高分子絮凝剂在天然水混凝的沉淀,不能吸附有机物;

而铝盐和铁盐不但可以起电中和作用使胶粒脱稳形成腐殖酸和富里酸的铝、铁聚合物以利于沉淀去除,而且还能在形成的金属氢氧化物的表面提供强烈的吸附作用,同时还有网捕作用。杨开明[14]等通过实验,对比了PAC、碱式AlCl3、明矾、Fe2(SO4)3及聚合

铁等五种混凝剂强化混凝处理效果。高分子絮凝剂有很好的助凝效果,目前广泛应用的是无机高分子絮凝剂( Inorganic Polymer Flocculants,IPF)。近年来,由于生物技术

的迅猛发展,微生物絮凝剂以其无毒、可生物降解、无二次污染等独特的性质,越来越受到人们的广泛关注,在给水处理工艺中展示了良好的应用前景。

最佳投药量可以由到达某有机物及浊度等指标目标的最低投药量确定,或是当投药量继续增加对出水水质提高影响不是很显著时的投药量。通过试验检测絮体等效粒径、数量、沉速等特性,选取最佳投药量的目标值。在原水水质变差的条件下,通过增大药剂投量,增加颗粒物参与吸附架桥与卷扫等作用的机会。利于对胶体聚集稳定性的破坏,可提高混凝效果。通过增大药剂投量强化混凝.可使水中NOM 的去除率>60%[1],且对于总有机碳(TOC) >5mg /L 的水,强化混凝的处理效果与臭氧、活性炭吸附等高

级处理技术相当,而且无机混凝剂的效果好于有机的[6 -7,15]。黄晓东等[16]以微污染水库水为原水,对增加聚合氯化铝(PAC)投量的强化混凝与常规混凝的处理效果进行了对比。试验结果显示,增加PAC 投量使TOC 去除率提高24%。高锰酸钾指数去除率提高10.5%:藻类去除率也由常规混凝的67.2% 上升至85.9%,提高了18.7%。强化混凝是一种不需额外增加高额投资又能在现有处理构筑物基础上控制消毒副产物(DBPs)形成的有效方法[17]。

适量增加混凝剂的投加量能有效提高浊度、有机物的去除,并且去除有机物的投药量高于除浊的投药量。当然也不能一味地增加混凝剂的投药量,过高量会引起胶体重新稳定,并且易产生大量的污泥,造成二次污染。合适的投量应该根据水源水质特点和处理后水质要求来确定。自动控制混凝剂投加量是强化混凝热点研究方向之一。

2.2 反应过程强化的研究与进展

2.2.1 水质特征与变化规律的研究

对于我国不同水体中水体颗粒物、有机物的分布与转化规律需要开展深入系统的研究,明确有机物的去除与转化特征,探索其强化去除工艺条件,探求不同有机物的消毒副产物的形成特征与控制条件。建立相应的有机物的强化去除模式。水中有机物特征和分布质直接决定与混凝剂之间的相互作用机理。董秉直[18]等研究了水中有机物的含量及种类对混凝结果产生的影响,指出混凝与有机物分子量、典型及其溶解性有关。

传统的工艺着重于粘土颗粒物、天然腐殖酸等浊度、色度特征,而随着环境污染的日益严重和技术研究的深入,对于水质的影响逐渐得到重视.不断变化的水质,以及水体中存在的和人工合成的纳米污染物成为水处理研究中的重要对象。在建立水源水质数据库基础上,根据水质变化的主体特征如有机物(TOC),低温低浊、高温高藻,微污染特征,碱度高低,溶解性物质等不同的水质条件与变化特征来决定后续工艺的选择。同时表现在不同处理目标的确立与工艺协同优化选择。

2.2.2 反应器的影响

混凝过程是集众多复杂物理化学乃至生物反应于一体的综合过程,在既定条件下,包括诸如水溶液化学、水力学、不断形成与转化的絮体之间或碰撞或黏附或剪切等物理作用及其微界面物理化学过程等。混凝技术的高效性取决于高效混凝剂、与之相匹配的高效反应器、高效经济的自动投药技术与原水水质化学等多方面的因素。不同混凝剂表现出不同的混凝特性如与有机物的反应特性以及水力条件的要求等,从而要求与之形态分布与反应特征相适应的高效反应器。对反应器的组成结构、水力条件、反应过程控制

进行相应的优化,以达到反应过程的最优化控制,与特定目标污染物去除的进一步强化.混凝研究的根本出发点在于水体颗粒物的微界面接触絮凝过程与作用机理的深入研究.传统的絮凝理论是双向碰撞结成粗大絮团加以分离,这种作用机理不能充分发挥纳米絮凝剂和微界面的相互作用优势.现代水处理工艺中有各种技术单元涉及纳米污染物与微界面的吸附絮凝作用,是利用微界面促进污染物的絮凝与聚集,共同的作用机理是界面接触絮凝。界面接触絮凝理论有助于开发更高效的操作单元,缩短工艺流程,节省药剂及费用,特别是可以为难处理的纳米污染物提供新的分离技术原理。

2.2.3 pH 和温度的影响

pH 值的大小对混凝剂的水解形态分布、水中污染物形态分布等都有影响,在一定程度上决定着混凝剂效果的发挥。pH 较低,混凝剂水解较慢,混凝剂有效作用时间长、效力强,有机物的电性被部分中和使其亲水性降低,导致更多的有机物被混凝剂电中和沉降去除,因此较低的pH 环境有利于有机物通过混凝被去除。对于铝混凝剂而言,最适于有机物去除的pH 值在5.5 ~6.5 之间。尽管一般而言,较低的pH 值有利于有机物的去除,但是在实际操作中,混凝剂的类型、投加量、pH 值都必须同时考虑。

温度的影响是复杂的,低温可能造成水的粘度上升,阻碍混凝剂的扩散和絮体沉降;可以影响水解动力学平衡,影响金属氢氧化物的形成;另外影响水的离子积常数,降低离子积常数,从而降低水中氢氧根的浓度。同时,低温可能造成形成的絮体密实度较低、絮体较小,导致分离效果差。在一定范围内温度越高,有利于絮凝剂的水解、与污染物的相互作用,有机物去除率越高;且微生物生长越旺盛,水体中有机物从溶解态转化为颗粒态,较容易混凝去除。

3 结论

强化去除水体颗粒物和水体有机污染物,降低、消除消毒副产物的危害,提高饮用水水质和确保水质安全,是一个系统性工程,需要结合预处理以及后续的工艺进行综合优化考虑。强化混凝是其中最佳的选择之一,在强化去除污染物方面具有效果显著,而所导致的不良副产物和水体残留少、危害性低,与其他处理工艺相比,具有与我国现行的处理工艺易于结合,且设备投资和运行费用均较低等优点,成为适合我国国情的去除水中有机物的一个重要技术方案和重点发展方向。

[1]Crozes G,White P,Marshall M.Enhanced Coagulation:Its Effect on NOM Removal and Chemical Costs[J].J.AWWA,1995,87(1):78 -89.

[2]Cheng RC,Krasner S W,Green J F,et al.Enhanced Coagulation:A Preliminary Evaluation[J].J.AWWA,1995,87(2):91 -103.

[3]Dennett K E.Coagulation:its effect on organic matter[J].J.AWWA,1996,88(4):129 -138.

[4]张声,郭振通,刘洋,等.高藻条件下溶气气浮工艺的强化混凝[J].净水技术.2008(5):33 -36.

[5]谢昌武,王毅力,刘囡,等.强化混凝技术去除腐殖酸的研究进展[J].中国给水排水,2004,20(7):37-39.

[6]James K E,John E T.Enhanced Coagulation:USRequirements and a Broader View[J].Water Science and Technology,1999,40(9):63 -70.

[7]Freese S D,Nozaic D J,Pryor M J,et al.Enhanced coagulation:a viable option to advance treatment technologies in the South African context[J].Water Science and Technology:Water Supply,200l,l(1):33 -41.

[8]王建伟,孙力平,贾仁勇.改良混凝反应器强化混凝效果的研究[J].环境技.2011(4):32 -34.

[9]刘海龙,王东升,王敏,等.强化混凝对水力条件的要求[J].中国给水排水.2006(5):1 -4.

[10]周易.试论饮用水中的强化混凝处理技术[J].山西建筑.2010(28):172 -173.[11]何岩,赵由才,叶文飞,等.强化混凝处理填埋场渗滤液尾水的可行性研究[J].中国给水排水.2010(11):60 -63.

[12]唐德翠,邓晓燕,朱学峰,等.水厂混凝剂投加量建

模研究[J].水处理技术.2010(6):54 -56.

[13]USEPA.Enhanced Coagulation and Enhanced Precipitative Softening Guidance Manual M].EPA,1999,815 -R-99 -012.

[14]杨开明,张建强,杨小林.混凝沉淀过程中最佳混凝剂投量的研究[J].工业水处理.2005 (9

[15]Christian V,Bell M K,Ibrahim E,et al.Impact of enhanced and optimized coagulation on removal of organic matter and its biodegrable fraction in drinking water[J].Wat.Res.2000,34(12):3 247 -3 257.

[16]黄晓东,孙伟,庄汉平,等.强化混凝处理微污染源水[J].中国给水排水,2002,18(12):45 -47.

[17]董秉直,等.强化混凝去除黄浦江水有机物的实验研究[J].上海环境科学,2001,20(11):519 -521.

[18]董秉直,曹达文,范瑾初.强化混凝中不同分子质量有机物的变化特点[J].工业水处理.2003(9):41-43.

0774.强化常规水处理工艺

强化常规水处理工艺 近些年来,随着水源污染严重、水质不断恶化和饮用水质标准不断提高,人们开始研究一些新技术强化常规处理工艺或发展饮用水深度处理技术。目前应用较多给水深度处理工艺有活性炭吸附、臭氧氧化、臭氧和活性炭联用、臭氧高级氧化技术、生物活性炭、膜过滤技术等。在此笔者结合大量的实验研究,仅对强化常规给水处理工艺(包括强化混凝、强化沉淀与气浮和强化过滤)、化学预氧化(预臭氧化)等发展情况作以简要论述。 【强化混凝技术】 常规给水处理工艺中对有机物去除起主要作用的是混凝工艺,其去除有机物的机理主要分三个方面:带正电的金属离子和带负电的有机物胶体发生电中和而脱稳凝聚;二是金属离子与溶解性有机物分子形成不溶性复合物而沉淀;三是有机物在絮体表面的物理化学吸附。影响混凝效果的因素很多:混凝剂的种类、混凝剂的投加量、原水水质、混凝pH值、碱度、混凝搅拌程度以及混凝剂与助凝剂的投加顺序等。强化混凝就是通过采取一定措施,确定混凝的最佳条件,发挥混凝的最佳效果,尽可能地去除能被混凝阶段能够去除的成分,特别是有机成分。 由于近年水源受有机物污染严重,高浓度的有机物对水中胶体产生很强的保护作用,致使常规混凝效果变差,因此为提高常规混凝效果,在保证浊度去除率的同时提高水中有机物的去除率,强化混凝处理无疑是一个首选之法。Joseph等人认为强化混凝是去除水中天然有机物比较经济、实用的一种处理工艺;美国工作者普遍认为,强化混凝是达到"饮用水消毒/消毒副产物(D/DBP)标准"第一阶段要求和控制饮用水中天然有机物(NOM)的最佳方法之一;我们的实验结果也表明,某些强化混凝技术能有效地去除天然水中的有机物和藻类,并可降低水中剩余铝的浓度。 强化混凝技术首先要根据水质情况筛选优化确定混凝剂的种类和投量。目前水厂使用的混凝剂大致有三种:铝盐Al(Ⅲ)、铁盐Fe(Ⅲ)以及人工合成的有机阳离子聚合混凝剂,一般铝盐和铁盐的混凝效果要优于人工合成的混凝剂,原因是这

浅谈混凝土技术的现状和发展

混凝土是当代最大宗的人造材料,也是最主要建筑材料。目前,世界水泥年产量已超过12亿t,我国在数量上占居首位,其产量约为世界总产量的三分之一。混凝土年使用量虽未见准确的统计资料,但如以水泥产量推测,估计在我国混凝土年使用量可达6亿m3以上,其工程量之多,社会与经济意义之大,是人所共知的。针对我国今后发展的需要,本文拟在三个方面予以论述。 1、预拌混凝土的现状与发展 混凝土的集中搅拌是建筑工程生产管理方面一项意义重大的改革。预拌混凝土应用量比重的大小,标志着一个国家的混凝土生产工业化程度的高低。国外实践表明,采用预拌混凝土之后,一般可提高劳动率200%~250%,节约水泥10%~15%,降低生产成本5%左右,还具有保证质量、节约施工用地、实现文明施工等方面的优越性。世界上第一座预拌混凝土工厂出现在德国,建造于1903年,以后受到各国的重视,得到迅速发展。到20世纪80年代初,统计结果表明,在经济发达的国家里,预拌混凝土的供应量,已达到全部混凝土生产量的60%~80%。 在我国混凝土搅拌站始建于80年代初的上海、常州两城市。20年来,由于建设规模逐步扩大,尤其是北京和东南沿海地区一些城市建设的高速发展,各级建设行政主管部门采取了一些扶植政策和措施,使城市的预拌混凝土产量每年以12%~15%幅度递增。上海、北京、广州、大连、常州等城市应用预拌混凝土量已达到该城市混凝土总用量的80%以上,接近经济发达国家的水平。但是,预拌混凝土的发展是不平衡的,就全国而言,预拌混凝土占现浇混凝土量的比重还不到30%,有的地方甚至还没有预拌混凝土站,与经济发达国家相比,我国预拌混凝土尚属起步阶段。而且我国已建成的预拌混凝土站,多属建筑企业或企业集团管理,而经济发达国家预拌混凝土已成为独立的新兴行业,有许多专业公司专门生产和供应预拌混凝土。 在预拌混凝土行业迅速发展的同时,也暴露出不少需要重视的问题。如:混凝土定价不合理以及混凝土供需双方配合不密切,出现供大于求而导致降低价格出售,因而无法保证预拌混凝土的质量。这样恶性循环不利于预拌混凝土的长远发展。 为了保证预拌混凝土的健康发展,必须注意以下几点: 1)加强预拌混凝土厂的合理规划和布置,预拌混凝土的生产规模应与当地的建筑和市场需求相匹配,避免盲目发展过度集中。 2)有计划的组织在职人员培训,提高人员素质及企业的技术和管理水平,加强有关标准的宣传贯彻力度。 3)规范市场,加强有关部门的监督,使供需双方必须遵守合同,增强合同的法律效力;并制定出合理的预拌混凝土价格体系。使预拌混凝土能在正常的竞争条件下得到发展。 2、高性能混凝土的现状和发展 为了弄清当前混凝土在不同用途中存在的缺点和薄弱环节,美国于80年代曾对很多土建工程单位进行了广泛的调查。从调查结果可知,在众所关注的抗压强度以外,亟待改进提高的混凝土性能,依次为体积稳定性、抗渗性、流动性、抗折(拉)强度、护筋性、线膨胀系数等,当然还须降低成本。上述各种性能归纳起来就是强度、工作性和耐久性3大类,这正符合十几年来几个发达国家正在研究开发中的高性能混凝土(HPC)。 HPC的诞生与发展是近代工程发展的需要。例如高层、大跨度、大荷载、特殊使用条件和严酷的环境(如海上石油钻采平台、海底隧道等)以及对建设速度、经济、节能等有更高要求;同时也由于混凝土技术的提高使HPC成为可行。HPC的先进性使混凝土的应用范围得到扩大,使混凝土的社会经济效益得到不断增长。 发展HPC的主要途径有:

国内混凝土技术的现状与发展

国内混凝土技术的现状与发展 作者:吴晓泉(全国混凝土协会技术发展部) 以国家“十五”计划、西部大开发战略为指导;结合我国入世(WTO)后国际工贸竞争带来的机遇与挑战;北京申办2008年29届夏季奥运会成功(北京、天津、上海、青岛、沈阳、西安等城市)今后5~7年的建设高潮;配合2001年企业资质申报、审定和建设部提出的“管理年”等中心工作,审时度势,梳理并探索进一步优化预拌商品混凝土企业,改造并重振预制混凝土构件企业,发展和完善混凝土建筑砌块企业之路,迈上新台阶,继往开来,与时俱进。 1 历史回眸 1.1 专家点评 1981年,[英]悉尼.明德斯(Sianey Mrndess)、[美]J.费朗西斯.扬(J.Erancis.young),在合著《混凝土》一书首页上写道“混凝土已经成为现代社会的基础,在日常生活中几乎各个方面都直接或间接地涉及到混凝土。” 1987年,美国专家来华透露,联邦已拨款几十亿美元,ACI正在研究月球开发用混凝土。不久混凝土将成为太空建设材料。 1992年,清华大学冯乃谦教授写道“作为一门经验技术,混凝土技术目前已进入高科技行业,它远远超过传统建筑业的潜在用途。” 1996年,我国工程院院士吴中伟认为“今后30~50年水泥基材(包括各种混凝土和制品)将会得到更大的发展。” 1998年,国内著名专家写道“混凝土在工程领域发挥着其它材料无法替代的作用,已经成为现在社会文明的基石。是人类社会文明发展的见证。” 2000年,我们协会专家这样赞誉“凡有人群的地方,就有混凝土在闪光。” 1.2 水泥起源 混凝土一词源于拉丁文术语“Concretus”,其意思是共同生存。“水泥”是一个一般术语,亦适用于所有胶结材料。当涉及到非波特兰(我国称硅酸盐)水泥时,应冠以定语,例如铝酸盐水泥、硫铝酸盐水泥,环氧树脂混凝土等。 1976年,[英]杰姆斯.帕克(James Parker),用含有粘土的不纯石灰石球,烧制成天然水硬性胶结材。 1813年,[法]维卡V(icat),用石灰石和粘土的合成物,经煅烧制成了人造水硬性胶结材。他还发明了沿用至今的维卡针,用以测定水泥的凝结时间。 1824 年,[英]利兹的一个施工人员约瑟夫.阿斯普丁(Joseph.Aspdin)提出“波特兰”水泥的一个专利。它是由煅烧某些磨细(粉状或弄碎成糊状)的石灰石,掺入分别磨细的粘土,再将混合物在窑内煅烧至CO2被分解逸出。最后将烧成物磨细制成水泥应用。因为硬化后的水泥酷似英国波特兰石场天然建筑石料,故而命名为波特兰水泥。尽管阿斯普丁并未达到起码的烧结温度[1845年,伊沙.约翰逊(Isaac Johnson)提出的 9000C~10000C],其水泥未必是真正意义上的波特兰水泥,但因为在市场上取得了很大的成功,而被后人确定为水泥的发明人。 初时波特兰水泥是用立窑生产。1886年开始用回转窑生产,1909年[美]托马斯.爱迪生(Thomas Edison)发布一系列回转窑专利。1836年德国首先进行了系统的抗拉和抗压强度试验。1900年,水泥的基本试验大部分标准化。我国1889年开始创建水泥工业,印象中生产大古牌水泥。 1.3 混凝土技术的变革 自从1824年波特兰水泥获得专利之后,各种水泥混凝土陆续问世。在短短177年间共发生

预测混凝土未来技术发展的10个研究方向

2015年预测混凝土未来技术发展的10个研究方向 1. 轻骨料高强混凝土的应用技术。 更小的容重和强度的轻质高强混凝土使得混凝土建筑物更 加的节能、减少材料的消耗,而轻骨料混凝土的高层泵送技术可以推进在城市高层建筑的应用空间,对于轻骨料的制造技术要求更高,也需要在混凝土配制过程中的实现技术突破,才能实现长距离的泵送施工。2. 骨料最佳级配和粒形科学评价及对混凝土单方用水量减少的作用。混凝土达到相同的施工性能,不同粒径的粗骨料和细骨料的精确搭配可以实现混凝土最小的浆体需要和最小的用水量,从而实现了混凝土减少内部缺陷、增加体积稳定和提高耐久性的目标,但是其中骨料的粒形也起着决定性的作用,需要研究科学评价骨料的最佳级配和粒形的方法。3. 如何评价现代混凝土拌和物流变的特性?现代混凝土建筑设计和施工方式对混凝土拌合 物的状态提出了更多的要求,特别是泵送施工技术节约人工的同时也提高了功效,混凝土拌合物的流变性能不仅仅对于满足现代的施工方法很重要,更是对于泵送后的混凝土结构的质量具有决定性作用,硬化后的混凝土与试验室混凝土配合比性能设计的关系和评价手段需要科学的给出,特别是拌合物的匀质性对混凝土结构的使用性能的重要意义。4. 更加合理验收现场拌和物的应用技术及硬化后混凝土结构强度

的评价方法。混凝土结构强度验收一直是28天,而且强度验收方法是滞后的,发现问题时,混凝土已经硬化,能够实现对拌合物的验收,对于减少质量问题损失具有重要意义,而一直沿用至今的28天强度验收在当前材料设计的多元化下是否合理需要进一步的研究。5. 克服混凝土构件的脆断、提高混凝土构件的延展性的技术。通过纤维复合、有机和无机材料复合提高混凝土的拉压比,实现混凝土的高性能化的技术研究和应用对混凝土的应用领域的扩展具有重要的意义。6. 混凝土微结构及其优化的研究。混凝土作为一个超级复杂的作用体,从微观角度解决和优化混凝土微结构缺陷,是根本性的技术研究。7. 按混凝土性能调节功能设计制备的(标准化的)单一或复合的钙质、硅铝质性能调节型矿物掺和料(如矿渣-钢渣、粉煤灰、硅粉、石灰石粉、偏高岭土、煅烧高岭土等)。矿物掺合料掺加在混凝土中不仅仅是固废消纳的作用,更不是为了减低混凝土制造成本,其意义在于实现混凝土配合比设计的功能型材料,这对于其矿物晶体结构和化学作用需要更深入研究。8. 耐久性设计大于100年的混凝土规模化实现技术。随着对资源的保护,混凝土结构耐久性设计超过100年将成为必须,需要混凝土实现常规化的生产,对于混凝土配合比设计、生产、供应链中的质量保证提出更高的要求,也需要完善的技术手段。9. 3D打印应用于免拆模板及混凝土结构的材料技术。3D打印方式可方

《高性能混凝土技术发展与应用初探》......... (1)

高性能混凝土探 专业: 姓名: 学号: 指导教师: 2016年6月

高性能混凝土技术发展与应用初探 摘要 高性能混凝土的发展和运用;摘要;随着我国改革开放和现代化进程的加快,我国的建设规;高性能混凝土(HighPerformanceCo;本文主要介绍了高性能混凝土发展的现状,阐明了高性;关键词:高性能混凝土;运用;发展;1高性能混凝土介绍;1.1高性能混凝土含义;1990年5月在马里兰州,由美国NIST和ACI;清华大学教授廉慧珍认为:高新能混凝土不是混凝土 高性能混凝土的发展和运用 摘要 随着我国改革开放和现代化进程的加快,我国的建设规模正日益增大,如何保证建筑工程质量的同时也能使工程能长久的安全使用下去,日益受到各级政府和社会各界的广泛关注。在众多的土木工程建设中,混凝土的应用面之广,使用次数之多是很少见的。尤其中近年来,一种较新的混凝土技术正在快速发展并且运用到许多实际工程项目中,那就是高性能混凝土。 高性能混凝土(High Performance Concrete,HPC) 由于具有高耐久性、高工作性、高强度和高体积稳定性等许多优良特性,被认为是目前全世界性能最为全面的混凝土,至今已在不少重要工程中被采用,特别是在桥梁、高层建筑、海港建筑等工程。

本文主要介绍了高性能混凝土发展的现状,阐明了高性能混凝土与施工的关系,列举了高性能混凝土的运用成果,并对其发展趋势作出展望。随着我国建筑向高层化、大型化、现代化的发展,HPC必将成为新世纪的重要建筑工程材料。 关键词:高性能混凝土;运用;发展 1 高性能混凝土介绍 1.1 高性能混凝土含义 1990年5月在马里兰州,由美国NIST和ACI主办的讨论会上,高性能混凝土(HPC)定义为具有所要求的性能和匀质性的混凝土。这些性能包括:易于浇注、捣实而不离析;高超的、能长期保持的力学性能;早期强度高、韧性高和体积稳定性好;在恶劣的使用条件下寿命长。即HPC要求高强度、高流动性与优异的耐久性。我国《高性能混凝土应用技术规程》 (CECS207-2006)中提到:高性能混凝土是具有混凝土结构所要求的各项力学性能,且具有高工作性、高耐久性和高体积稳定性的混凝土。 清华大学教授廉慧珍认为:高新能混凝土不是混凝土的一个品种,而是达到工程结构耐久性的质量要求和目标,是满足不同工程要求的性能和具有匀质性的混凝土。 我国《高性能混凝土应用技术规程》 (CECS207-2006)还提到:处于多种劣化因素综合作用下的混凝土结构宜采用高性能混凝土。根据混凝土结构所处的环境条件,高性能混凝土应满足下列一种或几种技术要求: (1)水胶比WC?0.38; (2)56d龄期的6h总导电量小于1000C;

混凝土技术发展的前景和困境

混凝土技术发展的前景和困境 导读 十三五期间我国基础设施建设继续保持高速发展态势,从水电工程、核电工程、高铁工程到高速公路工程等领域均提出了更高发展目标。作为建设工程用量最大的基础材料,混凝土需要满足上述不同工程领域提出的更多、更高、更新的要求,重点应满足以超长跨距、超长距离、超大体积、超高层为典型特征的现代结构混凝土要求,实现混凝土在全寿命周期内从施工期到服役期的优良性能。 作为混凝土的重要组成材料,胶凝材料与功能外加剂是实现混凝土高性能化的关键技术。一方面,胶凝材料经水化作用后形成硬化浆体,与混凝土内砂石组分粘结成为整体。其中,硬化浆体的微结构与混凝土性能密切相关;另一方面,功能外加剂以较低的用量实现对混凝土微结构优化与调控,从而满足不同服役性能要求。近年来,随着大型基础设施与现代工程结构的快速发展,混凝土技术所面临问题主要体现为上述胶凝材料与功能外加剂两个方面。基于上述分析,本文将围绕重大工程需求,重点介绍混凝土技术在胶凝材料与功能外加剂方向的新进展,分析上述技术所面临问题,并对未来研究工作进行展望。 1.胶凝材料 1.1传统硅酸盐水泥 硅酸盐水泥的快速发展亟需重视收缩开裂与适应性问题。从英国工程师Joseph Aspdin获得授权专利起,硅酸盐水泥及其混凝土在不到200年的发展历程中已成为全世界用量最大的基础材料。随着水泥行业的科技进步,硅酸盐水泥的生产工艺与各方面性能指标得到了显著的提升。近年来,我国新的水泥烧成工艺通过高固气比悬浮预热预分解技术[1],使得水泥产量增加40%以上,废气中的SO2和NOX排放降低50%以上,同时能耗显著降低。除了烧成工艺的进步,硅酸盐水泥的粉磨技术也得到快速发展,水泥细度和比表面积也在不断增加,大幅提高了水泥强度。尽管如此,现有研究表明[2,3],随着水泥细度的增加,水泥快速水化的集中放热,将加剧混凝土早期收缩,增大温度开裂风险。其中,当水泥比表面积由280m2/kg增加至380m2/kg,其开裂温度增加9.5℃,开裂时间提前约1倍。其次,水泥熟料矿物中C3S含量超过55%,呈现上升趋势。一方面,高C3S含量有效提高混凝土的早期强度;另一方面,随着C3S含量的提高,水泥

强化混凝在给水处理工程中的应用

强化混凝在给水处理工程中的应用 强化混凝技术可以控制饮用水中消毒副产物,使饮用水水质质量更高,并且通过了实验的验证。文章从强化混凝技术的内涵、应用机理、实施方法、影响因素、负面影响等方面分析了强化混凝技术,并就其在给水处理工程中的实际应用进行了相应的分析. 标签:强化混凝;给水处理工程;天然有机物 随着科技的发展人们对水质方面的要求越来越高,为满足人们生活所需并与国际接轨,需要将净化技术不断地发展、提高和完善。饮用水的处理技术主要是去除水源中的悬浮物、胶体杂质和细菌而净化技术是人们在与污染作斗争的过程中得到的。混凝技术在给水净化处理中应用的越来越普遍,是国内外广泛使用的经济、简便的处理技术,是控制天然有机物的最佳方法。 1 强化混凝的内涵 强化混凝(简称EC)是指通过在常规处理过程中加入过量的混凝剂、新型混凝剂或助凝剂再或者其他的药物控制一定的pH值来加强混凝和絮凝,从而提高去除天然有机物的效果减少消毒的副产物,保证饮用水的健康。常规工艺改造有增加深度处理构筑物,如活性炭吸附技术;加强预处理构筑物,如生物预处理;不增加常规工艺前、后的净化构筑物,在现有工艺上进行改造,如强化混凝、过滤、消毒灯,但强化混凝技术具有投资少、不需要構造新的物質、不占土地和经常运行费用低等特点,更适合改造。 2 强化混凝的优势 强化混凝技术的主要目的是在进行混凝处理的时候进一步加强混凝与絮凝作用,从而使得常规处理中天然有机物的去除效果能够更好,对于消毒副产物的前体物进行最大限度的消除,从而使得饮用水能够满足相应的要求。通过混凝技术的应用,往往能够取得更好的处理效果,而且相比于增加深度处理方法以及生物预处理方法,强化混凝技术属于强化常规水处理的方式,它的成本更加低,而且也不会占用土地,十分适合对于原有体系进行改造。表1为强化常规水处理与增加深度处理和生物预处理效果的对比。 3 机理及常用方法 通过改变混凝条件进一步提高有机物的去除范围和去除率。大分子天然有机物可以在无机胶体颗粒表面形成有机保护层,导致空间位阻或双电层排斥可以使胶体的稳定性能增加,而混凝是通过混凝剂进行水解得到的产物对水中的胶体进行电中和使其脱稳,形成小颗粒,逐渐絮凝为矾花,使得脱稳的胶体生成颗粒较大的絮凝体,进行沉淀、过滤并分离出去。常用的强化混凝的方法有:加大混凝剂投加量,投加有机或无机絮凝剂,调整pH值,投加氧化剂,完善混合、絮凝

微污染水源强化混凝水处理技术研究进展

微污染水源强化混凝水处理技术研究进展 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

微污染水源强化混凝水处理技术研究进展摘要:对微污染水源的强化混凝水处理技术进行系统的介绍。详细阐述 强化混凝的主要影响因素,如混凝剂种类及投加量、pH值、温度、碱度 和原水水质等,同时介绍了几种常用的强化混凝方法,并对该技术在微 污染水源水处理中的应用予以展望和提出建议。 关键词:微污染;强化混凝;粉末活性炭(PAC);高锰酸钾复合药剂(PPC) 水源地饮用水污染对给水工程造成了各种损失,给传统净水工艺提出了 挑战。微污染水源指的是水体的物理、化学或微生物指标已不能达到 《地表水环境质量标准》中作为生活饮用水源水的水质要求,但通过特 殊工艺处理后尚可使用的原水。水源水质的恶化,一方面势必额外地投 加大量的混凝剂,使制水成本大大增加;另一方面水中藻类过避繁殖, 使给水产生一定的色度和臭味,水源水的污染加剧了水资源的危机。此外,由于水源中污染物质的存在,对人类的健康有很大的影响,而靠国 内目前普遍使用的常规净化工艺又很难去除掉,尤其是有机物,结果致 使城市居民不得不长期饮用这种不安全的水,因而选择一种适合的微污 染水源水处理技术方案引起人们的高度重视。 1强化混凝内涵

强化混凝是给水常规处理中非常关键的环节,通过强化混凝,可去除原 水中绝大部分的浊度、色度,提高常规混凝法处理中天然有机物(NOM)去除效果,最大限度地去除消毒副产物前驱物(DBPFP)等有机物。它是为提高常规混凝效果,通过增加混凝剂的投加量、改变混凝剂的匹配或调整pH值,保证浊度去除率的同时提高水中有机物去除率所采取的措施。广 义上说,可通过改善混凝条件提高出水水质。一般认为,混凝过程是混 凝剂水解产物对水中胶体进行压缩双电层和吸附电中和使其脱稳,从而 形成细小的颗粒,继而絮凝为大而密实的矾花,并通过吸附架桥或网捕 作用使脱稳的胶体生成粒度较大的絮凝体,再通过沉淀和过滤进行分离 去除。而水中分子质量较小、溶解度较大的有机物在一般混凝条件下去 除率很低,主要原因是由于其具有良好的亲水性而不易被混凝剂的水解 产物--金属氢氧化物所吸附,有机物不fEl增加r胶体表面电荷,而且 造成空间位阻效应。但是,如果通过改善混凝处理条件,即在低pH值、高混凝剂用量的强化混凝条件下形成大量金属氢氧化物,改善混凝剂水 解产物的形态且使其正电荷密度上升,同时低pH值条件会影响有机物离解度和改变水中有机物存在形态,有机物质子化程度提高,电荷密度降低,进而降低起溶解度及亲水性,成为较易被吸附的形态。 Randtke认为强化混凝去除有机物的机理主要包括胶体状天然有机物(NOM)的电中和作用,腐殖酸和富里酸聚合体的沉淀作用,以及吸附于金属氢 氧化物表面上的共沉淀作用。水中溶解性的有机物而言,依靠后一种作 用即吸附于混凝剂的金属沉淀物上而去除。美国环保局认为,强化混凝

污泥回流在海水淡化强化混凝处理中的应用研究

污泥回流在海水淡化强化混凝处理中的应用研究 发表时间:2019-12-16T13:45:40.827Z 来源:《城镇建设》2019年21期作者:张豪 [导读] 强化混凝技术是在现有常规水处理工艺基础上, 摘要:强化混凝技术是在现有常规水处理工艺基础上,不另增加处理单元,以提高出水水质为目的的最为有效的方法之一。传统的强化絮凝工艺大多需要以增大混凝剂投加量为代价,提高了制水成本,不符合当前行业节能降耗的主题。 某沿海燃煤电厂海水淡化前端预处理反应沉淀池在海水退潮过程中出现絮凝体大量上浮,严重影响出水水质。此现象出现的根本原因是海水密度和浊度变化使池内水流产生异重流。因此,我公司通过对沉淀池进行改造,增设污泥回流系统,通过试验加强对沉淀池污泥的有效利用,提高沉淀池出水水质,降低混凝剂投加量,同时也节省部分污泥处理费用。 关键词:沉淀池;海水;潮汐;污泥回流 The Application Research of Sludge Resuing in the Enhanced Coagulation Experimental of the Desalination Zhang Hao1 (1.Zhejiang Energy Marine Environmental Technology Co., Ltd ,Hangzhou 311100,China) ABSTRACT Enhanced coagulation technology is one of the most effective methods to reduce the water organic matter content and improve the quality of the output water, but most of the traditional enhanced coagulation process need to increase the dosage of coagulant cost, thus increasing the cost of water,which does not conform to the current system of energy saving industry of water. During the course of seawater falling tide, a mass of flocculated granules floated upward to upside of seawater sedimentation tanks in a coal-fired power station on the coast, which influences the effluent water seriously. It is found that the basic causes are that the changes of density and turbidity of sea water result in the density current in sedimentation tanks. Therefore, our company has upgraded the sedimentation tanks, added a sludge return system, through testing to enhance the effective utilization of sludge sedimentation tank, improve the effluent quality, reduce the dosage of coagulant, while saving part of the sludge treatment costs. Keyword:Sedimentation tank, seawater, tidal, sludge return 1.海淡预处理系统概述 水资源可持续利用时关系到国民经济发展的重大战略问题,近十多年来随着水资源短缺问题的日益严重,我国电厂建设已进入多元化水资源时代,沿海(近海)地区的新建电厂向大海要水,北方地区的新建电厂采用中水(城市污水再生水/其他行业排水等)[1]。其中,海水淡化项目极为重视前端预处理,选用合理的预处理工艺是海水淡化系统的关键。 某燃煤电厂生产用淡水由海水经反渗透淡化工艺制取,海水取自乐清湾。海水在进入淡化车间之前采用絮凝+斜板沉淀工艺进行净化预处理,处理设备为反应沉淀池。反应沉淀池设计规模为3组,总处理水量为3900m3/h。预处理系统流程见图1所示。 图1 海淡预处理系统流程 原水池中的海水,经提升泵送至反应沉淀池过程中,在经过列管混合器时,与混凝剂混合,矾花在反应区内生成并在向前推进过程中逐渐长大,水流出反应区后进入过渡区,经过过渡区整流堰整流后从隔墙底部配水孔均匀进入沉淀池沉降区进行自然沉降。沉降区内设置斜板,出水集水槽在池顶端垂直于进水方向均匀布置,出水最终经汇流渠流出。反应池池底设有多个泥斗,通过9个排泥阀将污泥排出。 反应沉淀池运行时投加的混凝剂为氯化铁,助凝剂为聚丙烯酰胺(PAM),加药量根据进水浊度和进水流量进行调整。混合采用列管式混合器。反应区内装有星型翼片絮凝设备,水力分级分为三级。反应区安装有混凝剂投加至列管混合器设备前端加药口处,助凝剂投加在反应区第一格内。 2.改造前反应沉淀池运行情况 乐清湾系不规则半日潮,受岸流落差大(打水湾上溯即江厦潮汐电站,落差达8.6m),小潮时潮汐影响退潮时将底部泥质上翻,大潮时情况稍好[2]。浊度最大可以达2000NTU以上,平潮浊度在50-200NTU左右,浊度变化大时容易引起翻池。受机组负荷变化引起排水温度变化引起翻池,存在间隙性翻池。使后续处理压力较大。 根据运行期间观测和最佳加药量实验结果,进水浊度在100~900TNU之间,在此条件下聚合铝铁加药质量浓度在15~30mg/L之间调整可得到较好的出水水质,稳定运行时出水浊度<5NTU。 系统运行后,经过长时间观测发现,反应沉淀池在绝大部分时间内能够得到较好的出水水质,但在连续运行的过程中每天都会有2个时间段内发生出水浊度明显升高,严重时出水浊度大于60NTU,每个时间段持续4个小时左右,之后能够迅速恢复正常。连续观测后,根据每

污泥回流强化混凝工艺探讨

污泥回流强化混凝工艺探讨 发表时间:2018-07-09T11:26:48.437Z 来源:《基层建设》2018年第12期作者:盛雅琼[导读] 摘要:随着人类生活质量的提高,饮用水水质问题受到高度的关注。 广东省冶金建筑设计研究院 摘要:随着人类生活质量的提高,饮用水水质问题受到高度的关注。污泥回流是在此基础上发展起来的强化混凝技术。首先,本文从单独污泥回流、投加混凝剂和与其他工艺联合的污泥回流三方面介绍对污染物的强化去除;其次,阐述了污泥回流的絮体特性及对污染物的去除机理;最后,评估了污泥回流的安全性风险并提出了相应的解决方法,展望了污泥回流技术的发展方向。 关键词:单独污泥回流;投加混凝剂的污泥回流;污泥回流和与其他工艺联合;强化混凝: Researchadvancement of enhanced coagulation by sludge refluxing Abstract:Enhanced coagulation by sludge refluxing technology which have good social,economic and environmental benefits,can improve the concentration of Particulate impurities in raw water,increase the cohesion adsorption sites,improving coagulation effect,reduce the coagulant dosage,thus reduce sludge production.This paper describes the progress in the procession of turbidity,organics,ammonia,phosphates and heavy metals in the enhanced coagulation by sludge refluxing,analysis reviews the development direction of the enhanced coagulation by sludge refluxing technology. Keyword:sludge return;enhanced coagulation;Turbidity;organic matter;Ammonia;Phosphate;heavy metal 1、前言 随着人类社会的日益发展,每天有大量的生活污水和工业废水产生,部分污废水排入河流,导致我国河流水环境的污染严重。有研究表明水资源问题成为我国21世纪国民经济发展中第二大困扰难题 [1]。因此,强化去除水体中的污染物已刻不容缓。强化混凝技术是指通过在水源水中投加过量的混凝剂并控制PH范围,从而使常规工艺的污染物去除率提高。 污泥回流就是将经混凝沉淀后的絮体回流到混合或絮凝阶段,提高原水中颗粒杂质浓度,增大絮体颗粒的有效碰撞几率,为絮凝反应提供大量的絮凝核心,减少絮体形成时间,改善絮凝效果,从而达到强化混凝的目的。回流污泥中含有大量的不溶性金属氢氧化物[2],可以充当部分混凝剂,充分发挥金属盐混凝能力,减少混凝剂用量,减少污泥产量,大大降低污泥处置费用。有研究表明污泥回流是可行的并且有很好的成本效益[3-5]。另外,还能使用回流污泥强化生活污水一级处理,可以减少二沉池的浮渣和污泥膨胀问题,增加污泥消化过程的产气量,提高污泥脱水性能[6-7]。 2、污泥回流的处理效果 污泥有多种回流方式:单独污泥回流、加混凝剂的污泥回流、粉末活性炭(PAC)+污泥回流、混凝剂+PAC+污泥回流、污泥回流和与其他工艺联合等。 2.1 单独污泥回流 单独污泥回流:一是污泥直接回流;二是污泥经处理后回流。污泥经处理后回流是指将沉淀池污泥经过酸化、碱化和置换等方法来重复利用污泥中的铁盐或铝盐。 ChuW[8]采用直接污泥回流来处理含铅废水,研究表明网捕卷扫机理对重金属的去除起重大作用。Xiao-Hong Guan等[9]采用污泥回流强化污水初级处理,当污泥回流量为18–20 mg Al/L时,对SS和COD去除率分别提高了20%和15%。G.R.Xu等[10]采用污泥回流强化污水一级处理,研究表明将混凝污泥酸化后回流对浊度、UV254和COD的去除率分别为96%、46%和53%。 单独污泥回流能最大程度的节约药剂投量,减少污泥产量,降低处理成本。由于沉淀池污泥吸附包裹了大量的污染物,经破碎后大量的污染物释放到水中,当污染物的释放量超过回流污泥对污染物的去除量时,效果反而会变差。WEI CHU[11]采用污泥回流处理印染废水,表明污染物水溶性较强时,回流污泥会导致原水的二次污染。对于污泥回流的污染物反馈现象,可以通过在回流过程中投加少量的混凝剂来解决。 2.2 混凝剂+污泥回流 在污泥回流过程中投加混凝剂能控制回流污泥的污染物反馈现象,使得污泥回流技术的应用范围更广。刘继平利用污泥回流法处理低温低浊水,研究表明低温低浊水难处理是因为浊度低,污泥回流提高了原水浊度,提高了沉淀效果。 微污染水因含有较高的有机物,在水处理过程中具有处理难度大、药剂消耗量大、污泥含量高、出水安全性差等缺点。大量的研究表明混凝剂+污泥回流对有机物有强化去除效果:Shaojiejiang等[12]采用污泥回流工艺去除长江低温低浊水,在污泥回流量为8%,PAC投量为3-6mg/L时,CODMn的去除率为32.5%-38.6%;饶明等[13]的研究表明,污泥回流对CODMn去除率提高了3%。 可见,混凝剂+污泥回流工艺对低温低浊水强化效果较好,对有机物虽然有强化去除效果,但对有机物总去除率依然较低。 2.3 污泥回流与粉末活性炭的组合工艺对污染物的去除 污泥回流与PAC的组合工艺有两种方法:一、混合污泥回流(PAC+污泥回流);二、高锰酸钾预氧化与混合污泥回流(PAC+污泥回流)组合工艺。 在常规混凝工艺中PAC的有效停留时间只有10~20min[13]。粉末碳与污泥回流混凝工艺不但延长了PAC在水中的停留时间,还提高了污泥和PAC的利用率,可以进一步强化去除水中污染物。李晓等[14]采用PAC与聚合氯化铝污泥回流工艺去除微污染东江原水,在混合污泥回流比为7%~8%时,对氨氮、UV254的最高去除率比常规工艺高56.6%和20%。周志伟等[20]采用混合污泥回流强化混凝低温地浊水,表明混合污泥回流对污染物的强化去除效果是由于回流污泥中剩余金属氢氧化物沉淀的吸附和卷扫作用与PAC最大限度吸附作用的协同效果。 氧化剂预氧化与混合污泥回流组合工艺可以充分利用氧化剂的氧化、助凝、吸附等能力和活性炭的吸附能力。饶明等[15]采用预氧化联合污泥回流处理低浊微污染水,发现组合工艺对CODMn的去除比常规工艺提高了5%。 因此,污泥回流与PAC组合工艺充分利用了污泥中金属氢氧化物沉淀和粉末活性炭的吸附作用,能显著提高氨氮和有机物的去除效果。 3、污泥回流絮体特性及对污染物的去除机理

钢筋混凝土的发展及其现状

钢筋混凝土的发展及其现状 长沙理工大学 摘要:钢筋混凝土从19世纪中叶开始采用以来,至今仅有一百多年的历史,其发展极为迅速。钢筋混凝土结构是由钢筋和混凝土两种材料组成的共同受力的结构。钢筋混凝土结构的材料制造、计算理论及施工技术等方面都已经历了很大的发展并且还在继续向前发展。钢筋混凝土结构是水利水电工程中最基本的结构形式。 关键词:钢筋混凝土结构,耐久性能,裂缝,腐蚀,试验技术。 1、钢筋混凝土结构的发展简史 我国在1876年开始生产水泥,逐渐有了钢筋混凝土建筑物。全国的混凝土年产量据2002年统计就已达到了15亿立方米,建筑用钢材达3000万t,占世界的首位。已建成的上海金茂大厦,地上88层,地下3层,建筑高度420.5m;采用预应力混凝土结构的上海电视塔,主体结构高350m,塔高468m;外形美丽的上海杨浦大桥,全长7658m,主桥为双塔双锁面钢筋混凝土与钢叠合斜拉桥结构,主桥跨径602m;三峡升船机上闸首结构全长125m,墩墙高44m,航槽宽18m,设计水头34m,校核水头39.4m,是目前世界上最大的预应力混凝土坞式结构。 钢筋混凝土结构的材料制造、计算理论及施工技术等方面都已经经历了很大的发展,并且还在继续向前发展。 在材料研究方面,主要向高强、高流动性、自密实、轻质、耐久及具备特意性能方面的混凝土发展。目前轻骨料混凝土已在工程上应用。各种轻质混凝土、绿色混凝土、纤维混凝土、聚合物混凝土、耐腐蚀混凝土、微膨胀混凝土、水下不分散混凝土以及品种繁多的外加剂在工程中的应用和发展,已使大跨度结构、高层建筑、高耸结构和具备某种特殊性能的钢筋混凝土结构的建造成为现实。另外,有专家预计,到21世纪末纤维混凝土的性能得到极大的改善。 采用高强度的材料,是发展钢筋混凝土结构的主要途径。目前我国建筑结构安全度总体上低于欧美发达国家,但材料用量并没有相应降低。这是因为就全国而言,我国建筑工程上采用的钢筋和混凝土平均强度等级,均低于欧美发达国家。

浅谈强化混凝在给水处理工程中的应用

浅谈强化混凝在给水处理工程中的应用 摘要:强化混凝技术目前在给水领域主要应用于控制饮用水中消毒副产物的含量,以求达到更高的饮用水水质要求。依据国内外进行过的试验研究及应用,综述了强化混凝技术的研究进展及结果,在此基础上探讨了强化混凝在给水处理工程特别是电站净水系统中的应用前景。 关键词:给水处理强化混凝水质 目前严重影响净水水质进一步提高的问题之一是水中有机物的控制与去除。数十年来,国内外水处理工作者在有机物去除问题上已做过大量研究,探索过多种去除有机物的材料和方法。近年来美国环境保护局(USEPA)[1~3]为达到饮用水消毒/消毒副产物(D/DBP)第一阶段的控制目标——饮用水中总三卤甲烷(THMs)≤0.08mg/L,卤乙酸(HAAs)≤0.06mg/L,推荐采用的工艺有:强化混凝(enhanced coagulation)、粒状活性炭吸附(GAC adsorption)和膜过滤(membrane filtration),而且将强化混凝列为控制天然有机物(NOM)的最佳方法[2]。 水的混凝处理是常规给水处理系统中最常用的一种工艺,通常其主要作用是去除水中悬浮颗粒和胶体微粒,同时也可以去除水中一部分有机物,但去除有机物的效率不高且波动范围较大,这主要与水中有机物的种类、形态有关。目前给水处理工艺中常用的混凝剂是Al2(SO4)3、FeCl3、PFS(聚合硫酸铁)、PAC(聚合铝),由于水的pH值直接影响到混凝剂的水解形态和水中微粒的表面特性,进而影响到混凝效果,因此对大多数原水而言,最佳混凝效果并不发生在微粒ζ电位为0时。事实上,当混凝剂用量低时,获得较好混凝效果所发生的作用机理主要是电性中和、吸附架桥;而当混凝剂用量高时,获得较好混凝效果所发生的作用机理主要是吸附架桥、网捕沉淀[4]。 天然水体中的有机物(通常主要为腐殖酸类有机物,其分子结构上常含有较多的-COOH 和-OH基团),按其在水中存在的形态可分为悬浮态(包括单独存在的有机颗粒和吸附在水中微粒表面的有机质)、胶态和溶解态三种,悬浮态、胶态部分通常是些分子质量较大、溶解度较小的有机物组分,天然水中的有机物有相当一部分被微小固体颗粒所吸附[5]。混凝、澄清是常规给水处理系统中第一个处理单元,而天然水体中悬浮态、胶态部分有机物的性质与水体中存在的微粒很相似,如通常条件下带有负电荷(有机物在水中有离解趋向),因此在混凝处理过程中,它们的去除机理应该是相似的,即通过电性中和、吸附架桥、网捕沉淀得以去除,而且去除率较高(可达80%~90%)。而水中分子质量较小、溶解度较大的有机物(主要是腐殖酸类中的富里酸等)[6],在一般混凝条件下去除率很低,主要原因是由于其具有良好的亲水性而不易被混凝剂的水解产物——金属氢氧化物所吸附。但是,如果通过改善混凝处理条件,即在低pH、高混凝剂用量的强化混凝条件下[7]形成大量金属氢氧化物,改善混凝剂水解产物的形态且使其正电荷密度上升,同时低pH条件会影响有机物离解度和改变水中有机物存在形态,有机物质子化程度提高,电荷密度降低,进而降低其溶解度及亲水性,成为较易被吸附的形态,吸着到大量存在的金属氢氧化物颗粒上共沉淀,这样可提高水中溶解态有机物的去除率,进而提高水中有机物总的去除率。所以,理论上通过改善混凝条件(强化混凝)是提高给水处理工程中有机物去除率的可行且有效的途径。 强化混凝处理工艺试验研究较多的是美国,而且主要是在饮用水处理行业,其主要目标是提高饮用水中D/DBP先质的去除率。Thomas R. Hundt等人的研究表明,水中富里酸(FA)类有机物主要通过电性中和沉淀、吸附共沉淀得以去除,且主要与铝盐的水解形态有关;低pH条件,聚合氯化铝对FA的去除效果优于AlCl3。Gil Grozes等人[1]对Sacramenta等河水进行的强化混凝试验发现,混凝的pH控制是获得NOM最大去除率的决定因素,在pH ≈6的条件下,强化混凝可增加65%的NOM去除率。过量加入相近剂量的混凝剂,铁盐对

低温低浊水混凝特性及强化混凝技术

哈尔滨工业大学工学硕士学位论文 国内图书分类号:TU991.22 国际图书分类号:628.1 工学硕士学位论文 低温低浊水混凝特性及强化混凝技术 硕士研究生:肖峰 导师:马军教授 申请学位:工学硕士 学科、专业:市政工程 所在单位:市政工程系 答辩日期:2005年12月 授予学位单位:哈尔滨工业大学 - I -

哈尔滨工业大学工学硕士学位论文 Classified Index:TU991.22 U.D.C:628.1 Dissertation for the Master Degree in Engineering. COAGULATION CHARACTERISTIC AND ENHANCED COAGULATION TECHNOLOGY OF WATER WITH LOW-TEMPERATURE AND LOW-TURBIDITY Candidate:Xiao Feng Supervisor:Prof. Ma Jun Academic Degree Applied for:Master of Engineering Specialty:Municipal Engineering Affiliation Dept. of Municipal Engineering Date of Defence:December, 2005 Degree Conferring Institution:Harbin Institute of Technology - II -

哈尔滨工业大学工学硕士学位论文 摘要 利用透光脉动、ferron-Al逐时分光光度法及剩余浊度测定等方法, 在实验室进行了低温低浊水混凝效果强化方面的研究,找出低温低浊情况下混凝不利的影响因素。 发现增加溶液的初始颗粒浓度(或初始浊度)会提高混凝反应速率, 但这种增加不是无限的。对于低温情况下,混凝过程中颗粒的聚集速率与其初始浓度(初始浊度)成线性关系。提高初始浊度(从3.30 ntu到9.30 ntu)能使聚集速率线性增加。但当初始浊度增加到16.50 ntu时,聚集速率逐渐保持不变。对于在室温条件下(17-21o C),线性关系一直在整个初始浊度变化范围内(从3.30 ntu到16.50 ntu)保持线性关系。表明不同温度下,絮体形成的途径以结构有所不同。低温时,对絮体达到其最佳(或最大)尺寸时需要的颗粒浓度比常温要少。温度的升高会提高絮凝反应的聚集常数,但同时絮体破碎常数也随之升高。低温时絮凝反应发生的极为缓慢。 在pH值等于8.0情况下, ferron-Al逐时分光光度法测定结果显示,在实验条件下快速混合后水解铝的种类分布情况相似。在不同条件下具有高电荷高聚合度的水解铝浓度也非常相似。说明从混凝剂水解到聚合态水解产物的生成受温度和浊度影响不大。但透光脉动法(PDA)的测量结果说明,无论是高水温还是高浊度都能增加絮凝速率。说明从水解铝的聚合到晶核形成再到晶体成长步骤受温度和浊度的影响非常大,它是控制混凝效率的关键步骤。低温或低浊对絮体成长的抑制作用大于对无机混凝剂水解过程的抑制作用。 根据这一发现,发明了多相催化强化混凝技术,利用催化剂来强化聚集态的水解产物生成初级晶核和初级絮体,乃至可沉降的絮体。 后期对所这项技术的应用情况进行了对实际低温低浊水体的考察,发现强化混凝相对常规混凝有更强的对沉后和滤后有机物污染物(COD)以及 - III -

相关主题
文本预览
相关文档 最新文档