当前位置:文档之家› 2020届高三数学立体几何专项训练(文科)

2020届高三数学立体几何专项训练(文科)

2020届高三数学立体几何专项训练(文科)
2020届高三数学立体几何专项训练(文科)

2020届高三数学立体几何专题(文科)

吴丽康 2019-11

1.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB // 平面AEC ;

(Ⅱ)设AP=1,AD =,三棱锥P -ABD 的体积V =

求A 点到平面PBD 的距离.

2. 如图,四棱锥P -ABCD 中,AB ∥CD ,AB =2CD ,E 为PB 的中点.

(1)求证:CE ∥平面P AD ;

(2)在线段AB 上是否存在一点F ,使得平面P AD ∥平面CEF ? 若存在,证明你的结论,若不存在,请说明理由.

3如图,在四棱锥P -ABCD 中,平面P AC ⊥平面ABCD ,且P A ⊥AC ,P A =AD =2,

四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PF

PC

=λ(λ≠0). (1)求证:EF ∥平面P AD ;

(2)当λ=1

2

时,求点D 到平面AFB 的距离.

34

3

4.如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.

(1)证明:平面A1BD∥平面CD1B1;

(2)若平面ABCD∩平面B1D1C=直线l,证明:B1D1∥l.

5..如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,

M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.

求证:AP∥GH.

6.如图,在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,

∠ABC=60°,P A=AB=BC,E是PC的中点.

证明:(1)CD⊥AE;(2)PD⊥平面ABE.

7.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,四边形ABCD

为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC交于点F.

(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;

(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出的值.

8...如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,

侧面P AD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.

(1)求证:BG⊥平面P AD;

(2)求证:AD⊥PB;

(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?

并证明你的结论.

9.(2016·高考北京卷)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.

(1)求证:DC⊥平面P AC;

(2)求证:平面P AB⊥平面P AC;

(3)设点E为AB的中点.在棱PB上是否存在点F,

使得P A∥平面CEF?说明理由.

10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),

平面ABE与棱PD交于点F.

(1)求证:AB∥EF;

(2)若AF⊥EF,求证:平面P AD⊥平面ABCD.

11..如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,P A =AB =BC =3,AD =CD =1,

∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =1

4

PB .

(1)证明:MN ∥平面PDC ;

(2)求直线MN 与平面P AC 所成角的正弦值.

12..(2016·高考四川卷)如图,在四棱锥P ABCD 中,P A ⊥CD ,AD ∥BC ,

∠ADC =∠P AB =90°,BC =CD =1

2

AD .

(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .

13.(2016·高考江苏卷)如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.

求证:(1)直线DE ∥平面A 1C 1F ;

(2)平面B 1DE ⊥平面A 1C 1F .

14.【2014,19】如图,三棱柱111C B A ABC -中,

侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11. (1)证明:;1AB C B ⊥

(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.

15.(2017天津,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥ BC, PD⊥PB,

AD=1,BC=3,CD=4,PD=2.

(1)求异面直线AP与BC所成角的余弦值;

(2)求证:PD⊥平面PBC;

(3)求直线AB与平面PBC所成角的正弦值.

16.(2016·高考浙江卷)如图,在三棱台ABC DEF中,平面BCFE⊥平面ABC,

∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

(1)求证:BF⊥平面ACFD;

(2)求直线BD与平面ACFD所成角的余弦值.

17..(2018·全国Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,

M是CD上异于C,D的点.

(1)证明:平面AMD⊥平面BMC.

(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.

立体几何中的翻折问题

18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1

2

AD =a ,

E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1-BCDE .

(1)证明:CD ⊥平面A 1OC ;

(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值.

19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =1

2

AB =2,

E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直, 如图2.在图2所示的几何体D -ABC 中: (1)求证:BC ⊥平面ACD ;

(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.

20.如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8.点E ,F 分别在A 1B 1,D 1C 1

上,过点E 、F 的平面α与此长方体的面相交,交线围成一个正方形EFGH . (1)求证:A 1E =D 1F ;

(2)判断A 1D 与平面α的关系.

2020届高三数学立体几何专题(文科)

1解析:(Ⅰ)设AC 的中点为O , 连接EO . 在三角形PBD 中,中位线EO //PB ,

且EO 在平面AEC 上,所以PB //平面AEC .

(Ⅱ)∵AP =1,AD =-P ABD V =

-11=32P ABD V PA AB AD ∴???AB 3

2

AB =, 作AH ⊥PB 角PB 于H ,

由题意可知BC ⊥平面P AB ,∴BC ⊥AH ,故AH ⊥平面PBC .

又PA AB AH PB ?=

=

A 点到平面PBC 2.(1)证明:如图所示,取P A 的中点H ,连接EH ,DH ,

因为E 为PB 的中点, 所以EH ∥AB ,EH =1

2AB ,

又AB ∥CD ,CD =1

2AB . 所以EH ∥CD ,EH =CD ,

因此四边形DCEH 是平行四边形, 所以CE ∥DH , 又DH ?平面P AD ,CE ?平面P AD , 所以CE ∥平面P AD . (2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =1

2

AB ,

又CD =1

2AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD ,

又CF ?平面P AD ,所以CF ∥平面P AD ,

由(1)可知CE ∥平面P AD , 又CE ∩CF =C ,故平面CEF ∥平面P AD , 故存在AB 的中点F 满足要求.

3.(1)证明 ∵PE PB =PF

PC =λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .

又EF ?平面P AD ,AD ?平面P AD ,∴EF ∥平面P AD . (2)解 ∵λ=1

2

,∴F 是PC 的中点,

在Rt △P AC 中,P A =2,AC =2,∴PC =P A 2+AC 2=6,

∴PF =12PC =6

2.∵平面P AC ⊥平面ABCD ,且平面P AC ∩平面ABCD =AC ,

P A ⊥AC ,P A ?平面P AC ,∴P A ⊥平面ABCD ,∴P A ⊥BC .

又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又P A ∩AB =A ,P A ,AB ?平面P AB ,

∴BC ⊥平面P AB , ∴BC ⊥PB ,∴在Rt △PBC 中,BF =12PC =6

2

.

连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62

,AB =1, ∴S △ABF =

5

4

,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为45

5.

4.证明 (1)由题设知BB 1∥DD 1且BB 1=DD 1,

所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1.又BD ?平面CD 1B 1,B 1D 1?平面CD 1B 1,

所以BD ∥平面CD 1B 1.因为A 1D 1∥B 1C 1∥BC 且A 1D 1=B 1C 1=BC , 所以四边形A 1BCD 1是平行四边形,所以A 1B ∥D 1C .

又A 1B ?平面CD 1B 1,D 1C ?平面CD 1B 1, 所以A 1B ∥平面CD 1B 1.

又因为BD ∩A 1B =B ,BD ,A 1B ?平面A 1BD , 所以平面A 1BD ∥平面CD 1B 1. (2)由(1)知平面A 1BD ∥平面CD 1B 1,又平面ABCD ∩平面B 1D 1C =直线l , 平面ABCD ∩平面A 1BD =直线BD ,所以直线l ∥直线BD , 在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD ,所以B 1D 1∥l .

5.连接AC 交BD 于点O ,连接MO ,因为PM =MC ,AO =OC ,所以P A ∥MO , 因为P A ?平面MBD ,MO ?平面MBD ,所以P A ∥平面MBD . 因为平面P AHG ∩平面MBD =GH ,所以AP ∥GH .

6.[证明] (1)在四棱锥P -ABCD 中,因为P A ⊥底面ABCD , CD ?平面ABCD ,所以P A ⊥CD ,因为AC ⊥CD ,且P A ∩AC =A , 所以CD ⊥平面P AC ,而AE ?平面P AC ,所以CD ⊥AE . (2)由P A =AB =BC ,∠ABC =60°,可得AC =P A . 因为E 是PC 的中点,所以AE ⊥PC .

由(1)知AE ⊥CD ,且PC ∩CD =C ,所以AE ⊥平面PCD . 而PD ?平面PCD ,所以AE ⊥PD . 因为P A ⊥底面ABCD ,所以P A ⊥AB . 又因为AB ⊥AD 且P A ∩AD =A ,

所以AB ⊥平面P AD ,而PD ?平面P AD ,所以AB ⊥PD .

又因为AB∩AE=A,所以PD⊥平面ABE.

7.(1)证明因为ABCD为正方形,所以AD∥BC.

因为AD?平面PBC,BC?平面PBC,所以AD∥平面PBC.

因为AD?平面AEFD,平面AEFD∩平面PBC=EF, 所以AD∥EF.

(2)证明因为四边形ABCD是正方形,所以AD⊥AB.

因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD?平面ABCD,

所以AD⊥平面PAB.因为PB?平面PAB,所以AD⊥PB.

因为△PAB为等边三角形,E是PB中点,所以PB⊥AE.

因为AE?平面AEFD,AD?平面AEFD,AE∩AD=A,所以PB⊥平面AEFD.

(3)解由(1)知,V1=V C-AEFD,V E-ABC=V F-ADC=V C-AEFD=V1,

∴V BC-AEFD=V1,则V P-ABCD=V1+V1=V1, ∴.

8.[解] (1)证明:在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥AD.

又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,

所以BG⊥平面P AD.

(2)证明:如图,连接PG.因为△P AD为正三角形,G为AD的中点,

所以PG⊥AD.

由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.

因为PB?平面PGB,所以AD⊥PB.

(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.

证明如下:取PC的中点F,连接DE、EF、DF.

在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.

而FE?平面DEF,DE?平面DEF,EF∩DE=E,PB?平面PGB,GB?平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.

因为BG⊥平面P AD,PG?平面P AD,所以BG⊥PG.

又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.

又PG?平面PGB,所以平面PGB⊥平面ABCD,

所以平面DEF⊥平面ABCD.

9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.

又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面P AC.

(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.

因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,

所以AB⊥平面P AC.又AB?平面P AB,所以平面P AB⊥平面P AC.

(3)棱PB 上存在点F ,使得P A ∥平面CEF . 理由如下:

如图,取PB 中点F ,连接EF ,CE ,CF .又因为E 为AB 的中点,所以EF ∥P A . 又因为P A ?平面CEF ,且EF ?平面CEF ,所以P A ∥平面CEF .

10.证明 (1)因为四边形ABCD 是矩形,所以AB ∥CD . 又AB ?平面PDC ,CD ?平面PDC ,所以AB ∥平面PDC , 又因为AB ?平面ABE ,平面ABE ∩平面PDC =EF ,所以AB ∥EF . (2)因为四边形ABCD 是矩形,所以AB ⊥AD . 因为AF ⊥EF ,(1)中已证AB ∥EF ,所以AB ⊥AF .

又AB ⊥AD ,由点E 在棱PC 上(异于点C ),所以点F 异于点D , 所以AF ∩AD =A ,AF ,AD ?平面P AD ,

所以AB ⊥平面P AD ,又AB ?平面ABCD ,所以平面P AD ⊥平面ABCD . 11.(1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC . 又∠ADC =120°,所以MD =12AD =12,AM =3

2. 所以AC =

3.

又AB =BC =3,所以△ABC 是等边三角形,

所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BN

NP =3,所以MN ∥PD .

又MN ?平面PDC ,PD ?平面PDC , 所以MN ∥平面PDC .

(2)解 因为P A ⊥平面ABCD ,BD ?平面ABCD ,所以BD ⊥P A , 又BD ⊥AC ,P A ∩AC =A ,P A ,AC ?平面P AC ,所以BD ⊥平面P AC .

由(1)知MN ∥PD ,所以直线MN 与平面P AC 所成的角即直线PD 与平面P AC 所成的角, 故∠DPM 即为所求的角.在Rt △P AD 中,PD =2,

所以sin ∠DPM =DM DP =1

22=14, 所以直线MN 与平面P AC 所成角的正弦值为1

4

.

12.【解】 (1)取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点.理由如下: 因为AD ∥BC ,BC =1

2AD ,所以BC ∥AM ,且BC =AM ,

所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ?平面P AB ,CM ?平面P AB ,所以CM ∥平面P AB .

(说明:取棱PD 的中点N ,则所找的点可以是直线

MN

上任意一点)

(2)证明:由已知,P A ⊥AB ,P A ⊥CD ,因为AD ∥BC ,BC =1

2AD ,所以直线AB 与CD 相交.

所以P A ⊥平面ABCD ,从而P A ⊥BD .连接BM , 因为AD ∥BC ,BC =1

2

AD ,所以BC ∥MD ,且BC =MD .

所以四边形BCDM 是平行四边形.所以BM =CD =1

2AD ,所以BD ⊥AB .

又AB ∩AP =A ,所以BD ⊥平面P AB . 又BD ?平面PBD ,所以平面P AB ⊥平面PBD . 13.[证明] (1)在直三棱柱ABC

A 1

B 1

C 1中,A 1C 1∥AC .

在△ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE ∥AC ,于是DE ∥A 1C 1. 又DE ?平面A 1C 1F ,A 1C 1?平面A 1C 1F , 所以直线DE ∥平面A 1C 1F . (2)在直三棱柱ABC

A 1

B 1

C 1中,A 1A ⊥平面A 1B 1C 1.

因为A 1C 1?平面A 1B 1C 1,所以A 1A ⊥A 1C 1.

又A 1C 1⊥A 1B 1,A 1A ?平面ABB 1A 1,A 1B 1?平面ABB 1A 1,A 1A ∩A 1B 1=A 1, 所以A 1C 1⊥平面ABB 1A 1.因为B 1D ?平面ABB 1A 1,

所以A 1C 1⊥B 1D .又B 1D ⊥A 1F ,A 1C 1?平面A 1C 1F ,A 1F ?平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .

因为直线B 1D ?平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F

14.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,

∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB ?平面ABC 1,

故B 1C ⊥AB . …6分

(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD ,

又BC ?平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分

∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =4

由于AC ⊥AB 1,∴11122

OA B C ==,∴AD ==

由 OH·AD=OD·OA ,可得OH=

,又O 为B 1C 的中点,

所以点B 1到平面ABC 的距离为7,

所以三棱柱ABC-A 1B 1C 1。 …12分

另解(等体积法):∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,

可得BO =AC ⊥AB 1,∴111OA B C ==,∴AB =1,AC=2,…9分

则等腰三角形ABC 的面积为1228

=

设点B 1到平面ABC 的距离为d ,由V B 1-ABC =V A-BB 1C 得1,2d ==解得,

所以三棱柱ABC-A 1B 1C 1的高高为7

。 …12分

15.(1)解 如图,由已知AD ∥BC,故∠DAP 或其补角即为异面直线AP 与BC 所成的角.

因为AD ⊥平面PDC, 所以AD ⊥PD.

在Rt △PDA 中,由已知,得AP= , 故cos ∠DAP=

.所以,异面直线AP 与BC 所成角的余弦值为

.

(2)证明 因为AD ⊥平面PDC,直线PD ?平面PDC, 所以AD ⊥PD.

又因为BC ∥AD,所以PD ⊥BC.又PD ⊥PB,所以PD ⊥平面PBC. (3)解 过点D 作AB 的平行线交BC 于点F,连接PF,

则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC,故PF 为DF 在平面PBC 上的射影,

所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD ∥BC,DF ∥AB,故BF=AD=1, 由已知,得CF=BC-BF=2.又AD ⊥DC,故BC ⊥DC,

在Rt △DCF 中,可得DF= =2 , 在Rt △DPF 中,可得sin ∠DFP=

.

所以,直线AB 与平面PBC 所成角的正弦值为

16.【解】 (1)证明:延长AD ,BE ,CF 相交于一点K ,如图所示.

因为平面BCFE ⊥平面ABC ,且AC ⊥BC ,所以AC ⊥平面BCK ,因此BF ⊥AC . 又因为EF ∥BC ,BE =EF =FC =1,BC =2,

所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK . 所以BF ⊥平面ACFD .

(2)因为BF ⊥平面ACK ,所以∠BDF 是直线BD 与平面ACFD 所成的角.

在Rt △BFD 中,BF =3,DF =32,得cos ∠BDF =21

7,

所以直线BD 与平面ACFD 所成角的余弦值为

21

7

. 17.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ?平面ABCD ,所以BC ⊥平面CMD , 又DM ?平面CMD ,故BC ⊥DM .

因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,BC ,CM ?平面BMC ,

所以DM ⊥平面BMC .又DM ?平面AMD ,故平面AMD ⊥平面BMC . (2)解 当P 为AM 的中点时,MC ∥平面PBD .

证明如下:连接AC ,BD ,交于点O .因为ABCD 为矩形, 所以O 为AC 的中点.连接OP ,因为P 为AM 的中点,

所以MC ∥OP .又MC ?平面PBD ,OP ?平面PBD ,所以MC ∥平面PBD . 18.(1)证明:在题图(1)中,因为AB =BC =1

2AD =a ,

E 是AD 的中点,∠BAD =π

2,所以BE ⊥AC .(2分)

即在题图(2)中,BE ⊥A 1O ,BE ⊥OC ,(3分)

从而BE ⊥平面A 1OC .(4分),又CD ∥BE ,所以CD ⊥平面A 1OC .(6分) (2)由已知,平面A 1BE ⊥平面BCDE ,且平面A 1BE ∩平面BCDE =BE ,

又由(1)可得A 1O ⊥BE ,所以A 1O ⊥平面BCDE . 即A 1O 是四棱锥A 1-BCDE 的高.(9分) 由题图(1)知,A 1O =AO =

22AB =2

2

a ,平行四边形BCDE 的面积S =BC ·AB =a 2,(10分) 从而四棱锥A 1-BCDE 的体积为:V =13S ·A 1O =13×a 2×22a =2

6a 3.

26

a 3

=362,得a =6.(12分) 19(1)证明 ∵AC =AD 2+CD 2=22,∠BAC =∠ACD =45°,AB =4, ∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8, ∴AB 2=AC 2+BC 2=16,∴AC ⊥BC ,

∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,BC ?平面ABC ,∴BC ⊥平面ACD . (2)解 ∵AD ∥平面BEF ,AD ?平面ACD , 平面ACD ∩平面BEF =EF ,∴AD ∥EF , ∵E 为AC 的中点,∴EF 为△ACD 的中位线,

由(1)知,V F -BCE =V B -CEF =1

3×S △CEF ×BC ,

S △CEF =14S △ACD =14×12×2×2=1

2

∴V F -BCE =13×12×22=2

3

.

20.[解] (1)证明:过点E 分别作EM ⊥AB 于点M ,EN ⊥D 1C 1于点N . 设MH =m ,NF =n . 因为EFGH 是正方形,

所以EF =EH =

2

2

HF . 又在长方体ABCD -A 1B 1C 1D 1中,AA 1=8,BC =10. 所以102+n 2=82+m 2=1

2

[102+82+(m -n )2]

解之得n =0,m =6. 所以N 与F 重合.所以A 1E =D 1N =D 1F . (2)由(1)知,A 1D ≠EG . 又A 1E ∥DG .

所以四边形A 1DGE 是以A 1D 与EG 为腰的梯形,即A 1D 与EG 相交.又EG ?α. 所以直线A 1D 与平面α相交.

高三数学知识点总结:立体几何

2019年高三数学知识点总结:立体几何 由查字典数学网高中频道提供,2019年高三数学知识点总结:立体几何,因此老师及家长请认真阅读,关注孩子的成长。 立体几何初步 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

届高三文科数学立体几何专题训练

2015届高三数学(文)立体几何训练题 1、如图3,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A 、B 的一点. ⑴求证:平面PAC ⊥平面PBC ; ⑵若PA=AB=2,∠ABC=30°,求三棱锥P -ABC 的体积. 2、如图,已知P A ?⊙O 所在的平面,AB 是⊙O 的直径,AB =2,C 是⊙O 上一点,且AC =BC =P A ,E 是PC 的中点,F 是PB 的中点. (1)求证:EF 3、如图,四棱柱1111D C B A ABCD -中,A A 1?底面ABCD ,且41=A A . 梯 形ABCD 的面积为6,且AD 平面DCE A 1与B B 1交于点E . (1)证明:EC D A 111A ABB 4、如图,已知正三棱柱ABC —A 1B 1C 1,AA 1=AB =2a ,D 、E 分别为CC 1、A 1B 的中 点. (1)求证:DE ∥平面ABC ; (2)求证:AE ⊥BD ; (3)求三棱锥D —A 1BA 的体积 . 5.如图,矩形ABCD 中,3AB =,4=BC .E ,F 分别在线段BC 和AD 上,EF ∥AB , 将矩形ABEF 沿EF 折起.记折起后的矩形为MNEF ,且平面⊥MNEF 平面ECDF . (Ⅰ)求证:NC ∥平面MFD ; P A B C O E F A B C D E A 1 B 1 C 1 D 1 A D F

F E A (Ⅱ)若3EC =,求证:FC ND ⊥; (Ⅲ)求四面体CDFN 体积的最大值. 6、如图,在三棱锥P ABC -中,PA ⊥底面ABC,090=∠BCA ,AP=AC, 点D ,E 分别在棱,PB PC 上,且BC (Ⅰ)求证:D E ⊥平面PAC ; (Ⅱ)若PC ⊥AD ,且三棱锥P ABC -的体积为8,求多面体ABCED 的体积。 7、如图:C 、D 是以AB 为直径的圆上两点,==AD AB 232,BC AC =,F 是AB 上一点, 且AB AF 3 1 =,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD 上,已知2=CE . (1)求证:⊥AD 平面BCE ; (2)求证://AD 平面CEF ; (3)求三棱锥CFD A -的体积. 8、如图甲,在平面四边形ABCD 中,已知45,90,105,o o o A C ADC ∠=∠=∠=A B BD =,现将四边 形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点. (1)求证:DC ⊥平面ABC ;

2015届高三数学立体几何专题训练及详细答案

2015届高三数学立体几何专题训练 1.(2013·高考新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( ) A .16+8π B .8+8π C .16+16π D .8+16π 解析:选A. 原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V =4×2×2+1 2 π×22×4=16+8π. 2.(2013·高考新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器厚度,则球的体积为( ) A.500π3 cm 3 B.866π3 cm 3 C.1 372π3 cm 3 D.2 048π3 cm 3 解析:选A. 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =1 2 ×8=4(cm). 设球的半径为R cm ,则R 2=OM 2+MB 2=(R -2)2+42,∴R =5, ∴V 球=43π×53=500π 3 (cm 3). 3.(2013·高考新课标全国卷Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ?α,l ?β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥β

C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l 解析:选D. 根据所给的已知条件作图,如图所示. 由图可知α与β相交,且交线平行于l ,故选D. 4.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( ) A.23 B.33 C.23 D.13 解析:选A.法一: 如图,连接AC ,交B D 于点O ,由正四棱柱的性质,有AC ⊥B D.因为CC 1⊥平面ABC D ,所以CC 1⊥B D.又CC 1∩AC =C ,所以B D ⊥平面CC 1O .在平面CC 1O 内作CH ⊥C 1O ,垂足为H ,则B D ⊥CH .又B D ∩C 1O =O ,所以CH ⊥平面B D C 1,连接D H ,则D H 为C D 在平面B D C 1上的射影,所以∠C D H 为C D 与平面B D C 1所成的角.设AA 1=2AB =2.在Rt △COC 1中,由 等面积变换易求得CH =23.在Rt △C D H 中,s in ∠C D H =CH CD =2 3 . 法二: 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D(0,0,0),C (0,1,0), B (1,1,0), C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→ =(0,1,2). 设平面B D C 1的法向量为n =(x ,y ,z ),则 n ⊥DB →,n ⊥DC 1→ ,所以有????? x +y =0,y +2z =0, 令y =-2,得平面B D C 1的一个法向量为n =(2, -2,1). 设C D 与平面B D C 1所成的角为θ,则s in θ=|co s n ,DC → =???? ??n ·DC →|n ||DC →|=23. 5.(2013·高考大纲全国卷)已知正四棱柱ABC D-A 1B 1C 1D 1中,AA 1=2AB ,则C D 与平面B D C 1所成角的正弦值等于( ) A.23 B.33

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 棱柱的分类 棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成图1-2 长方体

的角分别是α、β、γ,那么: cos2α + cos2β + cos2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶ 长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S直棱柱侧面 = c·h (c为底面周长,h为棱柱的高) S直棱柱全 = c·h+ 2S底 V棱柱 = S底·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线 为旋转轴,其余各边旋转而形成的曲面所围成 的几何体叫圆柱。 图1-3 圆柱 2-2 圆柱的性质 ⑴上、下底及平行于底面的截面都是等圆; ⑵过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2-4 圆柱的面积和体积公式 S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高) S圆柱全= 2π r h + 2π r2 V圆柱 = S底h = πr2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴棱锥:有一个面是多边形,其余各面是 有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学专题复习:立体几何平行、垂直问题 【基础知识点】 一、平行问题 1.直线与平面平行的判定与性质 定义判定定理性质性质定理 图形 条件a∥α 结论a∥αb∥αa∩α=a∥b 2. 面面平行的判定与性质 判定 性质 定义定理 图形 条件α∥β,a?β 结论α∥βα∥βa∥b a∥α 平行问题的转化关系: 二、垂直问题 一、直线与平面垂直 1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论 文字语言图形语言符号语言 判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平 面垂直 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面

文字语言 图形语言 符号语言 性质定理 垂直于同一个平面的 两条直线平行 4.直线和平面垂直的常用性质 ①直线垂直于平面,则垂直于平面内任意直线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直 1.平面与平面垂直的判定定理 文字语言 图形语言 符号语言 判定定理 一个平面过另一个平 面的垂线,则这两个平 面垂直 2.平面与平面垂直的性质定理 文字语言 图形语言 符号语言 性质定理 两个平面垂直,则一个 平面内垂直于交线的直线垂直于另一个平 面 类型一、平行与垂直 例1、如图,已知三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D 为PB 中点, 且△PMB 为正三角形。(Ⅰ)求证:DM ∥平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ; (Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。 M D A P B C

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

立体几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第09讲:立体几何 1、(2010一试7)正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin 【答案】4 【解析】 O E P 1B 1 A 1 C B A 设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x n =,则 ???? ?=++-=?=+-=?,03, 022111111z y x z x BA ???? ?=-+-=?=-=?, 03, 022221211z y x B x A B n 由此可设)3,1,0(),1,0,1(==,所以cos m n m n α?=? ,即 2cos cos αα=?= .所以4 10sin =α. 解法二:如图,PB PA PC PC ==11, . 设B A 1与1AB 交于点,O 则1111,,OA OB OA OB A B AB ==⊥ . 11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 . 过O 在平面B PA 1上作P A OE 1⊥,垂足为E .

连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得 3,2,5111== ===PO O B O A PA PB . 在直角O PA 1?中,OE P A PO O A ?=?11,即5 6,532= ∴?= ?OE OE . 11B O B E =∴===又.4 10 5 542sin sin 111= ==∠=E B O B EO B α. 2、(2011一试6)在四面体ABCD 中,已知?=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 【解析】 因为?=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得3 2sin ,3 1cos = = θθ. 在△DMN 中,332 33232,121=??=?=== DP DN CD DM .学科*网 由余弦定理得231312)3(1222=? ??-+=MN , 故2=MN .四边形DMON 的外接圆的直径 33 22sin === θ MN OD .故球O 的半径3=R . 3、(2012一试5)设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的

2019年高考试题汇编文科数学--立体几何

(2019全国1文)16.已知90ACB ∠=?,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC 的距 P 到平面ABC 的距离为 . 答案: 解答: 如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的 垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ?中,由2,PC PF == ,可得出1CF =,同 理在Rt PCE ?中可得出1CE =,结合90ACB ∠=?,,OE CB OF CA ⊥⊥可得出1OE OF ==,OC = , PO == (2019全国1文)19.如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=, ,,E M N 分别是11,,BC BB A D 的中点. (1)证明://MN 平面1C DE (2)求点C 到平面1C DE 的距离. 答案: 见解析 解答: (1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG . ,,E M N 分别是 11,,BC BB A D 的中点. 于是可得到1//NG C D ,//GH DE , 于是得到平面//NGHM 平面1C DE , 由 MN ?平面NGHM ,于是得到//MN 平面1C DE

(2) E 为BC 中点,ABCD 为菱形且60BAD ∠= DE BC ∴⊥,又 1111ABCD A B C D -为直四棱柱,1DE CC ∴⊥ 1DE C E ∴⊥,又 12,4AB AA ==, 1DE C E ∴=,设点C 到平面1C DE 的距离为h 由11C C DE C DCE V V --=得 1111 143232 h ?=?? 解得h = 所以点C 到平面1C DE (2019全国2文)7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面 答案:B 解析: 根据面面平行的判定定理易得答案. (2019全国2文)16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)

2021高考数学立体几何专题

专题09立体几何与空间向量选择填空题历年考题细目表 题型年份考点试题位置 单选题2019 表面积与体积2019年新课标1理科12 单选题2018 几何体的结构特征2018年新课标1理科07 单选题2018 表面积与体积2018年新课标1理科12 单选题2017 三视图与直观图2017年新课标1理科07 单选题2016 三视图与直观图2016年新课标1理科06 单选题2016 空间向量在立体几何中的应 用2016年新课标1理科11 单选题2015 表面积与体积2015年新课标1理科06 单选题2015 三视图与直观图2015年新课标1理科11 单选题2014 三视图与直观图2014年新课标1理科12 单选题2013 表面积与体积2013年新课标1理科06 单选题2013 三视图与直观图2013年新课标1理科08 单选题2012 三视图与直观图2012年新课标1理科07 单选题2012 表面积与体积2012年新课标1理科11 单选题2011 三视图与直观图2011年新课标1理科06 单选题2010 表面积与体积2010年新课标1理科10 填空题2017 表面积与体积2017年新课标1理科16 填空题2011 表面积与体积2011年新课标1理科15 填空题2010 三视图与直观图2010年新课标1理科14 历年高考真题汇编 1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.8πB.4πC.2πD.π 2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

高三文科数学立体几何专题练习加详细答案

高三文科数学专题立体几何 1. (2013汕头二模)设I、m是不同的两条直线, 题中为真命题的是() A ?若I ,,则I// C .若I m, // ,m ,则1 【答案】D 【解析】T I ,// ,?- I ,- .■ m D .若I , // ,m ,则I m 2. (2013东城二模)给出下列命题: ①如果不同直线m、n都平行于平面,则m、n—定不相交; ②如果不同直线m、n都垂直于平面,则m、n—定平行; ③如果平面、互相平行,若直线m ,直线n ,则m//n ; ④如果平面、互相垂直,且直线m、n也互相垂直,若m 则n 则真命题的个数是() A . 3 B . 2 C. 1 D. 0 【答案】C 【解析】只有②为真命题. 3. 设I为直线,,是两个不同的平面,下列命题中正确的是 A .若I // ,I// ,贝U // B.若1 ,I ,则// C .若1 ,I// ,贝U // D .若,I// ,则I 【解析】B 4. (2013 东莞 -模)如图,平行四边形ABCD 中,CD 1, BCD 60,且BD CD ,正方形ADEF和平面ABCD垂直,G, H是DF ,BE的中点. (1)求证:BD 平面CDE ; (2)求证:GH //平面CDE ; (3)求三棱锥D CEF的体积. C 是不重合的两个平面,则下列命 B.若I// , ,则I//

【解析】(1)证明:平面 ADEF 平面ABCD ,交线为AD , ?/ ED AD , ? ED 平面 ABCD , ?- ED BD ? 又 BD CD , ?- BD 平面 CDE . (2) 证明:连接 EA ,则G 是AE 的中点, ??? EAB 中,GH//AB , 又 AB//CD , ? GH // CD , ? GH // 平面 CDE ? (3) 设Rt BCD 中BC 边上的高为h , 是棱PA 上的动点. (1) 若Q 是PA 的中点,求证: PC // 平面BDQ CQ ; (2) PC , PB PD ,求证:BD 解析:证明:(1)连结AC ,交BD 于O ,如图: 若 PB 3, ABC 60°,求四棱锥P ABCD 即:点C 到平面 DEF 的距离为 … V D CEF V C DEF _3 2 _3 3 5.(2013丰台二模)如图所示,四棱锥P ABCD 中, 底面ABCD 是边长为2的菱形,Q

高三数学立体几何专题复习课程

高三数学立体几何专 题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空 间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三 视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的 高宽高分别为,,m n k = =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4 a b ?+≤当且仅当2a b ==时取等号.

高考文科数学专题5 立体几何 高考文科数学 (含答案)

专题五 立体几何 第一讲 空间几何体 1.棱柱、棱锥 (1)棱柱的性质 侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质 侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图 (1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题 (1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长. (2)柱、锥的内切球找准切点位置,化归为平面几何 问题. 4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式 ①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l ); ③圆台的表面积S =π(r ′2 +r 2 +r ′l +rl ); ④球的表面积S =4πR 2 . (2)体积公式 ①柱体的体积V =Sh ; ②锥体的体积V =1 3 Sh ;

③台体的体积V =1 3(S ′+SS ′+S )h ; ④球的体积V =43 πR 3 . 1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A .4 B.143 C.16 3 D .6 答案 B 解析 由三视图知四棱台的直观图为 由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=14 3. 2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是 ( )

《立体几何》专题(文科)

高三文科数学第二轮复习资料 ——《立体几何》专题 一、空间基本元素:直线与平面之间位置关系的小结.如下图: 二、练习题: 1. 1∥ 2,a ,b 与 1, 2都垂直,则a ,b 的关系是 A .平行 B .相交 C .异面 D .平行、相交、异面都有可能 2.三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是 A . V 21 B .V 31 C .V 41 D .V 3 2 3.设α、β、γ为平面, m 、n 、l 为直线,则m β⊥的一个充分条件是 A .,,l m l αβαβ⊥=⊥ B .,,m αγαγβγ=⊥⊥ C .,,m αγβγα⊥⊥⊥ D .,,n n m αβα⊥⊥⊥ 4.如图1,在棱长为a 的正方体ABCD A B C D -1111中, P 、Q 是对角 D 1 B 1

线A C 1上的点,若 a PQ= 2 ,则三棱锥P BDQ -的体积为 A3 B3 C3 D.不确定 5.圆台的轴截面面积是Q,母线与下底面成60°角,则圆台的内切球的表面积是 A 1 2Q B 2 3 Q C 2 π Q D 2 3π Q 6.在正方体ABCD—A1B1C1D1中,E、F、G、H分别为棱BC、CC1、C1D1、AA1的中点,O为AC与BD的交点(如图),求证: (1)EG∥平面BB1D1D; (2)平面BDF∥平面B1D1H; (3)A1O⊥平面BDF; (4)平面BDF⊥平面AA1C. 7.如图,斜三棱柱ABC—A’B’C’中,底面是边长为a的正三角形, 侧棱长为 b,侧棱AA’与底面相邻两边AB、AC都成450角,求 此三棱柱的侧面积和体积. 8.在三棱锥P—ABC中,PC=16cm,AB=18cm,PA=PB=AC=BC=17cm,求三棱锥的体积V P-ABC.

高考数学专题 立体几何专题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力与运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点就是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等.【例题解析】 题型1 空间几何体的三视图以及面积与体积计算 例 1 某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影就是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别就是长为a 与b 的线段,则a b +的最大值为 A. 22 B. 32 C. 4 D. 5 2分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为,,m n k ,由题意得2227m n k ++=,226m k +=1n ?=, 21k a +=,21m b +=,所以22(1)(1)6 a b -+-=228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ?+≤当且仅当2a b ==时取等号. 点评:本题就是高考中考查三视图的试题中难度最大的一个,我们通过移动三个试图把问题归结为长方体的一条体对角线在三个面上的射影,使问题获得了圆满的解决. 例2下图就是一个几何体的三视图,根据图中数据,可得该几何体的表面积就是 A.9π B.10π C.11π D.12π

高职高考数学课程初步立体几何

第四编 立体几何初步 第九章 立体几何初步 第一节 简单几何体的表面积和体积 1. 圆柱、圆锥、圆台的侧面展开图及侧面积的计算公式如下: 2. 球、柱、锥、台的表面积及体积计算公式: 名 称 表面积S 体积V 棱 柱 底侧S S 2+ h S 底 棱 锥 底侧S S + h S 底3 1 棱 台 下底上底侧S S S ++ h S S S S )(3 1 下底上底下底上底?++ 球 24R π 33 4 R π 圆 柱 )(2r l r +π h r 2π 圆 锥 )(r l r +π h r 23 1π 圆 台 )()(222121r r l r r +++ππ )(3 1 222121r r r r h ++π 第二节 三视图 1. 柱、锥、台、球的结构特征 (1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体. (2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体. (3)棱台:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分. (4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体. l r r π2r l r π2l ' r r ' 2r πr π2rl s π2=侧rl S π=侧()l r r S '+=π侧

(5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体. (6)圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分. (7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体. 2. 空间几何体的三视图和直观图: (1)三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) (2)画三视图的原则:长对正,高齐平,宽相等. (3)直观图:斜二侧画法. ①在已知图形中取相互垂直的x 轴和y 轴,两轴相交于点O ,画直观图时,把它们画成对应的'x 轴和'y 轴,两轴相交于点'O ,且使)135(45??='''∠或y O x ,它们确定的平面表示水平面. ②原来与x 轴平行的线段仍然与x 平行且长度不变; ③原来与y 轴平行的线段仍然与y 平行,长度为原来的一半. 第三节 空间几何体的平行问题 1. 线线平行的判断: ①平行于同一条直线的两条直线互相平行。 ②平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 ③如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线 和交线平行。 l b a l b l a // //?b a // α b a α α ?b b a //?α //a ? b a a =?βαβα // b a //

高中数学立体几何重要知识点(经典)

立体几何知识点 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与 高的比的平方。 (3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积 rh S π2=圆柱侧 '2 1ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2 121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 () 22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式 V Sh =柱 2V S h r h π==圆柱 13V S h =锥 h r V 23 1π=圆锥 '1()3 V S S h =台 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=24R π

高考文科数学立体几何试题汇编

图 2 1俯视图 侧视图 正视图2 11.(北京8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点, 则 P 到各顶点的距离的不同取值有( ) A .3个 B .4个 C .5个 D .6个 2.(广东卷6)某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A .1 6 B .1 3 C .2 3 D .1 3. (广东卷8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 4. (湖南卷7)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于 A . 3 B.1 C. 21 + D.2 5. 江西卷8).一几何体的三视图如右所示,则该几何体的体积为( ) A.200+9π B. 200+18π C. 140+9π D. 140+18π 6. (辽宁卷10)已知三棱柱 1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为 A . 317 B .210 C .13 2 D .310 B .. (全国卷11)已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 (A ) 23 (B )3 (C )23 (D )1 3 8. (四川卷2)一个几何体的三视图如图所示,则该几何体可以是( )

相关主题
文本预览
相关文档 最新文档