当前位置:文档之家› 轴类零件形位公差的确定

轴类零件形位公差的确定

轴类零件形位公差的确定
轴类零件形位公差的确定

在数控机床上检测形位公差并自动校正工件的方法

【摘要】本文介绍了在数控机床上用寻边器丈量工件尺寸及形位公差,同时快速设定工件零点的方法。它的成功应用不仅为众多的中小企业充分利用数控机床的先进功能、节约购置专用检测设备的投进提供了经验,同时为一些特殊及相似零件的编程加工及检测打开了思路。FANUC和SINUMERIK数控系统是当今应用范围最广泛的两类数控系统,固然在操纵方式上有所差异,但其基本方法是一致的,以下分别做出说明。

【关键词】形位公差寻边器检测

LILi_li

(SJ Petroleum Machinery Co. Sinopec Corp. Jingzhou Hubei, 434024, China)

【Keywords】tolerance of form and position ; detecting ; the edge finder

引言

数控机床和三坐标丈量机均是机电一体化的自动化机械,数控机床是将被加工对象进行数字化处理,然后利用数字信息进行控制,从而加工出合格产品。而三坐标丈量机则是在已加工好的产品上,利用测头与工件型面接触测得一系列点的坐标值,进而计算出尺寸、形位误差值的丈量设备,数控机床与三坐标丈量机均是利用坐标轴的移动实现自身功能。基于这一共同点,该方法在不改变数控机床CNC控制系统的条件下 ,将数控机床原有的功能加以扩展,通过宏程序实现在数控机床上丈量工件尺寸及形位公差等多项功能。

1 硬件部分

寻边器上测头的基本功能是触发和瞄准。测头分为机械式、光电式、电气式三种。测头性能的好坏,决定着丈量方式的难易、丈量精度的高低。这次选用我国生产的应用极为广泛的硬线连接光电式测头,它属于接触式测头,为通用型球头测头,直径6毫米,能测定高度、槽宽、孔径和轮廓外形等。

2 软件部分

2.1 SIEMENS系统中的宏程序

;%_N_WORKPIECE ZERO AUTO SET_MPF (主程序名)

;$PATH=/_N_MPF_DIR

IF R20<=0 GOTOF _L

IF R20>4 GOTOF ERROR

AAA:R20=R20

CASE R20 OF 1 GOTOF _A 2 GOTOF _AA 3 GOTOF _B 4 GOTOF _BB DEFAULT GOTOF _E _A: R[R20]=$AA_IM[X]

记录当前X轴机床坐标系的值,其结果保存在变量R1中

MSG("RECORD R" <

提示用户X轴方向的R1点坐标已经记录,按下复位键

R20=R20+1

M0

_AA: R[R20]=$AA_IM[X]

记录当前X轴机床坐标系的值,结果保存在变量R2中

MSG("RECORD R" <

提示用户Y轴方向的R3点坐标已经记录,按下复位键

R20=R20+1

M0

_BB: R[R20]=$AA_IM[Y]

记录当前Y轴机床坐标系中的值, 其结果保存在变量R4中

MSG("RECORD R"<

在控制面板上显示出工件的直径(长度、宽度尺寸)

M0

GOTOF END

_L: R20=1

GOTOB AAA

ERROR: MSG(“ FIRST ENTER PART NUMBER 0 OR 1 TO &R20”) ;

提示用户修改变量R20的值,首先将数值0或1填进变量R20中。

END:

MSG() 清除所有信息

M30 程序结束并返回程序开头

2.2 FANUC系统中的宏程序

O0999 (宏程序名)

N1

#1 =54.0 (选择坐标系 G54)

#2 =0.1 (塞尺厚度)可根据实际情况改变该数值

IF [#2 LT 0 ] GOTO2

IF [#2 GT 1 ] GOTO2 (若塞尺厚度大于1mm,小于0mm则程

序跳转到N2,面板上显示报警信息) IF [#1 EQ 54 ] GOTO54 (选择G54零点偏置)

IF [#1 EQ 55 ] GOTO55 (选择G55零点偏置)

#3000 =1(YOU INPUT ERR, INPUT 54-55) (机床报警)

N2

#3000=2(YOU INPUT ERR,INPUT 0.0-1.0)

(机床报警:提示输进错误,请输进正确的塞尺厚度0-1.0)

N54

M3S60 (转换至手动状态,并沿水平方向缓慢移动产品,

直至寻边器上的测头刚刚与孔壁(或者工件边沿)

接触,此时寻边器上的指示灯会发光;)

M0

#501 =#5021 (读取当前X方向上X1点的机床坐标值;)

M00 (转换至手动状态,启动主轴旋转,仅在水平方向缓慢移

动产品,直至寻边器上的测头刚刚与孔壁接触,指示灯亮;)

#502 =#5021 (读取当前X方向上X2点的机床坐标值;)

#503 =[#501+#502]/2 (计算工件X方向中心点的坐标;)

#801 =#5221 (记录G54零偏区中 X方向的中心;)

#5221 =#503 (将X方向中心点坐标赋值到G54零偏区中;)

M00 (假如工件是圆形的,则不移动机床;假如工件是矩形的,则

转换至手动状态,启动主轴旋转;在竖直方向移动产品,直至

寻边器上的测头刚刚与工件侧壁接触,如图2所示Y1点的位置;)

#504 =#5022 (读取当前Y方向Y1点的机床坐标;)

M00 (仅在竖直方向缓慢移动产品,直至寻边器上的测头刚

刚与孔壁(或者工件边沿)接触(水平方向不动),); #505=#5022 (读取当前Y方向Y2点的机床坐标;)

#506 =[#504+#505]/2 (计算工件Y方向的中心;)

#802 =#5222 (记录G54 零偏区中Y轴的中心;)

#5222 =#506 (设置G54 零偏区中Y轴的中心;)

M00 (暂停,转换至手动状态,取下寻边器,将刀具装进主轴,移

动刀具到恰好和塞尺接触的位置;预备丈量该刀具Z轴零位;) #508 =#5023 (读取当前Z方向机床坐标;)

#509 =#508-#2-#[11000+#4120] (计算Z轴零位;) (注:#4120为当前主轴上刀具号,

#11001、#11002、#11003......依次为1号刀的刀具

长度补偿值,2号刀、3号刀......,值为正,若刀具

补偿内存形式是B 类,则系统变量从#2001开始,同

时此处11000可以改为2000) #803 =#5223 (记录当前G54 零偏区中Z轴的零点;)

#5223 =#509 (设置当前G54 零偏区中Z轴的零点;)

M00

#510=2*SQRT[[#5021-#5221]*[#5021-#5221]+[#5022-#5222]*[#5022-#5222]]+ 6

(计算工件直径尺寸;)

#511=ABS[#502-#501]-6 (计算工件长度尺寸;)

#512=ABS[#505-#504]-6 (计算工件宽度尺寸;)留意表达式中

的数值“6”代表寻边器测头的直径。

N100 #3006=1(D=#510 L=#511 W=#512 )

(在控制面板上显示工件直径(长度、宽度)各自所对应的变量名)

GOTO 200

M00

N55 M3S60

M00

(G55 X POS AUTO SET) (以下G55的程序与上面相同,已省略;)

N200 M30 程序结束

3 项目的理论依据

3.1 假设坐标轴上A B两点坐标分别为( xA , yA ,zA ) ( xB , yB , zB),根据坐标轴上两点间的间隔、中点计算公式及圆的标准方程

(其中圆心O点坐标为(a,b),半径为r)可求得圆的半径尺寸和A B两点间的间隔 ,其中x=xA - xB;y=yA - yB;z=zA – zB,中点的坐标随之求得。

3.2 假如要检查产品的外形及位置公差,依据的原则为最小条件及最小二乘法。就是利用离散采样数据点的集合,将一定的数学模型进行计算以获得丈量结果的过程。由于应用本丈量方法测得的值均为一些要素表面离散点的坐标,因此要测出需要的几何元素误差值,还要进行相应的数学推导。对于形位误差的丈量,只需用增加工件上的几个丈量点,即可完成产品的直线度、圆度、同轴度等检测项目。丈量精度可以达到0.003毫米,较常规检测更为精确。下面以丈量图1中孔轴线的直线度为例做扼要说明:(公式推导过程省略)

公式(1)

将该直线方程化为一般式:

ax + b - y = 0 公式(2)

然后,求得各个丈量点到该最小二乘线的间隔:

d =(axi - yi + b)/ 公式(3)

设待测公差项目是孔轴线的直线度,公差为小于0.005mm。

先将孔沿轴向划分为N 个截面(本例取N = 4) , 测得每一截面上孔内表面上任意三个点的坐标(见下表) ,根据数学定理:不在同一条直线上的三点确定一个圆, 可求得各截面圆对应的孔中心坐标, 将此N 个孔中心的坐标xi 、 yi 代进式公式(1) ,拟合最小二乘直线y = ax + b,再将各圆心点的坐标代进式(3) ,可求出各个孔的中心点到该直线的间隔;误差值为2dmax。

表寻边器丈量孔内4个截面上任意三点的坐标值

此为任意方向上孔的直线度误差:计算结果Δ = 2dmax = 0.0082mm。该数值大于设定的公差值0.005mm,因此该检测项目分歧格。

图1

图2 圆形工件

图3 矩形工件

图2、图3中红色粗实线代表工件轮廓,玄色细实线小圆圈代表寻边器上测头的不同位置。以水平方向作为X轴方向,以竖直方向作为Y轴方向设定坐标系。按照宏程序中的说明,先将寻边器装进主轴,使主轴低速(一般取60-80转/分钟)旋转,然后转换至JOG方式,找到X1点的坐标,然后依次是X2点,Y1点,Y2点,留意矩形工件与圆形工件在Y1点的位置选择上有区别(如图所示),其余操纵相同,可在20秒钟之内让系统自动记录并在指定的零点偏置区(G54或G55等)中输进工件(X、Y轴)中心点坐标和Z轴的零点,假如是FANUC系统的机床,则会显示出圆形工件的直径(和矩形工件的长度、宽度)所对应的参数号:#510、#511、#512等,这些变量对应的数值保存在OFFSET界面下。查看时先按功能【OFFSET SETTING】键,按下继续菜单键 , 再按下章节选择软键[MACRO](宏);用翻页键或数值键及软键[NO.SRH](NO.搜索)选择参数号,即可显示每一个参数所对应的具体数值。假如是在SIEMENS系统的机床上,则会直接在控制面板上显示出圆形工件的直径(和矩形工件的长度、宽度)尺寸。

4 结束语

通过一段时间的使用测试,该方法完全满足了实际加工和检测过程的需要,可以即时检测产品同轴度、直线度等项目,免往了转运到三坐标丈量仪上进行检测的时间和用度,体现出较明显的高效性、实用性和稳定性。尽管如此,上述方法仍有诸多不足;这里仅提出个人的一点经验,不妥之处还请各位专家批评、指正。

确定形位公差的方法

确定形位公差的方法 驻马店广播电视大学邓建党 科技信息2008(16) P80~81 [摘要]本文通过对形状公差和位置公差各项目之间以及单项公差与综合公差之间关系的论述,确定了标注形位公差的方法。 【关键词】形位公差关系标注 国家标准(GB1182~1184-80,GB,1958-80)<形状和位置公差>包括形状公差——直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度;定向位置公差——平行度、垂直度、倾斜度;定位位置公差——同轴度、对称度、位置度;跳动公差——圆跳动、全跳动。这些项目中有些是单项公差,有些属于综合公差,虽然概念不同,但却有密切联系。在机械产品的设计过程中,合理地选择形位公差项目是保证零件使用要求,提高产品经济效益的重要方面。但是,经常可以见到一些机械图纸上的形位公差选择不合理,出现标注不当或重复标注的现象。这是由于技术人员对它的理解不同,造成应用上的混乱,给零件的制造和检测带来困难,因此,有必要深刻了解形状和位置公差之间的关系及如何标注形位公差。 1 形状公差和位置公差的关系 由于位置公差是关联实际要素的方向或位置对基准所允许的变动全量,而形状公差是单一实际要素的形状所允许的变动全量,关联要索的理想边界控制要素的实际位置和方向,也必然控制了该要素的形状误差。因此,在很多情况下。位置公差足能够控制形状误差的。所以,在确定形状公差和位置公差过程中,一旦位置公差给定后,当作用上已能够控制相应的形状公差,且能满足使用要求时。就不必再提形状公差的要求(见图1)。如果一定要标注形状公差,通常同一要素给出的形状公差值应小于位置公差值(见图2)。

2形状公差的标注 2.1圆柱度与圆度、直线度 圆度公差控制回转体垂直于轴线正截面内的形状误差;素线直线度公差控制圆柱体轴线方向截面内的形状误差;圆柱度公差用来控制任意截面和轴线方向截面的形状误差。因此,圆柱度公差控制了圆柱体横剖面和轴剖面内的各项形状公差,诸如圆度、轴线直线度,素线直线度等。使用时,一般标注了圆柱度就没有必要再标注圆度,直线度。如果一定要单独标注圆度、直线度,则其公差值必须小于圆柱度公差值(见图3),以表示设计上对径向或轴向形状公差提出进一步要求。 从检测的角度来考虑,圆柱度的检测比圆度与直线度困难。所以,对于一般精度的圆柱体零件,最好不要使用圆柱度,此时可分别用圆度和圆柱面素线的平行度来代替使用(见图4)。

形位公差检测方法

一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度

几何公差标注基础知识

一、幾何公差 1.定義:幾何公差係表示物體幾何型態之公差:包括形狀公差及位置公差,亦 即一種幾何型態或其所在位置公差,係指一公差區域。而該型態或其位置,必須界於此公差區域內。 2.應用準則 (1)應用長度或角度公差有時無法達到管制某種幾何型態之目的,則需註明 幾何公差,幾何公差與長度公差或角度公差相牴觸時應以幾何公差為 準。 (2)某一幾何公差可能自然限制第二種幾何公差,若此兩種幾何公差區域相 同時,則不必標註第二種幾何公差,若第二種幾何公差之公差區域較小 時,則不可省略。 1.平行度公差限定時,同時亦限制該平面之真平度誤差。 2.垂直度公差限定時,同時亦限制該平面之真平度誤差。 3.對稱度公差限定時,同時亦限制真平度與平行度誤差。 4.同心度公差限定時,同時亦限制真直度與對稱度誤差。 3. 幾何公差符號

4.標註例 公差框格:公差標註在一個長方形框格內,此長方形框格分成兩隔或多格,框格內由左至右依順序填入下列各項 ●左起第一格內,填入幾何公差符號。 ●第二格內,填入公差數值,若公差區域為圓形或圓柱,則應在此數值前 加一"ψ"符號。 ●如需標示基準,則填入代表該基準或多個基準之字母。 ●如有與公差有關之註解,如"6孔"或"6x"可加註在框格上方 ●在公差區域內,對形狀之指示,可寫在公差框格之附近或用一引線連接 之 A B C 指向公差限制之部位指 示 公 差 之 符 號 說 明 公 差 之 大 小, 單 位 mm 說 明 基 準 面 , 沒 必 要 時 可 省 略

圖例說明 1.真直度 全部軸線須在一個直徑為0.04之圓柱形 公差區域內。 2.真平度 箭頭所指之平面須介於兩個相距0.03的 平行平面之間 3.真圓度 在任一與軸線正交剖面上,其周圍須介於 半徑差為0.03的兩同心圓之間。 4.圓柱度 本圓柱之表面須介於兩個同軸線而半徑 差為0.02的圓柱面之間。

第二章机械零件几何精度形位公差

第四节形状与位置精度 由于加工误差的影响,机械零件的几何要素不仅有尺寸误差,还会产生形状误差和位置误差。 ※形位误差:零件的实际形状、位置对其理想形状、位置的变动量。 零件的形位误差同样将影响零件、机械的精度以及零件间配合的性质。形状和位置误差越大,其形状和位置精度越低;反之,则越高。 形位公差:形位公差是被测实际要素相对于其理想要素允许的最大变动量,形位公差是用以限制形位误差。

一、形位公差的研究对象 形位公差的研究对象就是零件的几何要素 ※几何要素:代表零件几何形状特 性的点、线、面。 几何要素可作如下分类: 指具有几何学意义的要素,即设计时在图样上 给定的要素,它不存在任何误差。在检测 中, 理想要素是评定实际要素形位误差的依 据,但 在实际生产中不可能得到。 实际要素5指零件上实际存在的要素。通常用测得的要 、素代 替。由于测量误差的存在,故测得的要素 并不是实际要素的真实状况。 '理想要素仁 1 ?按存在状态y

I ??? —指构成零件外形的、能直接被人们所感觉到的 轮廓 要素㈡点、线、面。如图所示的锥顶、球面、圆锥面、?? 端平面、圆柱面、圆柱和圆锥的素线。| . ,它是指轮廓要素的对称中心所表示的点、衣、 中心、要素0 面。如图所示的球心、轴线等。中心要素 不能被人们所感 知,可以通过相应的轮廓 要素模拟而体现。 —指图样上给出形状或(和)位置公差要求的要 做测 要素待,是检测的对象 指仅对其自身给出了形位公差要求的要 厂单一要素匕! 素。如图所示,0d 的圆柱面仅给出 L 了圆柱度公差要求,与其它要素无 相对位置关系,故为单一要素。 指与零件上其它要素有功能关系的要素,即 在图样上给出了位置公差要求的要素。 如图所示,0D 圆柱的轴线相对于0d 圆 柱的轴线有同轴功 能要求,故为被测关 联要素 '基准要素口旨用来确定被测要素方向或(和)位置的要素, 如图所 示的圆林0d 的轴线为基准要素 2 ?按结构特征分 〔关联要素仁 3 ?按在形状和位 置公差中所的地位 分 ?

机械零件设计中形位公差的确定性方法研究

机械零件设计中形位公差的确定性方法研究 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

机械零件设计中形位公差的确定性方法研究随着正确地选择和确定形位公差的项目、基准及数值对机械零件的设计是十分重要的。依据机械零件的功能要求。并考虑其使用性、工艺性和经济性的综合效果,详细分析了确定形位公差时公差项目、基准和公差数值的选择方法。零件的功能特性是选择形位公差项目、基准和公差数值的基础;公差间的关系可作为进一步精选它们的依据;同时还应兼顾经济性和测量的方便性。 在机械零件的设计过程中,正确地选择形位公差项目以及合理地确定形位公差数值,不仅直接影响到机器的使用性能和质量,而且关系到零件加工的难易程度和成本高低。形位公差的国家标准规定了l4项并列的形位公差,项目较多,而且有些公差项目之间还存在着从属和包容等关系。因此,机械零件的形位公差设计一直是机械零件设计中的难点。本文将根据形位公差的理论与多年的机械零件设计经验,分析形位公差项目及公差值大小等公差内容的选择依据。为设计者提供参考。 1.形位公差项目的选择 1.依据零件的功能特性初选形位公差项目

选择形位公差项目首先应满足零件的功能要求,主要考虑形位误差对零件使用性能的影响。这种使用性能一般指零件的配合性质、装配互换性、工作精度、可靠性及运动平衡性等。设计时了解和明确所设计零件的使用性能,才能确定为保证这些性能必须选用的形位公差项目。 以下为一些常见的零件功能特性与所需的公差项目:(1)在圆柱形零部件的运动配合中,如果圆柱面接触不良,就会造成局部过早磨损,扩大了配合间隙,降低定心精度,这就需要选择圆度和圆柱度等形状公差限制形状误差,以避免过大的形状误差带来的危害。(2)在移动配合中,形状误差会降低导向精度或破坏密封性;在过盈定位配合中,形状误差会降低连接强度和可靠性;曲面形状误差直接影响机械的工作性能,如汽轮机叶片的曲面等;这些都需要选择相应的形状公差加以限定。(3)位置误差直接影响机器的装配精度和运转精度。例如,发动机中的曲轴和变速器中的齿轮轴,为了保证它们的装配精度和工作性能,就要规定它们的两端支承孔的同轴度,否则就会影响齿轮的啮合精度,产生振动和噪声。 2.依据公差间的关系精选形位公差项目 (1)由尺寸公差控制形位公差。形位公差与尺寸公差具有一定的关联性,有些形位误差可自然地控制在尺寸公差内,就不必再给出形位公差要求。

轴类零件形位公差的确定

在数控机床上检测形位公差并自动校正工件的方法 【摘要】本文介绍了在数控机床上用寻边器丈量工件尺寸及形位公差,同时快速设定工件零点的方法。它的成功应用不仅为众多的中小企业充分利用数控机床的先进功能、节约购置专用检测设备的投进提供了经验,同时为一些特殊及相似零件的编程加工及检测打开了思路。FANUC和SINUMERIK数控系统是当今应用范围最广泛的两类数控系统,固然在操纵方式上有所差异,但其基本方法是一致的,以下分别做出说明。 【关键词】形位公差寻边器检测 LILi_li (SJ Petroleum Machinery Co. Sinopec Corp. Jingzhou Hubei, 434024, China) 【Keywords】tolerance of form and position ; detecting ; the edge finder 引言 数控机床和三坐标丈量机均是机电一体化的自动化机械,数控机床是将被加工对象进行数字化处理,然后利用数字信息进行控制,从而加工出合格产品。而三坐标丈量机则是在已加工好的产品上,利用测头与工件型面接触测得一系列点的坐标值,进而计算出尺寸、形位误差值的丈量设备,数控机床与三坐标丈量机均是利用坐标轴的移动实现自身功能。基于这一共同点,该方法在不改变数控机床CNC控制系统的条件下 ,将数控机床原有的功能加以扩展,通过宏程序实现在数控机床上丈量工件尺寸及形位公差等多项功能。 1 硬件部分 寻边器上测头的基本功能是触发和瞄准。测头分为机械式、光电式、电气式三种。测头性能的好坏,决定着丈量方式的难易、丈量精度的高低。这次选用我国生产的应用极为广泛的硬线连接光电式测头,它属于接触式测头,为通用型球头测头,直径6毫米,能测定高度、槽宽、孔径和轮廓外形等。

如何保证套类工件形位公差

如何保证套类工件形位公差 发表时间:2018-04-23T17:06:27.100Z 来源:《知识-力量》2018年1月下作者:周有奎 [导读] 套类工件是机械零件中精度要求较高的工件之一。套类工件的主要加工表面是内孔、外圆和端面 周有奎 (荆州技师学院湖北荆州 434020) 【内容提要】套类工件是机械零件中精度要求较高的工件之一。套类工件的主要加工表面是内孔、外圆和端面。这些表面不仅有尺寸精度和表面粗糙度要求,而且彼此间还有较高的形状精度和位置精度要求。因此应选用合理的装夹方法。 【关键词】套类工件形位公差保证方法 一、尽可能在一次装夹中完成车削 车削套类工件时,如单件小批量生产,可在一次装夹(俗称一刀下)中尽可能把工件全部或大部分表面车削完毕。这种方法不存在因装夹而产生的定位误差,如果车床精度较高,可获得较高的形位公差要求。但采用这种方法车削时,需要经常转换刀架。如我们在车削衬套工件时,可轮流使用90°车刀、45°车刀、麻花钻、铰刀和切断刀等刀具加工。先用90°车刀车外圆、台阶。再用45°车刀倒角,然后用磨花钻钻孔,最后用切断刀切断工件。 这种方法加工中,如果刀架定位精度较差,则其加工尺寸较难控制,其加工时切削用量也要时常改变。 二、以外圆为基准保证位置精度 在加工外圆直径很大、内孔直径较小、定位长度较短的工件时,多以外圆为基准来保证工件的位置精度。此时一般应用软卡爪装夹工件。 软卡爪是未经淬火的45钢制成,这种卡爪是在本车床上车削成形的,因而可确保装夹精度。其次,当装夹已加工表面或软金属时,不易夹伤工件表面。另外,还可根据工件的特殊形状相应地加工软爪,以装夹工件。因此,软卡爪在工厂中已得到越来越广泛的使用。软卡爪的制作一般采用焊接式,车削夹紧工件的软卡爪的内限位台阶时,定位圆柱应放在卡爪的里面,用卡爪底部夹紧。 三、以内孔为基准保证位置精度 车削中小型轴套、带轮和齿轮等工件时,一般可用已加工好的内孔为定位基准,并根据内孔配置一根合适的心轴,再将套装工件的心轴对顶在车床上,精加工套类工件的外圆、端面等。常用的心轴的实体心轴和胀力心轴等。 1.实体心轴 实体心轴分不带台阶和带台阶两种。 不带台阶的实体心轴又称小锥度心轴或过盈配合心轴,其锥度C=1:1000~1:5000。这种心轴的特点是制造容易、定心精度高(能保证的同轴度可达0.005~0.01mm),但轴向无法定位,承受切削力较小,工件装卸时不太方便。 带台阶的心轴又称间隙配合心轴,其配合圆柱面与工件孔保持较小的配合间隙,工件先靠螺母压紧,常用来一次装夹多个工件。若装上快换垫圈,则装卸工件就更为方便,但其定心精度较低,只能保证0.02mm左右的同轴度。 2.胀力心轴 胀力心轴依靠材料弹性变形产生的胀力来胀紧工件。装夹在主轴锥孔中的胀力心轴的圆锥角度最好为30°左右,最薄部分的壁厚3~6 mm。为了使胀力均匀,槽可做成三等分。使用时先把工件套在胀力心轴上,拧紧锥堵的方榫,使胀力心轴胀紧工件。长期使用的胀力心轴可用65Mn弹簧钢制成。胀力心轴装卸方便,定心精度高,故应用广泛。 四、结束语 套类工件形位公差精度的保证除了应选用合理的装夹方法,还应保证其装夹定位的正确位置,不至于在车削加工中使工作产生位移,同时,也应保证夹具的刚性,以使夹紧牢固可靠。另外,还应根据工件的形状、大小与复杂情况,合理选择切削用量和安排加工工序;合理选用切削加工刀具与刀具几何角度等。只有根据技术要求全面综合的考虑加工情况,才能有效、合理的生产出合格的零件,有效地保证零件的加工精度。 参考文献:李德富,《车工》,机械工业出版社,2012 【作者简介】周有奎,男,汉族,本科学历,荆州技师学院一级实习指导教师,研究方向,机械加工教学。

机械设计中形位公差的确定及选择

机械设计中形位公差的确定及选择 摘要:在进行机械设计时,如何保证机械产品零件的精度,是设计人员必须要考虑的问题。形位公差是控制机械产品零件几何精度技术的条件。正确选择形位公差项目和合理确定其公差等级及公差值,能保证零件的使用要求,提高经济效果。文章就机械设计过程中如何合理选用形位公差进行了一些探讨。 关键词:机械设计;形状公差;位置公差;标注公差;选择;控制 在机械与仪器仪表设计及制造工艺的设计中,公差配合与技术测量与设计、制造及质量控制等方面密切相关,其精度的要求是靠尺寸公差、形状公差、位置公差来保证的,是优化产品质量的可靠保障。在现代工业飞速发展、产品换代频繁的新形势下,其重要性尤为明显。如何合理并正确地确定被测要素的形状位置公差公差值,是一项十分慎重的工作。 1 形位公差和位置公差的关系及选择 经过加工的机械零件表面,不但会有尺寸偏差,而且会有形状和相对位置的误差,这些误差会影响零件的互换性。为此,国家标准规定了形状和位置的允许变动量。 位置公差是关联实际要素的方向或位置对基准所允许的变动全量,形状公差是单一实际要素的形状所允许的变动全量,位置公差的公差带包容整个被测要素,因此,在很多情况下,位置公差是能够控制形状误差的。如在定位公差中,同轴度可以控制轴线的形状误差,对称度和位置度可以控制平面度误差。又如在跳动公差中,端面全跳动可以控制平面度误差,径向跳动可以控制圆度误差,径向全跳动可以控制圆度、直线度,圆柱度误差。所以.在确定形状公差和位置公差过程中,一旦位置公差给定后,当作用上已能够控制相应的形状误差,且能满足使用要求时,就不必再提形状公差的要求了。 2 形位公差值的确定 正确选择形位公差项目和合理确定其公差等级及公差值,能保证零件的使用要求,提高经济效果。 确定形位公差值的方法,有类比法和计算法两种。常用的是类比法。计算法一般很少使用.只有在高精度要求的场合才用。在零件加工中,由于受到机床精度的限制,故在己加工完成的零件上,所有要素都存在形位误差,但不是所有要素都要在图纸上规定形位公差。只对高精度要求的要素才注公差值,而对精度要求比未注公差值还低的也应注出,表示不必提高要求。在选用公差值时,以满足零件的功能要求为前提,兼顾经济性和测量条件等因素,尽量选用较大的公差值。并应注意以下的一些问题。

形位公差的包容原则

1996《形状和位置公差》国家标准对形位公差与尺寸公差的相关性要求规定了五种,即: 独立原则、包容要求(包容原则)、最大实体要求(最大实体原则)、最小实体要求和可逆要求。 公差原则的选用跟行业无关。 独立原则一般用于非配合零件,或对形状和位置要求严格,而对尺寸精度要求相对较低的场 合。如印刷机的滚筒,尺寸精度要求不高,但对圆柱度要求高,以保证印刷清晰,因而给出了圆柱度公差,而其尺寸公差则按未注公差处理。 包容要求主要用于机器零件上的配合性质要求较严格的配合表面。如回转轴的轴颈、滑动套 筒和孔、滑块和滑块槽等。 最大实体要求常用于对零件配合性质要求不严,但要求顺利保证零件可装配性的场合。最小实体要求常用于保证零件的最小壁厚,以保证必要的强度要求的场合。 可逆要求只用于被测要素,不用于基准要素。 转]形位公差的包容原则 (2010-03-05 10:42:26) 转载 标签:分类:机械专业学习 形位公差 包容原则 最大实体原则 杂谈 1996《形状和位置公差》国家标准对形位公差与尺寸公差的相关性要求规定了五种,即:独立原则、包容要求(包容原则)、最大实体要求(最大实体原则)、最小实体要求和可逆要求。 公差原则的选用跟行业无关。 独立原则一般用于非配合零件,或对形状和位置要求严格,而对尺寸精度要求相对较低的场合。如印刷机的滚筒,尺寸精度要求不高,但对圆柱度要求高,以保证印刷清晰,因而给出了圆柱度公差,而其尺寸公差则按未注公差处理。 包容要求主要用于机器零件上的配合性质要求较严格的配合表面。如回转轴的轴颈、滑动套筒和孔、滑块和滑块槽等。

可逆要求只用于被测要素,不用于基准要素。 公差配合的三大原则的应用跟行业没有太大的关系,关键看企业的定位和对技术经济指标的控制了 . 在这三大原则中独立原则对制品的品质要求最高,成本也高,但对工程师的要求低. 其它的两个对制品的质量要求相对低一些,强调作用尺寸和实际的装配效果.对工程师的要求高.成本低. 通过公差的要求可以看到企业的技术和管理水平也可以看岀企业的成本控制能力. 包容要求包容要求适用于单一要素如圆柱表面或两平行表面。包容要求表示实际要素应遵守其最大实体边 界,其局部实际尺寸不得超岀最小实体尺寸。采用包容要求的单一要素应在其尺寸极限偏差或公差带代号之后加注符号 “.- ”。 示例: 上图标注说明:圆柱表面必须在最大实体边界内,该边界的尺寸为最大实体尺寸 得小于149.96 (见图7)。 150。其局部实际尺寸不a) L■丈实协尺寸的理想薜林也客面 1 1 第 _______ !0 —际直轻一 山皿乩込刿聞部宴折 ma

形位公差及其检测方法

形位公差及其检测方法 一、概念: 定义: 形状公差:单一实际要素形状所允许的变动全量。 位置公差:关联实际要素的位置对基准所允许的变动全量。 形位公差:形状公差与位置公差的总称。它控制着零件的实际要素在形状、位置及方向上的变化。 形位公差带:用以限制实际要素形状或位置变动的区域。由形状、大小、方向和位置四个要素所确定。 公差原则:形位公差与尺寸公差之间的相互关系。包括独立原则与相关要求。 独立原则:图样上给出的尺寸公差与形位公差各自独立,彼此无关,分别满足要求的公差原则。 相关要求:图样上给定的尺寸公差和形位公差相互有关的公差要求。具体可分为

形位公差带的形式: 二、形状误差与形状公差:

项目 公差带定义示 例说 明 公差带是距离为公差值t 的两平行直线之间的区域 在给定平面内 圆柱表面上的任一素线必须位于轴向平面内,距离为0.02的两平行线之间 0.02 在给定方向上、当给定一个方向 公差带是距 离为公差值t的两 平行平面之间的区域 棱线必须位于箭头所示方向距离为公差 值0.02的两平行平面内 0.02 、当给定两 个互相垂直的两个 方向 公差带为截面边长t1*t2的四 棱柱内的区域 棱线必须位于水平方向距离为公差值0.02,垂直方向距离为0.01的四棱柱内 0.01 0.02 3、在任意方向 公差带是直径为公差值t的圆柱面的区域 d 圆柱体的轴线必须位于直径为公差值0.02的圆柱面内 直 线 度平面度 公差带是距离为公差值t的两平行平面之间的区域 上表面必须位于距离为公差值0.1的两平行平面内 0.1 圆度 公差带是在同一正截面上半径差为公差值t的两同心圆之间的区域 在垂直于轴线的任一正截面上,该圆必须位于半径差为公差值0.02的两同心圆之间

常用形位公差符号

常用形位公差符号.jpg 形位公差 开放分类:专业术语、公差、形位公差 加工后的零件不仅有尺寸误差,构成零件几何特征的点、线、面的实际形状或相互位置与理想几何体规定的形状和相互位置还不可避免地存在差异,这种形状上的差异就是形状误差,而相互位置的差异就是位置误差,统称为形位误差。 xingwei gongcha 形位公差 tolerance of form and position 包括形状公差和位置公差。任何零件都是由点、线、面构成的,这些点、线、面称为要素。机械加工后零件的实际要素相对于理想要素总有误差,包括形状误差和位置误差。这类误差影响机械产品的功能,设计时应规定相应的公差并按规定的标准符号标注在图样上。20世纪50年代前后,工业化国家就有形位公差标准。国际标准化组织(ISO)于1969年公布形位公差标准,1978年推荐了形位公差检测原理和方法。中国于1980年颁布形状和位置公差标准,其中包括检测规定。 形状公差和位置公差简称为形位公差

(1)形状公差:构成零件的几何特征的点,线,面要素之间的实际形状相对与理想形状的允许变动量。给出形状公差要求的要素称为被测要素。 (2)位置公差:零件上的点,线,面要素的实际位置相对与理想位置的允变动量。用来确定被测要素位置的要素称为基准要素。 形位公差的研究对象是零件的几何要素,它是构成零件几何特征的点,线,面的统称.其分类及含义如下: (1) 理想要素和实际要素 具有几何学意义的要素称为理想要素.零件上实际存在的要素称为实际要素,通常都以测得要素代替实际要素. (2) 被测要素和基准要素 在零件设计图样上给出了形状或(和)位置公差的要素称为被测要素.用来确定被测要素的方向或(和)位置的要素,称为基准要素. (3) 单一要素和关联要素 给出了形状公差的要素称为单一要素.给出了位置公差的要素称为关联要素. (4) 轮廓要素和中心要素 由一个或几个表面形成的要素,称为轮廓要素.对称轮廓要素的中心点,中心线,中心面或回转表面的轴线,称为中心要素 形状公差有直线度,平面度,圆度和圆柱度.其含义和标注如下: 1) 直线度 2) 平面度 平面度公差带只有一种,即由两个平行平面组成的区域,该区域的宽度即为要求的公差值. 3) 圆度 在圆度公差的标注中,箭头方向应垂直于轴线或指向圆心. 4) 圆柱度 形位公差的标注应注意以下问题: (1) 形位公差内容用框格表示,框格内容自左向右第一格总是形位公差项目符号,第二格为公差数值,第三格以后为基准,即使指引线从框格右端引出也是这样. (2) 被测要素为中心要素时,箭头必须和有关的尺寸线对齐.只有当被测要素为单段的轴线或各要素的公共轴线,公共中心平面时,箭头可直接指在轴线或中心线,这样标注很简便,但一定要注意该公共轴线中没有包含非被测要素的轴段在内. (3) 被测要素为轮廓要素时,箭头指向一般均垂直于该要素.但对圆度公差,箭头方向必须垂直于轴线.

形位公差换算

附录从(圆柱)位置度公差到坐标/从坐标到(圆柱)位置度公差的换算方法 总公差带X .70711 = 总坐标公差带 0.005 总坐标公差或0.0025双向 公差 示例: .007TOL X .70711 = .00495 TO ± 基本原则: 用总公差带乘以0.7(或70%)便转换为非关键性应用,例如,0.7 X .007 = .0049 或0.005 (±.0025) 0.007 总位置度公差带直径 总坐标或双向公差带 总坐标公差带X 1.4142 = 总公差带 示例: 0.005 总坐标公差或0.0025双向公差X 2X 1.4142 = .007 总公差± TO 基本原则:用总公差带乘以1.4就迅速地转换为非关键性应用,例如 USE 1.4 TIMES TOTAL COORD TOL ZONE TO CONVERT QUICKLY IN NON-CRITICAL APPLICATIONS, e.g. 1.4 X .005 = .007TOL

附录 换算表 从 位置度公差到坐标公差 从坐标公差到 位置度公差到 X 坐标 UJ H < Z Q CE o o o > 示例: ?.010直径 位置度公差 = ±.0035坐标公差 坐标总公差带 位置度公差带 位置度公差 Y 坐标

从坐标测量到 位置度定位的换算 实际定位 差值 方程 理想位置 实际定位 直径等量- 基准面 可以用计算器或电脑完成 坐标测量值与位置定位间的换算器 程序: 基准面

附录 示例 换算 产生的孔0.250 (MMC) (公差 带= 010) 实际孔中心 产生的孔255 (MIN MC) (公差带 = 015 (.010 +.005) 实际孔中心 实际测量值实际测量值 (水平方向) 实际 值-基本值=X 0.754-0.750 =0.004 (水平方向) 实际 值-基本值=X 0.756-0.750 =0.006 (垂直方向) 基本 值-实际值=Y 0.600-0.598 =0.002 (垂直方向) 基本 值-实际值=Y 0.600-0.596 =0.004 从上表中可以看出,在横坐标0.004 (X)和纵坐标0.002 (Y) 上产生一个直 径为0.0089的孔,即直径孔的位置在 规定的0.010直径范围内。所以,该孔 的定位是合格的。 从上表中可以看出,横坐标0.006 (X)和纵坐标 0.004 (Y) 产生一个直径为0.0144的孔,即直径 孔的位置在规定的0.015直径范围内。所以,该孔 的定位是合格的。

形位公差的测量方法

在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。 3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪等。 六、直线度 用平尺(或刀口尺)测量间隙为0.5μm(0.5~3μm 为有色光,3μm 以上为白光)的直线度,间隙偏大时可用塞尺配合测量;用平板、平尺作测量基维,用百分表或千分表测量直线度误差;用直径0.1~0.2mm 钢丝拉紧,用V 型铁上垂直安装读数显微镜检查直线度;用水准仪、自准直仪、准直望远镜等光学仪器测量直线度误差;用方框水平仪加桥板测直线度;用光学平晶分段指示器检测精度高的直线度误差。

机械零件设计中形位公差的确定性方法研究正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 机械零件设计中形位公差的确定性方法研究正式版

机械零件设计中形位公差的确定性方 法研究正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 随着正确地选择和确定形位公差的项目、基准及数值对机械零件的设计是十分重要的。依据机械零件的功能要求。并考虑其使用性、工艺性和经济性的综合效果,详细分析了确定形位公差时公差项目、基准和公差数值的选择方法。零件的功能特性是选择形位公差项目、基准和公差数值的基础;公差间的关系可作为进一步精选它们的依据;同时还应兼顾经济性和测量的方便性。 在机械零件的设计过程中,正确地选择形位公差项目以及合理地确定形位公差数

值,不仅直接影响到机器的使用性能和质量,而且关系到零件加工的难易程度和成本高低。形位公差的国家标准规定了l4项并列的形位公差,项目较多,而且有些公差项目之间还存在着从属和包容等关系。因此,机械零件的形位公差设计一直是机械零件设计中的难点。本文将根据形位公差的理论与多年的机械零件设计经验,分析形位公差项目及公差值大小等公差内容的选择依据。为设计者提供参考。 1.形位公差项目的选择 1.依据零件的功能特性初选形位公差项目 选择形位公差项目首先应满足零件的功能要求,主要考虑形位误差对零件使用

机械制图常用形位公差符号表示方法

机械制图常用形位公差符号表示方法

一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 标注符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。

定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差

形位公差的具体含义

形位公差的具体含义 2009-05-19 13:56:04| 分类:机械制图| 标签:|字号大中小订阅 形位公差 1,形位公差的研究对象是什么,如何分类,各自的含义是什么 答:形位公差的研究对象是零件的几何要素,它是构成零件几何特征的点,线,面的统称.其分类及含 义如下: (1) 理想要素和实际要素 具有几何学意义的要素称为理想要素.零件上实际存在的要素称为实际要素,通常都以测得要素 代替实际要素. (2) 被测要素和基准要素 在零件设计图样上给出了形状或(和)位置公差的要素称为被测要素.用来确定被测要素的方向或 (和)位置的要素,称为基准要素. (3) 单一要素和关联要素 给出了形状公差的要素称为单一要素.给出了位置公差的要素称为关联要素. (4) 轮廓要素和中心要素 由一个或几个表面形成的要素,称为轮廓要素.对称轮廓要素的中心点,中心线,中心面或回转表面 的轴线,称为中心要素. 2,形状公差有哪些,各自的含义是什么,如何标注 答:形状公差有直线度,平面度,圆度和圆柱度.其含义和标注如下: 1) 直线度 表2-2为几种直线度公差在图样上标注的方式.形位公差在图样上用框格注出,并用带箭头的指引线将框格与被测要素相连,箭头指在有公差要求的被测要素上.一般来说,箭头所指的方向就是被测要素对理想要素允许变动的方向.通常形状公差的框格有两格,第一格中注上某项形状公差要 求的符号,第二格注明形状公差的数值. 2) 平面度 表2-3为平面度公差要求的标注方式.平面度公差带只有一种,即由两个平行平面组成的区域,该区 域的宽度即为要求的公差值. 3) 圆度 表2-4表示圆度公差在图样上的标注方式. 在圆度公差的标注中,箭头方向应垂直于轴线或指向圆心. 4) 圆柱度 如表2-5所示,由于圆柱度误差包含了轴剖面和横剖面两个方面的误差,所以它在数值上要比圆度公差为大.圆柱度的公差带是两同轴圆柱面间的区域,该两同轴圆柱面间的径向距离即为公差值. 3,定向公差有哪些,各自的含义是什么,如何标注 答:定向公差有平行度,垂直度和倾斜度.其含义和标注如下: 1) 平行度 对平行度误差而言,被测要素可以是直线或平面,基准要素也可以是直线或平面,所以实际组成平行度的类型较多.表2-7中表示出一些标注平行度公差要求的示例.其中,基准符号是用一粗短划线和带圆圈的字母标注,字母方向始终是正位,基准是中心要素时,粗短划线的引出线必须和有关尺 寸线对齐. 2) 垂直度 垂直度和平行度一样,也属定向公差,所以在分析上这两种情况十分相似.垂直度的被测和基准要

形位公差定义及检测方法

形位公差定义及检测方法 一、 直线度的定义及检测方法 定义:直线度是指零件被测的线要素直不直的程度。 检测方法概述: ㈠.将平尺(小零件可用刀口尺)与被测面直接接触并靠紧。此时平尺与被测面之间的最大间隙即为该检测面的直线度误差。一般公用检测器具-塞尺。(图片) 按此方法检测若干条素线,取其中最大误差值作为该件的直线度误差。 ㈡.将被测件放在平台上,并靠紧方箱或直角尺(或者将被测件放置在等高V 型铁上)。用杠杆表在被测素线的全长范围内测量,同时记录检测数值,最大数值与最小数值之差即为该条素线直线度误差。(简图): 按上述方法测量若干条素线,并计算,取其中最大的误差值,作为被测零部件的直线度误差。 ㈢将被测零部件用千斤顶支起,利用杠杆表将被测素线的两端点调整到与平台平行,在被测素线的全长范围内测量,同时记录,读数,最大值与最小值之差即为该素线的直线度误差,按同样方法测量若干条素线,取其中最大的误差值作为该被测件的直线度误差。 ㈣综合量规:综合量规的直径等于被测零件的实效尺寸,综合量规必须通过被测零件。 二、平面度定义及检验方法 平面度是指零件被测表面的要素平不平得程度。 ㈠将被测件用千斤顶支撑在平台上,调整被测表面最远的三点A,B,C ,(利用杠杆表或高度尺)使其与平台平行,然后用测头在整个实际表面上进行测量,同时记录读数,其最大与最小读数之差,即为被测件平面度误差。 ㈡用刀口尺(小型件)或平尺(较大型件)在整个被测平面上采用“米”字型或栅格型方法进行检测,用塞

尺进行检验,取其塞尺最大值为该被测零件得平面度误差。 ㈢环类垫圈类零件 将被测件的被测面放在平台上,压紧,然后用塞尺检测多处,其塞入的最大值即为该件的平面度误差。(或者将被测件的被测面用三块等高垫铁在平台上均分支撑,然后用杠杆表在被测面的多处进行检测,取其最大与最小读数的差作为该件的平面度误差。 三、圆度定义及测量方法 定义:圆度是指具有圆柱面(包括圆锥面)的零件在同一横剖面内的实际轮廓不圆的程度。 测量方法: ㈠轴类件:将被测件用偏摆仪顶紧,将杠杆表的测头压到被测面上,在被测件回转一周过程中指示表读数的最大差值之半,即为单个测量面上的圆度误差。按上述方法在被测件轴向上测量若干个截面,取各截面上测得的跳动量中的最大误差值(取各截上指示表的最大与最小读数差之半中的最大数值),作为该零件的圆度误差。 ㈡两点测量法也称直径法: 用千分尺(内径表)直接测量被测轴(孔)的直径,在被测件的同一截面内按多个方向测量直径的变化情况,寻求各个方向测得读数中的最大差值之半(最大值减最小值之半)即为该被测截面的单个圆度误差。按同样方法在轴向上测若干个截面,取各截面上测得差值中最大的差值之半,作为该零件的圆度误差。 四、圆柱度定义及测量方法 定义:圆柱度是控制圆柱的纵、横剖面及轴线等的圆度、直线度、和平行度的综合指标。 测量方法如下: ㈠将被测件放在平台上并靠紧在方箱根部,杠杆表测头压到被测件表面上,在被测零件回转一周过程中,测量一个横截面上的最大与最小读数,按上述方法在件的轴向上测量若干个横截面,然后取各截面内所测得的所有读数中的最大与最小读数的差值之半,作为该零件的圆柱度误差。

模具零件的公差配合形位公差及表面粗糙度要求

模具零件的公差配合、形位公差及表面粗糙度要求 2010-01-27 09:04:53| 分类:默认分类| 标签:|字号大中小订阅 模具零件的公差配合、形位公差及表面粗糙度要求 设计模具时,应根据模具零件的功能和固定方式及配合要求的不同,合理选用其公差配合、形位公差及表面粗糙度。否则,将不仅直接影响模具的正常工作和冲压件的质量,而且也影响模具的使用寿命和制造成本。 一、模具零件的公差配合要求 模具零件的公差配合分为过盈配合、过渡配合及间隙配合三种。过盈配合用于模具工作时其零件之间没有相对运动且又不经常拆装的零件,如导柱、导套与模板的配合;过渡配合用于模具工作时其零件之间没有相对运动但需要经常拆装的零件,如压入式凸模与固定板的配合;间隙配合用于模具工作时需要相对运动的零件,如导柱与导套之间的配合等。模具中常用零件的公差配合见下表。

二、模具零件的形公差 形位公差是形状和位置公差的简称,它包括直线度、平面度、圆柱度、平行度、垂直度、同轴度、对称度及圆跳动公差等多种。根据模具零件的技术要求,应合理选用其形位公差的种类及数值。模具零件中常用的形位公差有平行度、垂直度、同轴度、圆柱度及圆跳动公差等,现分述如下: 1、平行度公差模板、凹模板、垫板、固定板、导板、卸料板、压边圈等板类零件的两平面应有平行度要求,一般可按下表选取。

注:1.基本尺寸是指被测表面的最大长度尺寸和最大宽度尺寸。 2.滚动式导柱模架的模座平行度公差采用公差等级4级。 2.垂直度公差矩形、圆形凹模板的直角面,凸、凹模(或凸凹模)固定板安装孔的轴线与其基准面,模板上模柄(压入式模柄)安装孔的轴线与其基准面,一般均应有垂直度要求,可按下表的垂直度公差选取。而上、下模板的导柱、导套安装孔的轴线与其基准面的垂直度公差,应按如下规定:安装滑动式导柱、导套时取为0.01:100;安装滚动式导柱、导套时取为0.005:100。 >25~40 >40~63 >63~100 >100~160 >160~250 >250~400 公差等级 5 公差值 0.010 0.012 0.015 0.020 0.025 0.030 注:1.基本尺寸是指被测零件的短边长度。 2.垂直度公差是指以长边为基准,短边对长边垂直度的最大允许值。

相关主题
文本预览
相关文档 最新文档