当前位置:文档之家› 6se70整流回馈单元在逆变时晶闸管击穿有哪些原因,怎样解决

6se70整流回馈单元在逆变时晶闸管击穿有哪些原因,怎样解决

6se70整流回馈单元在逆变时晶闸管击穿有哪些原因,怎样解决
6se70整流回馈单元在逆变时晶闸管击穿有哪些原因,怎样解决

6se70整流/回馈单元在逆变时晶闸管击穿有哪些原因,怎样解决?

?悬赏分:5

?- 解决时间:2009-1-19 06:49

6se70整流/回馈单元在逆变时晶闸管击穿有哪些原因,怎样解决?

问题补充:二楼说得对,故障的确是出现在电源不稳定时,比如去年冰灾时,夏季负荷高峰时,甚至在高压侧接地时,都出现过晶闸管烧毁,6se70整流/回馈单元是不是提供某一个参数设置,来缓冲有源逆变时的电源电压不稳定?

问题ID: 30715提问者:静静守候- 学长第2级

最佳答案

^_^,即服一楼也服二楼。回答的详尽呀。其实楼主的问题完全可以简单的明确的回答:

第一,回馈状态烧可控硅的原因就是此时的电网电压突然跌落或停止。产生电路的换相失败(逆变颠覆)。这是原因;

第二,解决办法就是设置合理的进线半导体快速熔断器。这几所谓合理就是要求快熔的电流必须小于可控硅的最大允许电流,另外强调半导体是要求熔断器的快速保护,不是半导体快熔,就不能有效的保护可控硅元件了。

回答者:kdrjl - 高级工程师第11级2009-1-15 21:58

提问者对于答案的评价:

大侠分析得正确,你说的办法我也想过,但效果不好,还是出现快熔保护不了的情况,二楼所说换IGBT,的确经济上不允许,近100万的设备呀,是不是有类似于动能缓冲功能参数,能自动的缓冲电压不稳定?您觉得最佳答案好不好?

50% (0) 50% (0)

其他回答

西门子变频器整流单元的耐压是1200V。若能使用耐压1600V的整流单元,我认为会大大提高稳

定性并降低故障率。

防干扰的措施有待加强,西门子的变频器有时会因为干扰问题而把主控板或I/O端口烧了。在我担任技术支持和维修的过程中,我感到只有不断的学习丰富自己的业务技能,理论指导实践,实践再进一步上升为理论,举一反三不断地总结经验,才能使自己的各方面知识不断加强,跟上快速发展的时代科技进步的步伐。

我感觉在变频器的日常工作中外围元件的工作性能将直接关系到变频器的工作正常,应经常检测变频器控制电源的峰值电压,本人就曾经因为供变频器的24V的直流电压峰值过高而两次烧毁电源板及CUVC板,在检测电压应该在变频器运行时进行

一、变频器干扰的来源

首先是来自外部电网的干扰。电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变频器主要有(1)过压、欠压、瞬时掉电(2)浪涌、跌落 (3)尖峰电压脉冲 (4)射频干扰。

1、晶闸管换流设备对变频器的干扰

当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。

2、电力补偿电容对变频器的干扰

电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。

其次是变频器自身对外部的干扰。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对同一电网的其它电子、电气设备产生谐波干扰。另外变频器的逆变器大多采用PWM技术,当工作于开关模式且作高速切换时,产生大量耦合性噪声。因此变频器对系统内其它的电子、电气设备来说是一电磁干扰源。

变频器的输入和输出电流中,都含有很多高次谐波成分。除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。

(1)输入电流的波形变频器的输入侧是二极管整流和电容滤波电路。显然只有电源的线电压UL 大于电容器两端的直流电压UD时,整流桥中才有充电电流。因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的冲击波形式。它具有很强的高次谐波成分。有关资料表明,输入电流中的5次谐波和7次谐波的谐波分量是最大的,分别是50HZ基波的80%和70%。

(2)输出电压与电流的波形绝大多数变频器的逆变桥都采用SPWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形式形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波。但其中与载波频率相等的谐波分量仍是较大的。

二、干扰信号的传播方式

变频器能产生功率较大的谐波,由于功率较大,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其它设备;最后变频器对相邻的其它线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。

(1)电路耦合方式即通过电源网络传播。由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备工工作,同时输出端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。显然,这是变频器输入电流干扰信号的主要传播方式。(2)感应耦合方式当变频器的输入电路或输出电路与其他设备的电路挨得很近时,变频器的高次谐波信号将通过感应的方式耦合到其他设备中去。感应的方式又有两种:

a、电磁感应方式,这是电流干扰信号的主要方式;

b、静电感应方式,这是电压干扰信号的主要方式。

(3)空中幅射方式即以电磁波方式向空中幅射,这是频率很高的谐波分量的主要传播方式。

三、变频调速系统的抗干扰对策

根据电磁性的基本原理,形成电磁干扰(EMI)须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。为防止干扰,可采用硬件抗干扰和软件抗干扰。其中,硬件抗干扰是应用措施系统最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的藕合通道、降低系统干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。

1、所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是电源和放大器电路之间电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。

2、在系统线路中设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源从电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器;为减少对电源干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器以免传导干扰。在变频器的输入和输出电路中,除了上述较低的谐波成分外,还有许多频率很高的谐波电流,它们将以各种方式把自己的能量传播出去,形成对其他设备的干扰信号。滤波器就是用于削弱频率较高的谐波分量的主要手段。根据使用位置的不同,可分为:

(1) 输入滤波器通常又有两种:

a、线路滤波器主要由电感线圈构成。它通过增大线路在高频下的阻抗来削弱频率较高的谐波电流。

b、辐射滤波器主要由高频电容器构成。它将吸收掉频率很高的、具有辐射能量的谐波成分。

(2) 输出滤波器也由电感线圈构成。它可以有效地削弱输出电流中的高次谐波成分。非但起到抗干扰的作用,且能削弱电动机中由高次谐波谐波电流引起的附加转矩。对于变频器输出端的抗干扰措施,必须注意以下方面:

a、频器的输出端不允许接入电容器,以免在逆变管导通(关断)瞬间,产生峰值很大的充电(或放电)电流,损害逆变管;

b、输出滤波器由LC电路构成时,滤波器内接入电容器的一侧,必须与电动机侧相接。

3、屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏;

输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路线(AC380V)及控制线(AC220V)完全分离,决不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。

4、正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的干扰。在实际应用系统中,由于系统电源零线(中线)、地线(保护接地、系统接地)不分、控制系统屏蔽地(控制信号屏蔽地和主电路导线屏蔽地)的混乱连接,大大降低了系统的稳定性和可靠性。

对于变频器,主回路端子PE(E、G)的正确接地是提高变频器抑制噪声能力和减小变频器干扰的重要手段,因此在实际应用中一定要非常重视。变频器接地导线的截面积一般应不小于2.5mm2,长度控制在20m以内。建议变频器的接地与其它动力设备接地点分开,不能共地。

5、采用电抗器

在变频器的输入电流中频率较低的谐波分量(5次谐波、7次谐波、11次谐波、13次谐波等所)所占的比重是很高的,它们除了可能干扰其他设备的正常运行之外,还因为它们消耗了大量的无功功率,使线路的功率因数大为下降。在输入电路内串入电抗器是抑制较低谐波电流的有效方法。根据接线位置的不同,主要有以下两种:

(1)电抗器串联在电源与变频器的输入侧之间。其主要功能有:

a、通过抑制谐波电流,将功率因数提高至(0.75-0.85);

b、削弱输入电路中的浪涌电流对变频器的冲击;

c、削弱电源电压不平衡的影响。

(2)直流电抗器串联在整流桥和滤波电容器之间。它的功能比较单一,就是削弱输入电流中的高次谐波成分。但在提高功率因数方面比交流电抗器有效,可达0.95,并具有结构简单、体积小等优

点。

6、理布线

对于通过感应方式传播的干扰信号,可以通过合理布线的方式来削弱。具体方法有:

(1)设备的电源线和信号线应量远离变频器的输入、输出线;

(2)其他设备的电源线和信号线应避免和变频器的输入、输出线平行;

四、结论

通过对变频器应用过程中干扰的来源和传播途径的分析,提出了解决这些问题的实际对策,随着新

技术和新理论不断在变频器上的应用,重视变频器的EMC要求,已成为变频调速传动系统设计、

应用必须面对的问题,也是变频器应用和推广的关键之一。变频器存在的这些问题有望通过变频器

本身的功能和补偿来解决。工业现场和社会环境对变频器的要求不断提高,满足实际需要的真正“绿色”变频器也会不久面世。我们相信变频器的EMC问题一定会得到有效解决。

参考资料:

(1)变频器应用手册吴忠智吴加林编著机械工业出版社

(2)变频器调速应用实践张燕宾著机械工业出版社

(3)电磁兼容性原理与设计王定华著电子科技大学出版

回答者:迷你彩虹- 新生第1级 2009-1-12 21:54

服了楼上二位大虾的解释,简直长篇大论,看得我头的大了,能不能简单明了一些。我个人观点认

为烧IGBT有几点。第一是本身质量问题,第二是驱动电路有故障,造成晶闸管工作异常,发热或

过激励损坏。第三就是负载有故障。

回答者:qxjian - 初级技术员第5级 2009-1-13 10:59

服了一楼的了!!

楼主如果单纯说在回馈的时候烧可控硅或者快熔,最典型的大家肯定要说是逆变失败或者逆变颠

覆了。

如果你有关于AFE的变频器宣传手册,可以看到对AFE的优势讲解里有一条说,在整流/回馈单

元中,在回馈的时候出现电源电压的跌落会引起逆变颠覆,会烧快熔或者可控硅。这是由可控硅的

特性决定的,没有办法,所以AFE的IGBT整流单元有这个不会逆变颠覆的优势。楼主也可以搜索

或者查阅书籍,看一下逆变颠覆的解释。

如果楼主所在的地方电网不稳定,我就遇到过,麻烦了。如果经常出现这种状况,外加其他保护

性设备吧!或者干脆换为制动单元加制动电阻的方式。有经济能力的话,更换为AFE的就更好了。

在网上找了一个解释,不太详尽:

什么叫逆变失败?造成逆变失败的原因有哪些?

答:晶闸管变流器在逆变运行时,一旦不能正常换相,外接的直流电源就会通过晶闸管形成短路,

或者使变流器输出的平均电压和直流电动势变成顺向串联,形成很大的短路电流,这种情况叫逆变

失败,或叫逆变颠覆。

造成逆变失败的原因主要有:

(1)触发电路工作不可靠例如脉冲丢失、脉冲延迟等。

(2)晶闸管本身性能不好在应该阻断期间晶闸管失去阻断能力,或在应该导通时而不能导通。

(3)交流电源故障例如突然断电、缺相或电压过低。

(4)换相的裕量角过小主要是对换相重叠角y估计不足,使换相的裕量时间小于晶闸管的关断时间。

https://www.doczj.com/doc/207040610.html,/u/3/archives/2007/1027.htm

服了楼下的了,楼主好像说的是整流回馈单元的整流端的可控硅烧坏原因。没有说后端的IGBT烧

坏的原因。IGBT烧坏多是脉冲触发回路的原因。

回答者:xybphoenix - 中级工程师第10级 2009-1-13 13:16

1 电弧类设备引发低压网络谐振导致高电压。

2 过载。

回答者:渔村佬- 初级工程师第9级 2009-1-13 15:12

看完1、2楼高手的回答,想起了很久以前看过的技术文章,分析原因有:1、电网电压不稳定,即

变压器容量不够大,经常有大电机启停,造成变频器进线电压突然跌落,逆变失败,烧可控硅》

2、可控硅本身耐压不够高。

3、可控硅触发不可靠。

回答者:鹅卵石- 初级工程师第9级 2009-1-14 08:58

好东西哦,收藏

回答者:呛水的鱼- 资深学长第3级 2009-1-14 09:05

我觉得如果长期正常使用时出现IGBT,晶闸管,快熔损坏,首先应该主要负载是否有问题,比如

电动机是否相间短路或者相地短路造成大电流,或者负载过大,电动机电缆破裂造成相地短路等等。

回答者:康庄大道- 新生第1级 2009-1-14 09:05 整流/回馈单元在逆变时晶闸管击穿应该是质量或使用环境问题,与负载和使用没有关系

单相全控桥式晶闸管整流电路的设计

电力电子技术课程设计报告题目:单相全控桥式晶闸管整流电路的设计

目录 第1章绪论 (3) 1.1 电力电子技术的发展 (3) 1.2 电力电子技术的应用 (3) 1.3 电力电子技术课程中的整流电路 (4) 第2章系统方案及主电路设计 (5) 2.1 方案的选择 (5) 2.2 系统流程框图 (6) 2.3 主电路的设计 (7) 2.4 整流电路参数计算 (9) 2.5 晶闸管元件的选择 (10) 第3章驱动电路设计 (12) 3.1 触发电路简介 (12) 3.2 触发电路设计要求 (12) 3.3 集成触发电路TCA785 (13) 3.3.1 TCA785芯片介绍 (13) 3.3.2 TCA785锯齿波移相触发电路 (17) 第4章保护电路设计 (18) 4.1 过电压保护 (18) 4.2 过电流保护 (19) 4.3 电流上升率di/dt的抑制 (19) 4.4 电压上升率du/dt的抑制 (20) 第5章系统仿真 (21) 5.1 MATLAB主电路仿真 (21) 5.1.1 系统建模与参数设置 (21) 5.1.2 系统仿真结果及分析 (22) 5.2 proteus 触发电路仿真 (26) 设计体会 (28) 参考文献 (29) 附录A 实物图 (30) 附录B 元器件清单 (31)

第1章绪论 1.1 电力电子技术的发展 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。这就使得晶闸管的应用受到了很大的局限。70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。在80年代后期,以绝缘栅极双极型晶体管(IGBT)为表的复合型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。 1.2 电力电子技术的应用 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、

晶闸管整流电源技术方案

1.概述 1.1基本要求和技术指标 63MW晶闸管整流电源是大功率电弧加热设备的主要组成部分,主要为专用大功率电弧加热设备提供电源。该电源由主回路、控制系统构成。 主回路由交流进线部分、晶闸管整流器、直流回路等部分构成。 控制系统由模型计算机、整流器控制器、信号检测装置、触发隔离电路、保护电路等部分构成。 整流电源的主要数据为 额定输入电压:10 kV 额定输出电流:3 kA 输出功率:63MW 分组数量: 4 单组最大功率:16MV A 单组额定输出:3000A,5500V 主要技术指标 恒流特性输出时要求 调压范围:0-空载电压连续可调 恒流偏差:1 电流调节响应时间:20ms~40ms(能人工设定) 调节时间:300mS-3000mS(能人工设定) 电流调节超调量:<20% 调节过程中动态偏差:<5% 回升时间:100mS 晶闸管整流电源其它功能要求 (1)供电特性 电源输出电压能够自动平滑调节; 电源的整体控制能满足加热设备不同工艺要求; 电流给定,起弧电压给定以及各反馈环节工作可靠,性能稳定,相同状态下电参数应准确重复;

(2)运行工况 63MW电源采取负极接地方式。可分为两套独立的电源同时或单独运行。并满足以下运行工况: (3)机组组合和运行方式 整流机组可以通过串、并联输出满负荷运行,供电参数如下指标: 也能满足电弧加热器的主要工作点

单组运行时构成12相或以上整流,全系统构成24相或更多相整流。 多机组串联运行时,应允许在试验过程中一组或多组退出运行,允许若干组机组交流侧不供电投运,该机组作为其它机组串联运行通道使用。允许在实验过程中,投入新的机组 多机组串并联运行时,电源调节方式应满足以下要求: a.加热设备启动时采取等α角控制; b.运行过程中(含启动过程),允许一组机组定α角运行(即恒压运行)其

可控硅及其整流电路

上次课内容 1、集成功放及应用。(了解) 2、变压器耦合功放的分析。(理解) 3、功放管的散热。(了解) 4、功率放大器一章习题课。 本次课内容(2学时)(可视学时情况选择讲授或不讲) 第七章 直流电源 §7-1 可控硅及其伏安特性 7-1-1 可控硅的结构和符号 图1 可控硅的结构 全称是硅可控整流元件,又名晶闸管。外形有平面型、螺栓型,还有小型塑封型等几种。图1(a)是常见的螺栓型外形,有三个电极:阳极a、阴极k 和控制极g。图1(b)是可控硅的符号。图1(c)是内部结构示意图。 图1(c):可控硅由、、、四层 半导体组成。从引出的是阳极a、从引出的 是阴极k、从引出的是控制极g;内部有三个结,分别用、和表示。 7-1-2 可控硅的工作原理 1P 122N P N 1P 2N 2P PN 1J 2J 3J 图2 可控硅工作特点的实验 演示电路如图2(a),阳极a 接电源正极、阴极k 接电源负极;开关S 断开,H 不亮,可控硅不导通。S 闭合,即控制极g 加正向电压,如图2(b),灯H 亮,可控硅导通。可控硅导通后,将S 断开,灯仍亮,如 图2(c),表明可 控硅仍导通,说明 可控硅一旦导通 后,控制极就失去 了控制作用。要关 断可控硅,可去掉正向电压或减小正向电流到可控硅难以维持导通,则可控硅关断。

如可控硅加反向电压,则无论是否加控制极电压,可控硅均不会导通。若控制极加反向电压,则无论可控硅阳极与阴极之间加正向还是反向电压,可控硅均不会导通。 可控硅的工作特点: 1、可控硅导通必须具备两个条件:一是可控硅阳极与阴极间必须接正向电压,二是控制极与阴极之间也要接正向电压; 2、可控硅一旦导通后,控制极即失去控制作用; 3、导通后的可控硅要关断,必须减小其阳极电流使其小于可控硅的维持电流。 H I 图3 可控硅工作原理分析 图3为可控硅的内部结构示意图: 可控硅可以看成由一只NPN 型三极管 与一只PNP 型三极管组成。如仅在阳 极a 和阴极k 之间加上正向电压,由 于三极管发射结无正偏电压而无 法导通。若a、k 间加上正向电压,并 在管的基极g 加上正向电压,使产生基极电流,此电流经管放 大以后,在集电极上产生2T 1T 1 T G I 1T 1T G I 1β的电流,又因为的集电极电流就是的基极电流,所以经过再次放大,在管的集电极电流就达到1T 2T 2T 2T G I 21ββ,而此电流又重新反馈到管作为的基极电流又一次被放大,如此反复下去,与两管之间因为有如此强烈的正反馈,使两只三极管迅速饱和导通,即可控硅阳极a 与阴极k 之间完全导通。以后由于基极上自动维持的正反馈电流,所以即使去掉基极g 上的正向电压,和仍能继续保持饱和导通状态。可控硅导通时,、饱和导通总压降约1V 左右,如果阳、阴极之间正向电压太低,使流过阳极的电流难以维持导通,、就截止,从而可控硅关断。 1T 1T 1T 1T 2T 1T 1T 1T 2T 1T 2T 1T 2T 可控硅控制极的电压、电流比较低(电压只有几伏,电流只有几十至几百毫安),但被控制的器件可以承担很大的电压和通过很大的电流(电压可达几千伏,电流可大到几百安以上)。可控硅是一种可控的单向导电开关,常用于以弱电控制强电的各类电路中。 7-1-3可控硅的主要参数 1、额定正向平均电流 在规定的环境温度和散热条件下,允许通过阳极和阴极之

晶闸管可控整流技术直流电机调速系统

目录 1.引言 (3) 2.原始资料和数据 (3) 3.电路组成和分析 (4) 3.1工作原理 (4) 3.2对触发脉冲的要求 (5) 3.3晶闸管的选型 (6) 3.4参数计算 (7) 3.5二次相电压U2 (7) 3.6一次与二次额定电流及容量计算 (8) 4.触发电路的设计 (9) 5保护电路的设计 (10) 5.1电力电子器件的保护 (10) 5.2过电压的产生及过电压保护 (11) 5.3过电流保护 (11) 6.缓冲电路的设计 (12) 7.总结 (14) 参考文献 (15) 晶闸管可控整流技术直流电机调速系统设计 摘要:可控整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。由晶闸管等组成的可控整流主电路,其输出端的负载,可以是电阻性负载、大电感性负载以及反电动势负载。以上负载往往要求整流能输出在一定范围内变化的直流电压。为此,只要改变触发 电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交 流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。 该系统以可控硅三相桥式全控整流电路构成系统的主电路,采用同步信号为锯齿波的触发电路,本触发电路分成三个基本环节:同步电压形成、移相控制、脉冲形成和输出。此外,还有双窄脉冲形成环节。同时考虑了保护电路和缓冲电路,通过参数计算对晶闸管进行了选型,也对直流电动机进行了简单的介绍。 关键词:可控整流晶闸管触发电路缓冲电路保护电路 1.引言 当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是自动控制系统的主要形式。 由可控硅整流装置供给可调电压的直流调速系统(简称KZ—D系统)和旋转变流机组及其它静止变流装置相比,不仅在经济性和可靠性上有很大提高,而且在技术性能上也显示出较大的优越性。 可控硅虽然有许多优点,但是它承受过电压和过电流的能力较差,很短时间的过电压和过电流就会把器件损坏。为了使器件能够可靠地长期运行,必须针对过电压和过电流发生的原因采用恰当的保护措施。为此,在变压器二次侧并联电阻和电容构成交流侧过电压保护;在直流负载侧并联电阻和电容构成直流侧过电压保护;在可控硅两端并联电阻和电容构成可控硅关断过电压保护;并把快速熔断器直接与可控硅串联,对可控硅起过流保护作用。 随着电力电子器件的大力发展,该方面的用途越来越广泛。由于电力电子装置的电能变换效率高,完成相同的工作任务可以比传统方法节约电能10%~40%,因此它是一项节能技术,整流技术就是其中很重要的一个环节 2.原始数据: 1、输入交流电源:

(完整版)晶闸管可控整流技术直流电机调速系统设计

目录 1 绪论 (1) 1.1 课题背景 (1) 1.2 直流电动机调压调速可控整流电源设计简介 (1) 1.3 课题设计要求 (1) 1.4 课题主要内容 (2) 2 主电路设计 (3) 2.1 总体设计思路 (3) 2.2 系统结构框图 (3) 2.3 系统工作原理 (4) 2.4 对触发脉冲的要求 (5) 3 主电路元件选择 (6) 3.1 晶闸管的选型 (6) 4 整流变压器额定参数计算 (8) 4.1 二次相电压U2 (9) 4.2 一次与二次额定电流及容量计算 (13) 5 触发电路的设计 (15) 6 保护电路的设计 (18) 6.1 过电压的产生及过电压保护 (18) 6.2 过电流保护 (19) 7 缓冲电路的设计 (20) 8 总结 (23)

1 绪论 1.1 课题背景 当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是 自动控制系统的主要形式。 由可控硅整流装置供给可调电压的直流调速系统(简称KZ—D系统)和旋转变流机组及其它静止变流装置相比,不仅在经济性和可靠性上有很大 提高,而且在技术性能上也显示出较大的优越性。 可控硅虽然有许多优点,但是它承受过电压和过电流的能力较差,很短时间的过电压和过电流就会把器件损坏。为了使器件能够可靠地长期运 行,必须针对过电压和过电流发生的原因采用恰当的保护措施。为此,在 变压器二次侧并联电阻和电容构成交流侧过电压保护;在直流负载侧并联 电阻和电容构成直流侧过电压保护;在可控硅两端并联电阻和电容构成可 控硅关断过电压保护;并把快速熔断器直接与可控硅串联,对可控硅起过 流保护作用。 随着电力电子器件的大力发展,该方面的用途越来越广泛。由于电力电子装置的电能变换效率高,完成相同的工作任务可以比传统方法节约电 能10%~40%,因此它是一项节能技术,整流技术就是其中很重要的一个环 节。 1.2 直流电动机调压调速可控整流电源设计简介 该系统以可控硅三相桥式全控整流电路构成系统的主电路,采用同步信号为锯齿波的触发电路,本触发电路分成三个基本环节:同步电压形成、 移相控制、脉冲形成和输出。此外,还有双窄脉冲形成环节。同时考虑了 保护电路和缓冲电路,通过参数计算对晶闸管进行了选型。 1.3 课题设计要求 1、输入交流电源: 2、三相140V f=50Hz 3、直流输出电压:50~150V 5、直流输出电流额定值50A 6、直流输出电流连续的最小值为5A

三相桥式晶闸管整流装置matlab仿真

《计算机仿真技术》课程大作业 自动化112 雷禧生 1102100409 3、假设调速系统中采用三相桥式晶闸管整流装置,直流电动机:220V , 14A ,1500r/min ,C e =0.12V/(r/min ),允许过载倍数λ=1.5;晶闸管装置:K s =80;电枢回路总电阻:R=6.5Ω;时间常数:T 1=0.02s ,T m =0.25s ,反馈系数:α=0.004V/(r/min),β=0.4V/A ;反馈滤波时间常数:T oi =0.005s ,T on =0.005s ,对系统进行仿真。 4、要求参照例14.4.1 完成仿真实验,记录仿真结果,并计算转速超调量。 1、基本原理 (1)电动机数学模型 他励直流电动机的回路电压和转矩平衡的微分方程为: E dt dI L RI U d d d ++=0 dt dn GD T T L e ? =-3752 2)晶闸管整流装置的数学模型 晶闸管触发与整流装置可以看成是一个具有纯滞后的放大环节,考虑到失控时间很小,忽略其高次项,则其传递函数可近似成一阶惯性环节。

()()1 0+≈ s T K s U s U s ct d (3)双闭环调速系统的数学模型 2、控制器设计 双闭环调速系统的电流调节器和转速调节器即ASR 和ACR ,均采用PI 调节器。 其中取1i T τ=,1 ,2I s oi i i K T T T T ==+∑ ∑ ,I i i s K R K K τβ= 电流调节器: ()1 i ACR i i s W s K s ττ+=转速调节器: ()1 n ASR n n s W s K s ττ+=其中取5n n T τ=?∑,2on n i T T T =+∑∑,()12e m n n h C T K haRT β+=∑

单相半控桥式晶闸管整流电路的设计

单相半控桥式晶闸管整流 电路的设计 Prepared on 22 November 2020

课程设计题目单相半控桥式晶闸管整流电路的设计 (带续流二极管)(阻感负载)学院自动化 专业自动化 班级100...班 姓名 指导教师许湘莲 2012年12月29日

一课程设计的性质和目的 性质:是电气信息专业的必修实践性环节。 目的: 1、培养学生综合运用知识解决问题的能力与实际动手能力; 2、加深理解《电力电子技术》课程的基本理论; 3、初步掌握电力电子电路的设计方法。 二课程设计的内容: 单相半控桥式晶闸管整流电路的设计(带续流二极管)(阻感负载)? 设计条件: 1、电源电压:交流100V/50Hz 2、输出功率:500W 3、移相范围0o~180o 三课程设计基本要求 1、两人一个题目,按学号组合; 2、根据课程设计题目,收集相关资料、设计主电路、控制电路; 3、用MATLAB/Simulink对设计的电路进行仿真; 4、撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形,绘出触发信号(驱动信号)波形,说明仿真过程中遇到的问题和解决问题的方法,附参考资料; 5、通过答辩。

摘要 电力电子技术课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。本次课程设计要完成单相桥式半控整流电路的设计,对电阻负载供电,并使输出电压在0到180伏之间连续可调,由于是半控电路,因此会用到晶闸管与电力二极管。此外,还要用MATLAB对设计的电路进行建模并仿真,得到电压与电流波形,对结果进行分析。 关键词:半控整流晶闸管

晶闸管整流直流电动机调速系统

晶闸管整流直流电动机调速系统设计 概述:许多机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能。而直流调速系统调速范围广、静差率小、稳定性好以及具有良好的动态性能,在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。双闭环直流调速系统是直流调速控制系统中发展得最为成熟,应用最广泛的电力传动系统。它具有动态响应快、抗干扰能力强等优点。 本此设计主要:就是针对直流调速装置,利用晶闸管相控整流技术,结合集成触发器芯片和调节器,组成晶闸管相控整流直流电动机调速系统,主要应用的芯片是TCA785集成移相触发控制芯片,实现调速系统。同时设计出完整的电气原理图,将分别介绍各个模块的构成原理和使用方法。 关键词:双闭环直流调速晶闸管相控 1 设计意义及要求 1.1 设计意义 电力电子装置是以满足用电要求为目标,以电半导器件为核心,通过合理的电路拓扑和控制方式,采用相关的应用技术对电能实现变换和控制装置。 通过此次课程设计要求学会电力电子装置的设计,能够利用相控整流装置对直流电动机进行调速系统的设计。

1.2 设计要求 本次课程设计的题目是晶闸管相控整流直流电动机调速系统设计。 已知直流电动机参数:N P =3KW ,N U =220V ,N I =17.5A ,N n =1500min r 。要求采用集成触发器及调节器构成转速电流闭环的直流调速系统。设计绘制该系统的原理图,并计算晶闸管的额定电压和额定电流。 2 系统电路设计 根据设计的要求,可将设计分为两大部分,一是主电路及系统原理图,二是控制电路,系统原理图部分我们采用的是三相全控整流装置,在这里我们使用三个TCA785芯片以便满足设计的要求,同时要加入转速电流双闭环系统,更好的实现调速的要求,达到稳定的速度效果。电路原理总图见附录。 2.1 系统主电路 晶闸管相控整流电路有单相、三相、全控、半控等,调速系统一般采用三相桥式全控整流电路,如图1所示。在变压器二次侧并联电阻和电容构成交流侧瞬态过电压及滤波,晶闸管并联电阻和电容构成关断缓冲;快速熔断器直接与晶闸管串联,对晶闸管起过流保护作用。

单相双半波晶闸管整流电路设计(纯电阻负载)

《电力电子技术》课程设计任务书 一、设计课题目 单相双半波晶闸管整流电路设计(纯电阻负载) 二、设计要求 1、单相双半波晶闸管整流电路的设计要求为: 负载为阻性负载. 2、技术要求: (1) 电网供电电压:交流100V/50Hz; (2) 输出功率:500W; (3) 移相范围:0°—180°; 在整个设计中要注意培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。主电路具体电路元器件的选择应有计算和说明。课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。 在整个设计中要注意培养独立分析和独立解决问题的能力。要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。 课题设计的主要内容是供电方案的选定,主电路的设计,电路元件的选择,保护电路的选择,主电路的分析说明,主电路元器件的计算和选型,以及控制电路设计。报告最后给出所设计的主电路和控制电路标准电路图。 前述 电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。在电能的生产和传输上,目前是以交流电为主。电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机

可控硅整流装置的工作原理及保护措施

龙源期刊网 https://www.doczj.com/doc/207040610.html, 可控硅整流装置的工作原理及保护措施 作者:贾通均王井泉 来源:《城市建设理论研究》2013年第09期 摘要:在整流装置过载或输出短路时,保护措施能起到安全保护功能,归结为限流保护 和过电流保护。这两种保护是否可靠,直接影响控硅整流装置的质量,代表着控硅整流装置的水平。本文主要介绍了相控可控硅整流装置的控制原理,及限流、过电流保护在相控可控硅整流充电装置的应用。关键词:可控硅整流装置开环控制闭环控制限流与过电流保护中图分类号: U264.3+71 文献标识码: A 文章编号:1 概述相控整流充电装置不论在电力系统还是在 现代工业的各行各业中已得到广泛应用。例如在电力系统中,即可作为系统控制、保护的工作电源,又可作为蓄电池的充电装置。可控硅整流装置要安全运行,必须有可靠的保护措施。在整流装置过载或输出短路时,保护措施能起到安全保护功能,归结为限流保护和过电流保护。这两种保护是否可靠,直接影响控硅整流装置的质量,代表着控硅整流装置的水平。 2 可控硅整流装置的控制原理可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件,一般由两晶闸管反向连接而成.它的功用不仅是整流,还可以用作无触点开关以快速接通或切断电路,实现将直流电变成交流电的逆变,将一种频率的交流电变成另一种频率的交流电等等。可控硅和其它半导体器件一样,其有体积小、效率高、稳定性好、工作可靠等优点。它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用的元件。可控硅整流就是利用可控硅整流元件把交流电变换成大小可调的直流电。以单相全桥为例,可控硅整流装置的输出 电压Ud与可控硅控制角α之间的关系如下式: Ud=0.9Uz1cosα Ud:可控硅整流装置输出电压; Uz1:整流变压器二次侧线电压; α:可控硅控制角由上式可以看出,可控硅整流装置的输出电压与可控硅控制角α有关。α实际上由控制电压Uy决定.即当Uy增加时,α增大,则Ud减小;当Uy减小时,α减小,Ud增大。所以调节Uy的大小,可以控制整流装置的输出电压值。这就是整流装置的开环控制(手动控制)。; 整流装置的输出通过自动调节单元来控制Uy这一过程便构成了可控硅整流 装置的闭环控制(自动控制),调节单元为整个控制系统的核心,这个调节单元设计的如何,决定着整流装置能否正常工作。调节单元的构成及原理如图2所示。图中UVF、UIF为装置输出电压或电流反馈信号。当只有电压反馈UVF时,整流装置工作在恒压状态下;当只有电流反馈UIF时,装置工作中恒流状态下。R1、R3、R5、C、N构成了PI调节器。 PI调节器输出Uy与电压反馈UVF之间的关系为:

晶闸管整流装置的谐波

1 晶闸管整流装置的谐波分析 谐波电流注入电网,使供电系统各处电压产生谐波分量,有可能和供电系统形成并联谐振或串联谐振,所在供电系统接入大功率的整流装置之前,应进行谐波分析,预测谐波量的大小及产生的危害,并提出相应的抑制措施。 整流装置所产生的谐波,有特征谐波和非特征谐波之分。特征谐波是指整流装置运行在正常条件下所产生的谐波,所谓正常条件是指:(1)网侧电压各相对称且为正弦波;(2)变压器、整流臂(阀)的参数和整流延迟角也对称;(3)直流侧电流为理想恒定值。特征谐波具有离散性的幅值频谱,可利用数学方法进行比较准确的计算。下面以中国铝业河南分公司水电厂(以下简称:河电)整流直降工程中的整流装置为例来分析晶闸管整流产生的高次谐波的特征。 1.1 晶闸管整流设备的概况 河电整流所现装备4组整流直降机组,4台整流变压器参数如下: A I kVA S V kV U ZHSFP N N N )142802/(74.249:49588:1005/115:?型号: 接线方式:N d n I I U d d Y %23.0%;84.10;/115==Φ 移相角分别为: 5.22,5.7,5.7,5.22++-- 4台整流柜参数如下: 输入电压:V 1000~3 AC 接线方式:同相逆并联 额定输出:40.25MW 输出电压:1120V DC 输出电流:35000A DC 其接线方式如图1 所示

每台整流变阀侧共有两组(共6相)交流绕组,以# 1变为例,即分别输出111111c b a 、、和121212c b a 、、两组三相对称交流电压,同相之间互差 180电角度,与网侧绕组分别组成11/d Y n 和5/d Y n 的接线组别,考虑到4台整流变相邻之间有 15的移相角(即从 5.22~5.7~5.7~5.22--++)则整流变阀侧电压相序如图2所示。 整流柜采用同相逆并联的接线方式,组成两组三相桥式全控整流电路,其整流柜接线如图3(以整流柜接线为例,每个桥臂上有四个晶闸管并联使用,图中只画出一个)所示。 从图1~图3的分析可知:河电直降整流系统,在4台整流机组同时运行时,对于110kV 的网侧来说,等效于一个整流相数为24相,整流脉波数P=48的整流线路。则该整流系统在网侧所产生的高次谐波的谐波次数n 由下式决定: 1±=kp n 式中: 整流脉波数 ; 、、自然数,取谐波次数; ------p k n (321)

国产最大晶闸管流电源

国产最大的晶闸管整流电源 在新安铝厂的应用与实践 杨万欣王志伟 摘要:国产最大的晶闸管整流机组,采用同相逆并联三相桥式整流电源,单台机组整流电流达82KA ,直流系列电流达300KA 、电压750V ,从2002 年6 月运行至今,稳流精度达0.1% ,性能良好,达到了较好的技术指标,并取得了显著的经济的效益。 关键词:晶闸管整流电源同相逆并联稳流精度 新安铝厂Ⅲ期工程年产13 万吨电解铝,采用大型300KA 预焙阳极电解槽,整流机组在容量上属国产最大的晶闸管整流机组,由六台三相110KV 有载调压自藕直降式移相整流变压器,每台整流变压器带两台由九江整流器厂生产的KES- — 82KA/750V 晶闸管整流柜,该整流柜采用三相桥式同相逆并联结构,冷却方式为单机组,全封闭、小循环去离子水内冷却技术,电解系列电流300KA 、电压750V ,从2002 年6 月投运至今,运行稳定,稳流精度达0.1% ,使电解生产的各项经济技术指标达到较好的水平。其中电流效率达94.3% ,属国内领先水平。 铝电解是电解槽通以大电流将氧化铝粉电解成金属铝的高耗能生产过程。近几年我国铝电解技术有了很大的发展,160KA 、280KA 、300KA 预焙阳极电解槽已成为我国铝电解的主导槽型,铝电解工艺生产制度要求采用恒电流供电,这样可以提高电流效率;降低吨电耗,延长电解槽运行寿命,有显著的经济效益,所以整流电源是电解铝厂的核心装置,其整流效率、稳流精度和供电可靠性直接关系到铝电解的原铝综合交流电耗。

综上所述:西方国家铝厂用变流装置均设有自动稳流系统,我国目前正在生产的一百三十多家铝厂中,除少数近十年有引进整流电源的铝厂设有自动稳流系统外,其它则屈指可数,有的虽设有饱和电抗器自动稳流系统,但由于种种原因,未能投入运行,这是导致我国铝电解工艺某些指标,长期落后于西方国家的一个重要原因。 二、新安铝厂三期工程300KA系列整流电源方案确定 新安铝厂Ⅰ期工程为160KA 预焙电解槽,年产6 万吨电解铝,采用有载调压变压器和二极管加饱和电抗器自动稳流,使生产指标得以改善,但饱和电抗器噪音严重超标达85 分贝以上无法解决。 新安铝厂Ⅲ期工程时,因整流所距村庄住宅区仅一百多米,如果整流设备噪音超标,直接影响村民的正常生活,更不符合环境保护的要求,公司领导决定论证采用国产可控硅整流设备,取消饱和电抗器的噪音源。 2 .可控硅整流技术的优势 ? 稳流精度高。由于晶闸管整流调压范围广(0~100% ),反应速度快、电磁惯性小,过程是毫秒级的,无论是电网波动还是阳极极效应等一切扰动因素,其输出电流始终稳定在给定值上。动态稳流精度可达0.1% ,也就是说,任何瞬间,对于300KA 的电解系列,其电流波动不超过0.3KA 。能提供恒定的电流输出,为电解工艺实现最佳工况提供了前提条件,而且有利于实现智能控制。提高了电流效率而实现了节能增产,延长电解槽使用寿命。这是铝电解工艺所企望的理想供电。 ? 整流效率高,变压器投资低。与二极管相比,少了一台饱和电抗器,可降低噪音。 ? 高压断路器无载跳闸。在机组运行中,正常投、退或直流侧发生短路故障时,无论机组由于什么原因发生分闸和故障跳闸时,可控硅整流器均可在几十毫秒内强迫直流电流迅速降到零,然后断路器实现无载跳闸,延长了断路器寿命,降低了维修工作量。 ? 可靠性强。可控硅整流器的调压过程中无接点,而二极管的调压时通过有载开关的接

晶闸管单相桥式可控整流电路

晶闸管单相桥式可控整流电路 说明书 学院:电信学院 专业班级:09级电气二班 姓名:张永来 学号:09230217 指导老师:杨巧玲

摘要 本设计是以matlab编程软件下进行的,首先安装matlab软件,在根据设计任务说明说上要求的设计出单相桥式可控整流电路,用晶闸管的可控性能组成,设计具有高效,精度高等,而在这之前必须要学会使用MA TLAB软件。电阻电感性负载单相桥式可控整流电路的各个波形要有一定的了解和熟悉.并且参考个资料进行设计。

目录第一章设计要求 第二章制度设计方案 第三章主电路的设计 第四章元件和电路参数的计算 第五章系统仿真 第六章波形分析 第七章设计总结 附录参考文献

第一章设计要求 1.1设计任务及技术要求 计算机仿真具有效率高,精度高,可控性高和成本低等特点,已经广泛应用与电力电子电路的分析和设计中。计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,提高分析和设计能力,避免因为解释法在近似处理中带来的较大误差,还可以与实物调制和调试相互补充,最大限度地降低设计成本,缩短系统研制周期。可以说,电路的计算机仿真技术大大加速了电路的设计和试验过程。通过本次仿真,学生可以初步认识电力电子计算机仿真的优势,并掌握电力电子计算机仿真的基本方法。 1,晶闸管单相全控桥式整流电路,参数要求: 电网频率f=50Hz 电网额定电压U1=380V 电网电压波动正负10% 阻感性负载电压0——190V可调。 2设计内容 (1)制定设计方案

(2)主电路设计及主电路元件选择 (3)驱动电路和保护电路设计及参数计算,器件选择 (4)绘制电路原理图 (5)总体电路原理图及其说明书 3仿真任务要求 (1)熟悉matlab、simulink、power system中的仿真模块用法及功能(2)根据设计电路搭建仿真模型 (3)设置参数并进行仿真 (4)给出不同触发角时对应的Ud Id i2 和Ivt1 的波形 4 设计总体要求 (1)熟悉整理和触发电路的基本原理,能够运用所学的理论知识分析设计任务 (2)掌握基本电路的数据分析,处理;描绘波形并加以判断 (3)能正确设计电路,画出线路图,分析电路原理 (4)广泛收集相关技术资料 (5)按时完成课设设计任务,认真,正确的书写课程设计报告

小功率晶闸管整流电路设计

小功率晶闸管整流电路设计 一、设计目的及意义 电力电子技术的课程设计是《电力电子技术》课程的一个重要的实践教学环节。它与理论教学和实践教学相结合,可加深理解和全面掌握《电力电子技术》课程的基本内容,可使我们在理论联系实际、综合分析、理论计算、归纳整理和实验研究等方面得到综合训练和提高,从而培养我们具有独立解决实际问题和从事科学研究的初步能力。 主要目的在于: 1.通过设计提高学生综合运用知识的能力,巩固和扩展学生的知识领域、培养学生严谨的科学态度和提高独立工作的能力; 2.通过设计使学生初步掌握电力电子系统设计方法,熟悉国家有关技术和经济方面的方针政策和安全规程,训练使用设计手册的技术资料的能力; 3.培养学生利用计算机编写技术和绘制设计图样的能力。 二、设计的原始数据及具体要求 Ⅰ)原始数据 1.380V三相交流供电电源; 2.负载为并励直流电动机,相关数据如下表所示: 型号额定功率 (KW) 额定电压 (V) 额定电流 (A) 额定转速 (r/min) 电枢回路电感 ( H) Z2-92 30 220 161.5 750 3.62 3.整流装置输出的直流电压和电流应满足负载要求; 4.电路应具有一定的稳压和保护功能,同时还具有较高的防止过电压和过电流的抗干扰能力。 Ⅱ)具体要求 1.方案论证及选择; 2.整流变压器电压及容量计算; 3.晶闸管元件选择; 4.电抗器容量计算; 5.保护电路的元件选择; 6.触发电路选择; 7.同步变压器及同步电压选择; 8.完成课程设计说明书一份,设计晶闸管整流电路原理图一张。

三、拟定方案 在三相整流电路中,三相零式电路突出的优点是电路简单,用的晶闸管少,触发器也少,需要200V电压的用电设备直接用380V电网供电,而不需要另设整流变压器。但是要求晶闸管耐压高,整流输出电压脉动大,需要平波电抗器容量大,电源变压器二次电流中有直流分量,增加了发热和损耗。而且往往需要从变压器单独敷设零线。而三相桥式整流电路,在输出整流电压的同时,电源相电压可较零式整流电路小一半,显著减轻了晶闸管和变压器的耐压要求。变压器二次绕组电流中没有直流分量,利用率高。输出整流电压脉动小,所以平波电抗器容量也小。三相桥式整流电路缺点是整流器件用的多,需要220V电压的设备也不能用380V电网直接供电而需要整流变压器。三相半控桥式整流虽然触发电路和整流器件较少,但整流输出电压脉动大,所以选择三相全控桥式整流电路。 1.三相桥式全控整流电路带电阻负载时的电路原理图及波形:(如下图所示) 图1 三相桥式全控整流电路 a =0? a =30?

可控硅整流装置的控制原理

1 可控硅整流装置的控制原理 1.1可控硅整流装置的开环控制 以三相全控桥为例,可控硅整流装置的输出电压Ud与可控硅控制角α之间的关系如下: Ud=1.35Uzlcosα 式中:Ud—可控硅整流装置输出电压;Uzl—整流变压器二次侧线电压;α—可控硅控制角。 由上式可以看出,可控硅整流装置的输出电压与可控硅控制角α有关系。在如图1中α实际上由控制电压Uy决定,即当Uy增加时,α增大,则Ud减小;当Uy减小时,α减小,则Ud增大。所以调节Uy的大小,可以控制整流装置的输出电压值。这便构成了整流装置的开环控制。 1.2可控硅整流装置的闭环控制 整流装置的输出通过调节单元,来控制Ud这一过程便构成了可控硅整流装置的闭环控制。如图2所示。图中的调节单元为整个控制系统的核心,这个调节单元设计的如何,决定着整流装置能否正常工作。 1.3调节单元 调节单元的构成及原理如图3所示。图中Uvf为装置Uif为装置输出电压或电流反馈信号。当只有电压

反馈Uvf时,整流装置工作在恒压状态下;当只有电流反馈UIf时,装置工作在恒流状态下。R1、R3、R5、C、N构成了PI调节器。PI调节器输出Uy与电压反馈Uvf之间的关系为: 由式中可以看出,Uvf决定Uy,从而决定整流装置的输出电压Ud,这样就构成了一个自动调节系统。这一调节单元的加入,使整流装置自动工作在恒压或恒流状态。 当电网波动或整流装置负载变化而引起整流装置输出电压高于输出整定值时,电压反馈Uvf升高,Uy 也升高,则控制角α增大。由整流装置输出电压公式可以看出,Ud相应减小,控制角α减小,使Ud增大,以达到整定值。通过这种自动调节,使整流装置达到稳定电压的目的。整流装置处于恒流工作状态时,其调节过程与恒压状态的调节过程原理相同,这里不再赘述。 RP1为整流装置输出电压或电流值的设置电位器,通过RP1的调整,使装置输出一定的电压或电流值。 2 限流保护 限流保护是在整流装置工作在恒压状态下所加入的一种保护措施。当整流装置输出电流超过额定值时,这种保护能使整流装置的输出电压降低,并使装置继续运行,如图4所示。 电流反馈信号Uif经过运算放大器放大,再经过反相器倒相后,与电压反馈信号Uvf通过选通电路相迭加在一起,做为PI调节器的输入。这里UIfˊ=R7/R5(R2/R1?Uif+R2/R3?URP1) 运算放大器N1与反相器N2完成电流反馈信号的放大作用。电路应该这样设计和调整,当整流装置输出电流超出输出电流额定值,即|UIf|>|URP1|时,保证UIFˊ>Uvf;当整流装置输出电流低于输出电流额定值即|UIf|<|URP1|时,UIFˊ< Uvf,而选通电路能保证: 当UIFˊ>时,Uˊ=UIFˊ-Uv2 当UIFˊ<时,Uˊ=Uvf-Uv1 Uv1—二极管V1的管压降,Uv2—二极管V2的管压降。

电力电子(晶闸管整流).doc

一、概述 二、课程设计方案 本次课程设计的主要内容是利用晶闸管整流来设计直流电机控制系统,主要设计内容有 1、电路功能: (1)、用晶闸管缺角整流实现直流调压,控制直流电动机的转速。(2)、电路由主电路与控制电路组成,主电路主要环节:整流电路及保护电路。控制电路主要环节:触发电路、电压电流检测单元、驱动电路、检测与故障保护电路。 (3)、主电路电力电子开关器件采用晶闸管、IGBT或MOSFET。(4)、系统具有完善的保护 2、系统总体方案确定 3、主电路设计与分析 (1)、确定主电路方案 (2)、主电路元器件的计算及选型 (3)、主电路保护环节设计 4、控制电路设计与分析 (1)、检测电路设计 (2)、功能单元电路设计 (3)、触发电路设计 (4)、控制电路参数确定 设计要求有一下四点: 1、设计思路清晰,给出整体设计框图; 2、单元电路设计,给出具体设计思路和电路; 3、分析所有单元电路与总电路的工作原理,并给出必要的波形分析。 4、绘制总电路图 5、写出设计报告; 主要的设计条件有: 1、设计依据主要参数 (1)、输入输出电压:(AC)220(1+15%)、 (2)、最大输出电压、电流根据电机功率予以选择 (3)、要求电机能实现单向无级调速 (4)、电机型号布置任务时给定 2、可提供实验与仿真条件 三、系统电路设计 1、主电路的设计 (1)、主电路设计方案 主电路的主要功能是实现整流,将三相交流电变为直流电。主要通过整流变压

器和三相桥式全控整流来实现。 整流变压器是整流设备的电源变压器。整流设备的特点是原方输入电流,而副方通过整流原件后输出直流。变流是整流、逆流和变频三种工作方式的总称,整流是其中应用最广泛的一种。作为整流装置电源用的变压器称为整流变压器。工业用的整流直流电源大部分都是由交流电网通过整流变压器与整流设备而得到的。 整流变压器是专供整流系统的变压器。整流变压器的功能: 1.是供给整流系统适当的电压, 2.是减小因整流系统造成的波形畸变对电网的污染。 目前在各种整流电路中,应用最为广泛的是三相桥式全控整流电路,其原理图如图1所示,习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。以下首先分析带电阻负载时的工作情况。 整流输出的波形在一周期内脉动6次,且每次脉动的波形相同,因此在计算其平均值时,只需对一个脉波(即1/6周期)进行计算即可。此外,以线电压的过零点为时间坐标的零点,于是可得当整流输出电压连续时(即带阻感负载时,或带电阻负载α≤60o时)的平均值为 带电阻负载且α>60o时,整流电压平均值为 输出电流平均值为I d = U d/R。 当整流变压器为图1中所示采用星形联结,带阻感负载时,变压器二次侧电流波形如图7中所示,为正负半周各宽120o、前沿相差180o 的矩形波,其有效值为

6脉冲、12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别 6脉冲、12脉冲可控硅整流器原理与区别 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成 桥1的网侧电流傅立叶级数展开为: 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? 故合成的网侧线电流

可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数 的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形 二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。 因此实测值与计算值有一定出入。 理论计算谐波表: 某型号大功率UPS谐波实测数据表: 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计

相关主题
文本预览
相关文档 最新文档