当前位置:文档之家› 5万立方米每天。CASS工艺污水处理厂设计

5万立方米每天。CASS工艺污水处理厂设计

5万立方米每天。CASS工艺污水处理厂设计
5万立方米每天。CASS工艺污水处理厂设计

沈阳化工大学

本科课程设计

题目:某城市污水处理厂

工程工艺设计

院系:环境与安全工程学院

专业:水质科学与技术

班级:1301

学生姓名:朱立恒

指导教师:金飙

论文提交日期:年月日

目录

绪论错误!未定义书签。

第一章设计任务概述错误!未定义书签。

设计任务错误!未定义书签。

设计资料错误!未定义书签。

第二章污水处理厂工艺选择错误!未定义书签。处理工芝设计原则错误!未定义书签。

污泥处理、处置工艺错误!未定义书签。

净化污水消毒方式错误!未定义书签。

第三章CASS工艺流程错误!未定义书签。3.1 CASS工艺流程错误!未定义书签。

CASS工艺设计概要错误!未定义书签。

第四章污水处理厂设计计算错误!未定义书签。

设计参数错误!未定义书签。

构筑物设计计算错误!未定义书签。

第五章设计计算总结错误!未定义书签。

绪论

本设计的课题为“某城市污水处理厂工程工艺设计”。污水来源为生活污水和工业废水;项目服务面积,服务人口约9万人。设计污水量为50000 m3/d。本设计采用的是CASS工艺,BOD5去除率达90%以上,SS去除率达85%以上。出水最终达到《城镇污水处理厂污染物排放标准》GB18918-2002中的二级标准。

主要设计构筑物为CASS反应池。本设计四组CASS反应池,每组CASS反应池尺寸为××,其中微生物选择区(预反应区)长度为10m。反应周期为4h,每日反应周期数为6。每个反应池的曝气量为h,底部铺设2845个空气扩散器,平均每个空气扩散器的曝气量为h.

工艺流程如下:

第一章设计任务概述

设计任务

某城市污水处理厂工程工艺设计。

设计资料

污水来源及水量

1、生活污水和工业废水;项目服务面积,服务人口约9万人。

2、设计污水量50000m3/d。

工程设计污水进水水质

污水进水水质如表所示,单位:

指标COD cr BOD5NH4+-N TP SS

数值(mg/L)300150405200

工程设计要求

出水要求符合《城镇污水处理厂污染物排放标准》GB18918-2002中的二级标准,见表。

指标COD cr BOD5NH4+-N TP SS

数值(mg/L)100 30 25 3 30

工艺选择

CASS

第二章污水处理厂工艺选择

处理工芝设计原则

合理的污水处理工艺,应当在处理效果优良的前提下,运行稳定、管理方便,并尽可能降低工程投资和日常运行费用,确保污水处理厂出水水质稳定达标。因此,本设计在考虑污水处理工艺时,遵循以下原则。

1、遵循国家和地方的各项相关法规、政策,因地制宜,合理实施;

2、城市总体规划为依据,综合考虑城市实际地形条件,规划全面、布局合理,节约用地;

3、处理工艺先进可靠,设备高效节能,控制方案适合国情,构造型式经济合理,确保污水厂处理效果优越,运行可靠,管理方便、节省投资和运行成本。

污水处理工艺方案比较及推荐工芝

城市污水处理厂的污染物质主要是有机物,一般采用活性污泥法和生物膜法两种处理方法。活性污泥法脱氮除磷的优点主要表现在:处理效率高、效果好、运行稳定、运转经验丰富,因此,对城市污水进行脱氮除磷,生物活性污泥法是首选方案之一。由污水处理厂设计进水水质、出水水质要求及处理程度可知,为达到处理要求,本工程必须采用脱氮除磷工艺以及深度处理工艺。

目前常用的具有脱氮除磷能力的活性污泥工艺主要有:A2/O、氧化沟、序批式(SBR、CASS 等)工艺等。

生物脱氮除磷(A2/O)工艺

A2/O工艺是普通曝气为基础,企图同时解决除磷、脱氮问题而派生的工艺,其主体工艺流程为:

城市污水→粗格栅→提升累站→细格栅→沉砂池(初沉池)→厌氧池→缺氧池→好氧(曝气)池→二沉池→消毒→出水排放。

经预处理后的城市污水首先进入厌氧池,与由二沉池回流的含磷污泥混合,回流污泥中聚磷菌在厌氧条件下释放出体内的磷酸盐(同时降解污水中的部分有机物),然后在后面好氧(池)条件下过量吸收污水中的磷,最后通过排除高含磷的剰余污泥来达到除磷目的;厌氧池出水进入缺氧池,与从好氧池回流的硝化液混合,进行生物反硝化脱氮,将硝酸盐还原成氮气从水中逸出;缺氧池的出流进入好氧池(曝气池),在此,实现降解BOD、硝化氨氮、过量吸磷等多项反应,最后在二沉池进行泥、水分离,一部分污泥回流至厌氧池,上清液经消毒后排放。

由于A2/O工艺的基础是活性污泥系统,BOD的去除效果好,技术成熟。但也存在显著的问题:一是工艺流程长、构筑物较多,导致占地面积大,动力消耗较大;且同时存在多重回流系统如污泥回流和混合液回流等,工艺管道系统长且复杂;工程投资大,运行成本高;对周围环境影响较大;二是要求运行、管理水平,方能维持处理系统的稳定运行;三是难以协调脱氮、除磷的工艺条件。

氧化沟(OD/GOD)工艺

氧化沟法(OD工艺)作为一种新型活性污泥工艺是于20世纪50年代由荷兰工程师发明的,在其封闭的沟渠型曝气池中,污水和活性污泥的混合液是不断循环流动的,因此,氧化沟又称为"无终端曝气系统"或"连续循环曝气池"。

早期的氧化沟因占地面积大仅应用于大型污水处理厂,但随着充分认识和不断改进氧化沟污水处理技术,不断完善和多样化曝气装置,氧化沟以其构造简单、处理效果较好、出水水质较稳定、运行管理简便等优点而受到重视。

传统氧化沟工艺主体流程为:

城市污水→粗格栅→提升累站→细格栅→沉砂池→氧化沟→二沉池→消毒→出水排放。

经预处理后的城市污水进入氧化沟后,利用氧化沟中充氧设备布置形成的好氧与缺氧环境,完成对污水中含碳有机物的生物降解、硝化氨氮和生物脱氮过程,混合液出流进入二沉池进行固液分离,其上清液经消毒后排放;二沉池的沉淀污泥由污泥回流泵回流至氧化沟,以维持处理系统的污泥平衡;二沉池排出的剩余污泥通过浓缩、脱水后,外运处置。

常规氧化沟的主要优点是:

(1)氧化沟循环流量大,原污水进入氧化沟后立即与沟内的循环混合液混合,因此抗冲击负荷能力较强;

(2)氧化沟运行的水力条件好,运行正常时处理效果好;

(3)工艺流程简单、构筑物少、控制管理方便;

(4)泥龄长,剩余污泥量相对较少,污泥较稳定。

常规氧化沟的主要缺点则是:

(1)常规氧化沟一般采用转碟或转刷充氧,因受充氧方式的制约而池深较浅,占地面积大;

(2)有机负荷低,池容大,工程投资相对较大;

(3)采用转碟或转刷充氧的大型氧化沟,其充氧能力和推动力往往不易匹配,导致氧化沟的流速偏低;

(4)由于受水质和温度等条件的影响,在实际运行中容易发生污泥膨胀,影响处理系统的稳定运行;

(5)必须建立庞大的二沉池及污泥回流系统,进一步增加占地面积和工程投资;

(6)转碟或转刷充氧的动力效率较低,导致耗电相对较大。

由于常规氧化沟系统没有生物除磷功能,且常用的机械(转碟、转刷)充氧设备维修难度较大、运行工况不易调整,污水处理界人士最近又推出了"改良型微曝氧化沟工艺(GOD)",GOD在传统氧化沟前端増设厌氧段和缺氧段,以进一步解决生物除磷、脱氮问题;并以鼓风微孔曝气取代常规氧化沟的机械(转碟、转刷)充氧方式,提高充氧效率,节约能耗。

.3CASS(序批式)污水处理工艺

周期循环活性污泥法简称CASS(Cyclic Activated Sludge System),是以SBR为基础,在SBR 池内进水端増加一个生物选择器发展起来的。目前,在我国运行良好的CASS工艺的反应池沿池长方向一般设两部分,前部为生物选择区即预反应区,后部为主反应区,主反应区后部安装了可升降的自动撇水装置。在同一池子内周期循环运行工艺的曝气、沉淀、排水等过程,省去了常规活性污泥法的二沉池和污泥回流系统;同时可连续进水,间断排水。为系统选择出絮凝性细菌是设置生物选择器的主要目的,在预反应区内微生物利用酶的快速转移机理经历一个高负荷的基质快速积累过程迅速吸附污水中大部分可溶性有机物,这对进水水质、pH、水量及有毒有害物质起到较好的缓冲作用,同时抑制丝状菌生长,有效防止污泥膨胀;随后在主反应区经历较低负荷的基质降解过程。预反应池容积是CASS池容积的12%~16%。

CASS生化池的反应、沉淀、排水功能三位一体,污染物降解在时间上是一个推流过程,微生物则处于好氧、缺氧、厌氧周期性变化之中.从而去除污染物,同时兼具脱氮、除磷功能。

CASS工艺的主体流程为;

城市污水→粗格栅→提升泵→细格栅→沉砂池→cass池(预反应区一主反应区一滗水)→出水排放。

CASS工艺主要工艺特征:连续进水,间断排水:运行具有时序性:运行过程的非稳态性;溶解氧周期性变化,浓度梯度高。

CASS工艺主要优点是:

(1)工艺流程简单,占地面积小,投资较低

反应池是CASS的核心构筑物,无二沉池及污泥回流设备,一般不设调节池及初沉池。因此污水处理设施布置紧凑,能节省占地和投资。

(2)生化反应推动力大

CASS工艺从曝气到排水整个周期,基质浓度、浓度梯度、基质利用速率均由高到低,因此CASS工艺是理想的时序上的推流式反应器,生化反应推动为大。

(3)沉淀效果好

沉淀阶段几乎整个反应池均起沉淀作用,此时的表面负荷远小于普通二沉池,因此进水干扰的影响很小,沉淀效果较好。实践证明,温度较低污泥沉降性能差时,CASS工艺也能正常运行。实践和工程中曾遇到SV30高达96%的情况,只要稍微延长沉淀阶段的时间,系统就能正常运行。

(4)运行灵活,抗冲击能力强

CASS工艺充分考虑流量变化的因素,能确保污水在系统内停留预定的处理时间后经沉淀排放。为适应进水量和水质的变比,还可W调节运行周期。进水浓度较高时,可延长曝气时间

实现达标排放,达到抗冲击负荷的目的为强化脱氮除磷功能时,CASS工艺可调整工作周期及控制反应池的溶解氧水平,提高脱氮除磷的效果。

(5)不易发生污泥膨胀

CASS生化池中浓度梯度较大且缺氧、好氧交替变化,这样能选择性地培养菌胶团细菌使其成为曝气池中的优势菌属,有效地抑制丝状菌的生长繁殖,不易发生污泥膨胀,也能提高系统的运行稳定性。

(6)适用范围广

CASS工艺适用范围比SBR工艺更广泛,大型、中型及小型污水处理厂都适用;控制系统比SBR工芝更简单也便于与前处理构筑物相匹配则得益于连续进水的设计和运行方式,。.4推荐污水处理工艺

通过上述工艺机理、工艺流程、工艺特点、工艺参数、主要工程内容以及综合因素等各方面的技术经济比较和论证,CASS工艺和改良性氧化沟工艺处理本工程规模污水都能满足出水水质的要求。本设计考虑到CASS工艺具有不易发生污泥膨胀、无需硝化液回流,节省能耗、工艺流程短,占地面积小,基建费用低及业主对该工艺熟悉,运行管理经验也比较丰富等实际情况,推荐采用工艺成熟的CASS生物处理工艺。

污泥处理、处置工艺

污泥处理、处置的基本要求

城市污水处理产生的剩余污泥,有机物含量较高、不稳定、易腐化且含有寄生虫卵等污染因子,如不进行妥善处理,将对环境造成二次污染。对于城市污水处理厂的剩余污泥,通常要求根据实际情况,通过适当的处理、处置,使其尽量达到"四化"要求,即:减量化、稳定化、无害化、资源化。

污泥处理工艺

针对上述对城市污水厂剩余污泥处理的基本要求,污泥处理工艺如下:

1.污泥浓缩:对剩余污泥体积初步减量,便于进一步处理。

对于生物除磷脱氮型的CASS工艺,为避免剩余污泥在较长时间重力浓缩过程中二次释磷,污泥於池水力停留时间一般不超过3h最好采用机械浓缩。

2.污泥脱水:对剩余污泥体积进一步减量。

污泥脱水有自然干化和机械脱水两种方式。现在除条件特殊、规模极小的污水处理站可能采用自然干化方式,一般城镇污水厂的剩余污泥,为保护环境和节约用地,采用机械脱水方式。

鉴于国家新颁布的《生活垃圾填埋场污染物控制标准》(GB16889-2008)的实施,城市污水处理厂脱水剩余污泥的含水率必须控制在小于60%的水平。对此,以往常用的带式压滤机、卧螺离心机等污泥脱水机型,均不能满足脱水污泥含水率小于60%的要求,目前较多采用加压过滤型的厢式压滤机和板框压滤机。

3.污泥消化:

污泥消化有厌氧消化和好氧消化(好氧稳定)两种形式,由于污泥消化的费用很高,且管理复杂,目前国内对于中、小型规模城市污水处理厂的剩余污泥,一般不进行消化处理。眉山市頓东新区污水处理一厂采用CASS工艺,其剩余污泥已基本稳定,故不考虑进行消化处理。

4.污泥干化、焚烧:

污泥干化一般采用多段炉或回转炉:多段炉一般为立式炉,分5段或更多段;回转炉是污泥干化最常用的炉型,炉中热风和污泥逆流运行,热效率高;回转炉可将污泥干化和焚烧合并

处理,也可分开处理。污泥干化、焚烧技术虽然具有处理迅速、减容大(70-90%)无害化程度高、占地面积小等优点,但终因其一次性投资巨大,操作管理复杂,能耗及运行费用高等问题,其使用受到限制。

污泥外置工艺

目前,国内对城市污水厂剩余污泥的处置方式有以下几种:

1.污泥卫生填埋

污泥和城市生活垃圾一起卫生填埋、终结覆盖,是当前国内城市污水处理厂处置脱水剰余污泥的常用方式。鉴于国家新颁布的《生活垃圾填埋场污染物控制标准》(GB16889-2008)的实施,为不影响填埋场的正常作业要求脱水剩余污泥的含水率必须小于60%。

2.污泥堆肥

剩余污泥可与城市生活垃圾混合,进行好氧堆肥。混合堆肥的最佳初期含水率一般控制在40-60%,堆肥温度60-70℃,要求的碳氮比为20:1,碳磷比为100:1;城市污泥一般缺少氮和磷,人为补充氮、磯,可加速堆肥的熟化过程,提高肥效巧肥的供氧方式一般为自然通风,也可强制通风。从理论上讲,剩余污泥与城市生活垃圾混合堆肥,不仅污泥熟化程度离,病原体和寄生虫巧去除较彻底,而且是污泥资源化的良好途径:但是,从国内目前的农业运作方式和±地经营情况来看,混合堆肥产品的农村市场尚不通畅,部分垃圾堆肥厂也都由于产品销路问题而被迫停产,因此,污泥堆肥目前尚不足以成为城市污水厂剩余污泥处置的主导方式。

推荐的污泥处理、处置方法

根据具体情况和经济状态,对于污水处理一厂剩余污泥的处理、处置,推荐采用如下方案:

1.对排出的剩余污泥采用贮泥池贮存,不进行浓缩;

2.采用隔膜压榨厢式压滤机进行污泥脱水,控制脱水污泥含水率小于60%;

3.脱水污泥送往城市生活垃圾填埋场进行卫生填埋;如经有关部门检验确认安全无害,也可用作农肥或供园林部口用于非娱乐场所的绿化和荒地的土质改良。

净化污水消毒方式

为了有效地保护环境,防止传染性疾病流行的危害,国家规定必须对污水处理厂的净化出水进行消毒。当前在城市污水处理中,常用的污水消毒方法主要有氯消毒(包括液氯、二氧化氯、次氯酸钥、漂白粉等)臭氧消毒和紫外线消毒。

氯消毒

以往对城市污水处理厂的净化水消毒,通常采用液氯消毒(大型污水厂)或二氧化氯消毒(中、小型污水厂)。多年来工程运行实践表明,采用氯消毒存在若干问题,主要是:

1.液氯属危险物品,存储液氯的钢瓶属高压容器,在运输、贬存过程中都存在很大的安全隐患,在运输、使用过程中如发生液氯泄漏,将导致严重问题,甚至危及人身安全;

2.为应对泄氯事故,需设置一套应对泄氯事故的氯吸收处理装置,且需经常维护,使其始终处于应急启动状态;这不仅耗费相当投资,而且增加了日常维护工作量;

3.消毒单元需建造加氯间、液氯贮存间及体积庞大的消毒接触池,工程投资较大;

4.由于消毒接触池体积庞大,在日常运行过程中,净化出水中的SS将在池中沉淀、积累、上浮,日久在消毒接触池面会形成厚厚的泥渣层,再加上阳光的照射,在污泥层上还会长满青苔,如此状态的消毒接触池,不仅形象十分难看,还会滋生大量蚊蜡,恶化出水水质;

5.液氯、二氧化氯的原料价格日益増高,导致消毒成本升高。

紫外线消毒

紫外线是近十多年来发展得最快的一种方法,当前大有逐步取代氯消毒成为污水处理厂主要消毒方式的趋势。

紫外线消毒的基本原理是紫外线对细菌DNA有致畸作用。细菌吸收一定剂量的紫外线后,其DNA结合键断裂,细胞失去活力无法繁殖导致细菌数量大幅度减少从而达到灭菌目的。

紫外线消毒的主要优点在于:一是紫外线消毒危险性小,比较安全,无二次污染;二是消毒反应迅速(在数秒钟内完成),不需要体积庞大的消毒接触池,只需建造体积极小的消毒渠即可,因而其占地面积和土建费用均得以大大减少:三是设备简单,造价相对低廉;四是运行管理方便;五是紫外线消毒除电耗外,无需任何原材料,消毒成本低廉。

紫外线消毒的主要缺点主要是;一是对消毒渠紫外灯组上部的水位控制要求较严格,否则将影响消毒效果;二是紫外灯管的清洗系统尚不够完善,容易发生故障,影响消毒单元的稳定运行。

自21世纪以来,国内大多数城市污水处理工程的设计单位,对城市污水处理厂都已改用紫外线消毒。

综上所述,紫外线消毒与液氯(或二氧化氯消毒)相比,具有显著的优越性。因此,对于污水处理厂工程的净化出水消毒,推荐采用紫外线消毒方式。

第三章 CASS 工艺流程 3.1 CASS 工艺流程

城市污水首先进入粗格栅槽,经拦截粗大杂物后进入集水池,集水池污水由潜污累提升至细格栅槽,经拦截较细的杂物后,进入旋流沉砂池除砂,沉砂池出水自流进入CASS 生化池,污水在CASS 生化池中,按预先设定的程序,经生物选择器、预反应区、主反应区,以进水、曝气、沉淀、滗水、闲置等阶段周而复始地进行循环,达到去碳、硝化、脱氮、除磷的目的。由CASS 反应器滗水器出来的上层清液排出。

处理后的尾水经厂外污水尾水排放管道工程排入自然水体。

处理过程的剰余污泥,从CASS 生化池中的污泥提提升泵排入污泥浓缩池,再进入调理池调理后由污泥泵提升至脱水机房进行浓缩、脱水,脱水污泥外运处置。

粗、细格栅的栅渣及沉砂池的沉砂随脱水污泥一并外运处置;转鼓滤池的反冲洗污水,由于水量少,可送往污泥贮池进行再处理。 CASS 工艺流程图示意图如图所示

CASS 工艺设计概要

CASS 反应器设置了生物选择区、缺氧区和好氧区,主反应区后部设置了可升降的自动滗水装置。污水连续进入预反应区,经过隔墙底部进入主反应区,在保证供氧的条件下,使有机物被池中的微生物降解。根据进水水质可对运行参数进行调整。 CASS 工艺过程 标准的CASS 系统以4h 为一周期,其中2h 曝气,1h 沉淀,1h 闲置。当出现有机冲击负荷时,为适应高负荷保持处理效果可延长曝气时间或增加循环操作周期的时间当水力负荷过大时(如雨季流量),为满足大流量低负荷时的处理要求可缩短曝气时间、増加滗水频度;为保证选择的有效性,厌氧生物选择器的运行可以恒容也可变容进行 CASS 工艺一般分为四个阶段。 进水搅拌或曝气阶段 污水进入生物选择区,是一个操作周期的开始。曝气的时间起始点根据预先设定的程序决定,为适应不同的进水情况,可与进水同步也可在进水一定时间后开始。

絮凝、

过滤

剩余污泥 消

毒后出水

泵 贮池上清液 栅渣 栅渣 排沙 污泥浓缩池 污泥脱水

粗 格 栅

集 水

旋流沉砂池

细 格

物选择器

城 市

污 水

回流污泥

CASS

反应

泥外运

边进水边曝气,曝气装置向反应池内充氧,一方面满足好氧微生物对氧的需要,另一方面让活性污泥与有机物充分接触混合,有利于微生物氧化分解有机污染物,污水中的NH3-N通过微生物的硝化作用转化为硝酸盐氮。同时占污水量20%~30%的活性污泥从主反应区回流至生物选择区。液位逐渐上升至设计最高液位,有效容积逐渐增加。

沉淀阶段

泥水是沉淀阶段主要目的。在这一阶段停止曝气,水中剩余的溶解氧被微生物用于氧化分解,反应池逐渐由好氧状态转变成缺氧状态,反硝化反应开始进行。活性污泥逐渐沉到池底,上层水逐渐澄清。沉淀巧期,曝气阶段的搅拌使污泥发生絮凝作用,随后以区域沉降的形式沉降,因此即使在沉淀阶段继续进水,依然有良好的沉淀效果。

滗水阶段

滗水器设在反应池末端,是CASS工芝最关键的设备之一,它由电动机驱动,由系统设定的程序计算,变频调节上升和下降速度。沉淀结束后,滗水器根据指令沿设定轨道以较高的速度下降到水面,与水面接触后,滗水器转换到正常滗水下降速度,当滗水器下降至最化水位,滗水结束旋即迅速返回到初始位置。滗水器前部设有挡渣板,能防止水面可能存在的浮渣随出水排出。此阶段仍进行着污泥回流,反应池逐渐过渡到厌氧状态继续反硝化。

闲置阶段

实际滗水所需时间短于设计时间,故反应池在滗水完成后的剩余时间进入闲置阶段。在此期间,滗水器上升到原始位置,微生物在内源呼吸作用下恢复活性,为下个周期创造良好的初始条件。经历闲置期的活性污泥处于对营养物的饥饿状态,其单位重量的吸附表面积很大。因此,一旦进入下一运行周期的进水期,活性污泥便充分发挥较强的吸附能力,有效地去除污染物。闲置阶段,污泥回流照常进行。

生物除磷

CASS工艺兼具多池除磷工艺和单池除磷工艺的优点。它在主反应区内进行曝气,而在主反应区之前设置体积相对很小的生物选择区,增加由主反应区到生物选择区的污泥回流。生物选择区独立于主反应区彼此干扰小,就具有多池除磷工艺的除磷好的优点,同时又拥有SBR系列工艺占地面积小,操作维护简单的特点。

第四章污水处理厂设计计算

设计参数

1. 设计最大流量Q max=50000×=67000 m3/d

水量变化系数K z=

2. 设计进水水质

指标COD cr BOD5NH4+-N TP SS

数值(mg/L)300150405200

3. 设计出水水质

指标COD cr BOD5NH4+-N TP SS

数值(mg/L)60 15 8 20

4. 回流污泥浓度

X R=12000 mg/L

5. 污泥回流比

R=20%

6. 排除比

构筑物设计计算

粗格栅的设计计算

1.主要功能

格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物。去除污水中的粗大悬浮物、保证污水提升粟常稳定地运行。

2.设计计算

集水池的设计计算

1.主要功能

集水池的作用是汇集、储存和均衡废水的水质水量。

2.设计计算

提升泵的设计计算

1.主要功能

将原污水提升至细格栅槽。

2.设计计算

细格栅的设计计算

1.主要功能

拦截污水中较细小的渣浑,保护后续处理单元的正常运行。

2.设计计算

旋流沉砂池的设计计算

1.主要功能

沉淀去除污水中的砂粒,保护后续单元正常运行。

2.设计计算

CASS反应池的设计计算

1.主要功能

去除污水中的有机物染物,硝化、脱氮、除憐。

2.设计计算

(1)污水处理效率计算

进水BOD5浓度S0=150 mg/L

出水BOD5浓度S e=15 mg/L

BOD去除率

(2)BOD污泥负荷N s

KgBOD5/(kgMLSS·d)

式中:

——BOD5污泥负荷,KgBOD5/(KgMLSS·d)

——有机基质降解速率常数,L/(mg·d),取L/(mg·d)

——出水BOD浓度,mg/L

——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值,~, 取

——BOD去除率。

(3)CASS反应池容积负荷

(1)CASS反应池外形尺寸

反应池总有效容积

m3

式中:

——反应池总有效容积,m3

——设计最大流量,m3/d

——进水BOD5浓度,mg/L

——出水BOD5浓度,mg/L

——BOD5污泥负荷,KgBOD5/(KgMLSS·d)

——混合液污泥浓度,Kg/m3;取:

——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值,~

设反应池=4组,单个反应池有效容积

设:

有效水深

微生物选择区

CASS池中间设1道隔墙,将池体分隔成微生物选择区(预反应区)和主反应区两部分。靠进水端为生物选择区,其容积为CASS池总容积的16%左右,另一部分为主反应区。选择器的类别不同,对选择器的容积要求也不同。

(4)运行周期

曝气时间

沉淀时间

当混合液污泥浓度时,则污泥界面沉降速度;()

运行周期设排水周期

每日周期数

(5)复核出水BOD5浓度S e

满足设计要求

式中:

——出水BOD5浓度,mg/L

——进水BOD5浓度,mg/L

——有机基质降解速率常数,L/(mg·d),取L/(mg·d)

——混合液污泥浓度,kg/m3;取:

——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值,~

——曝气时间

(6)CASS池各部分容积组成及最高水位

式中:

变动容积,是指池内设计最高水位至滗水后最低水位之间的容积和水深

滗水水位和泥面之间的容积和水深

活性污泥最高泥面至池底的容积和水深

水深:

式中:

——设计最大流量,m3/d

——CASS池平面总面积,m2;

水深

式中:

——CASS反应池设计高度,m

——混合液污泥浓度,Kg/m3;取:

——污泥体积指数,取

水深

CASS反应池总高度

其中:超高为

(7)计算剩余污泥量

10℃时活性污泥自身氧化系数:

剩余生物污泥量

式中:

剩余生物污泥量,

——污泥产率系数,取

——设计最大流量,m3/d

——进水BOD5浓度,mg/L

——出水BOD5浓度,mg/L

——活性污泥自身氧化系数

——单个CASS反应池有效容积,m3

——混合液污泥浓度,mg/L

——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值——曝气时间

剩余非生物污泥量

式中:

剩余非生物污泥量,

——设计最大流量,m3/d

——进水VSS中可生化部分,取

——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值进水SS浓度,mg/L

出水SS浓度,mg/L

剩余污泥总量

剩余污泥浓度:

剩余污泥含水量按%计算,湿污泥量为:

(8)复核污泥龄

式中:

污泥龄,d

——污泥产率系数,取

——BOD5污泥负荷,KgBOD5/(KgMLSS·d)

——衰减系数,一般为~,取

硝化所需最小污泥龄:

由,所以污泥龄能满足消化要求

式中:

——硝化所需最小污泥龄,d

——硝化细菌的最小增长速率,d-1,时,

——安全系数;为确保出水氨氮小于5mg/L,一般为~,本设计取

——污水最低温度,取冬天最不利温度10℃

(9)需氧量

设计需氧量包括氧化有机物需氧量,污泥自身需氧量、氨氮硝化需氧量及出水带走的氧量。设计需氧量考虑最不利情况,按夏季时高水温计算设计需氧量。

氧化有机物需氧量,污泥自身需氧量O1以每去除1㎏BOD需要㎏Oa的经验法计算。

式中:

——氧化有机物和污泥自身需氧量,kgO2/L

——活性污泥微生物每代谢1㎏BOD需氧量,一般生活污水取为㎏~㎏,本设计取㎏

——设计最大流量,m3/d

——进水BOD5浓度,mg/L

——出水BOD5浓度,mg/L

——1㎏活性污泥每天自身氧化所需要的氧量,一般生活污水取为㎏~㎏,本设计取㎏

——反应池总有效容积,m3

——混合液污泥浓度,mg/L

氨氮硝化需氧量O b按下式计算

式中:

——氨氮硝化需氧量,

——设计最大流量,m3/d

——进水氨氮浓度,mg/L

——出水氨氮浓度,mg/L

——反应池总有效容积,m3

——混合液污泥浓度,kg/m3

——混合液中挥发性悬浮固体浓度与总悬浮固体浓度的比值

污泥龄,d

总需氧量:

(10)标准需氧量

标准需氧量计算公式:

式中:

——水温20℃,气压×105pa时,转移到曝气池混合液的总氧量,㎏/h

——在实际条件下,转移到曝气池混合液的总氧量,㎏/h

——20℃时氧在清水中饱和溶解度,取L

——杂质影响修正系数,取值范围~,本例选用

——含盐量修正系数,本例取

——气压修正系数

——设计水温条件下曝气池内平均溶解氧饱和度mg/L

——设计水温条件下氧在清水中饱和溶解度,水温℃时,

——曝气池内平均溶解氧浓度,取2mg/L

——设计污水温度,本设计考虑最不利水温,夏季℃

——空气扩散装置处的绝对压力,Pa,

——大气压力,P=×105pa

——空气扩散装置淹没深度,取微孔曝气装置安装在距池底处,淹没深度

——气泡离开水面时,氧的百分比,%

——空气扩散装置氧转移效率,本设计选用水下射流式扩散装置,氧转移效率E A按26%计算

——所在地区大气压力,Pa

工程所在地沈阳,大气压力,则压力修正系数:

标准需氧量:

空气扩散装置的供气量,可通过下式确定:

每个CASS反应池的曝气量:

(11)空气管系统设计

每组CASS反应池曝气系统管道布置方式为,相邻的两个廊道的隔墙上设两根干管,共四根干管,在每根干管上设5条配气竖管,全曝气池共设4×5=20条配气竖管。每根竖管的配气量为:

曝气池平面面积为:

每个空气扩散器的服务面积按 m2计,则所需空气扩散器的总数为:

为安全计,本设计采用2900个空气扩散器,每个竖管上安设的空气扩散器的数目为:

每个空气扩散器的配气量为:

转鼓滤池的设计计算

1.主要功能

深度处理,进一步去除水中的SS,同时去除絮凝池产生的絮凝体,达到化

学除磷的目的,保证出水水质达到设计要求。

2.设计计算

紫外消毒间的设计计算

1.主要功能

紫外线消毒:污水处理厂出水通过一定剂量和强度的紫外线照射,杀灭出水中的致病菌,达到消毒的目的。

净化水回用:在紫外线消毒渠出水处设集水池,通过回用水系将处理后水部分进行回用,用于污泥脱水间反冲洗用水、厂区道路、绿化浇洒用水等。

2.设计计算

污泥浓缩池的设计计算

1.主要功能

贮存、调节由CASS生化池排出的剩余污泥,絮凝沉淀池排除的污泥及过滤池反冲洗产生的废水,备送往污泥脱水间。

2.设计计算

污泥脱水间的设计计算

1.主要功能

污泥经浓缩后,其含水率仍在94%以上,呈流动状,体积很大,进行脱水减小污泥体积。

2.设计计算

污泥脱水间的设计计算

1.主要功能

向CASS池充氧。

2.设计计算

加药间的设计计算

1.主要功能

贮存、调配、投加混凝沉淀剂、除磷药剂。

2.设计计算

污水处理厂工艺流程图

污水处理工艺流程图 污水进入厂区先通过截流井(让厂能处理的污水进入厂区进行处理)进入粗格栅(打捞较大的渣滓)到污水泵(提升污水的高度)到细格栅(打捞较小的渣滓)到沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除)到生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入终沉池(排除剩余污泥和回流污泥)进入D型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线消毒(杀灭水中的大肠杆菌)然后出水 生化池、终沉池出的污泥一部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运主要有物理处理法,生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法,mbr 等方法。 污水处理 sewage treatment.wastewater treatment 为使污水经过一定方法处理后.达到设定的某些标准.排入水体.排入某一水体或再次使用等的采取的某些措施或者方法等. 现代污水处理技术.按处理程度划分.可分为一级.二级和三级处理. 一级处理.主要去除污水中呈悬浮状态的固体污染物质.物理处理法大部分只能完成一级处理的要求.经过一级处理的污水.BOD一般可去除30%左右.达不到排放标准.一级处理属于二级处理的预处理. 二级处理.主要去除污水中呈胶体和溶解状态的有机污染物质(BOD.COD物质).去除率可达90%以上.使有机污染物达到排放标准. 三级处理.进一步处理难降解的有机物.氮和磷等能够导致水体富营养化的可溶性无机物等.主要方法有生物脱氮除磷法.混凝沉淀法.砂率法.活性炭吸附法.离子交换法和电渗分析法等. 整个过程为通过粗格删的原污水经过污水提升泵提升后.经过格删或者筛率器.之后进入沉砂池.经过砂水分离的污水进入初次沉淀池.以上为一级处理(即物理处理).初沉池的出水进入生物处理设备.有活性污泥法和生物膜法.(其中活性污泥法的反应器有曝气池.氧化沟等.生物膜法包括生物滤池.生物转盘.生物接触氧化法和生物流化床).生物处理设备的出水进入二次沉淀池.二沉池的出水经过消毒排放或者进入三级处理.一级处理结束到此为二级处理.三级处理包括生物脱氮除磷法.混凝沉淀法.砂滤法.活性炭吸附法.离子交换法和电渗析法.二沉池的污泥一部分回流至初次沉淀池或者生物处理设备.一部分进入污泥浓缩池.之后进入污泥消化池.经过脱水和干燥设备后.污泥被最后利用. 各个处理构筑物的能耗分析 1.污水提升泵房 进入污水处理厂的污水经过粗格删进入污水提升泵房.之后被污水泵提升至沉砂池的前池.水泵运行要消耗大量的能量.占污水厂运行总能耗相当大的比例.这与污水流量和要提升的扬程有关. 2.沉砂池 沉砂池的功能是去除比重较大的无机颗粒.沉砂池一般设于泵站前.倒虹管前.以便减轻无机颗粒对水泵.管道的磨损,也可设于初沉池前.以减轻沉淀池负荷及改善污泥处理构筑物的处理条件.常用的沉砂池有平流沉砂池.曝气沉砂池.多尔沉砂池和钟式沉砂池. 沉砂池中需要能量供应的主要是砂水分离器和吸砂机.以及曝气沉砂池的曝气系统.多尔沉砂池和钟式沉砂池的动力系统. 3.初次沉淀池 初次沉淀池是一级污水处理厂的主题处理构筑物.或作为二级污水处理厂的预处理构筑物设

南方CASS方格网计算土方步骤

南方CASS方格网计算土方步骤 一:现场采集数据: 已知坐标点和高程,可以直接利用数据采集来采集要计算土方范围里的点(要算十米格子土方图,实际中采集点为5-8米一点,二十米格子为12-16米一点,中间地形变化比较大的全部要采集,砍高砍底要全部采集),同时范围边采集,而对于没坐标点的可以利用一个固定点为零平台,坐标全假设为0,利用0位角定向即可采集数据,方法和上面一样,再后一个不同之处就是会要采集个平整到哪处位置点的高程将成为你计算土方量的设计高程。 二:开始计算: 传好数据会出现记事本格式的DAT文件如图 , 在南方CASS绘图处理菜单中展野外测点点号,就会出现如图

然后把范围用多段线框出来,如图 把范围框线改别图层并关闭图层,删掉展点号,后打开关闭的图层。 打开CASS菜单里工程应用里方格网计算,会出现下图

接着就是采集原地面高程点数据文件输入如图 再后看到有三个设计面和一个方格网格子距离输入 你将可以选择是有坡度计算还是平整计算和十米格子或二十米格子计算等。 一般情况多用设计面第一个和第二个,第一个平整很简单直接输入设计高程,如图 接着就是你选择方格宽度,下图为20米

第二种有坡度的计算,设计面不同如图 基准点就是坡度开始位置点击平面会出现坐标,向下方向上一点就是坡度结束点点击平面出现的坐标,基准点设计高程就是坡度开始位置设计高程,接着也是选择格子距离10米或20米,下图为20米,

有坡比的和平整的不同之处就是设计高程会不同,如下图对比 有坡比的蓝色设计高程呈现不同值

平整的蓝色设计高程全为32米。 第三种设计面计算和第二种一样,就是一个坡度后接着再一个坡度。下面给个例子做下: 条件:已知采集好了原地面数据,平整高度为35米计算。 已知采集好了原地面数据,从左到右正直坡度为1.5℅,左边开始设计高程为32米计算。 比如电子版图,就在图上面把土方范围框出来后用命令G加点(是保存到你自己文件里)来采集原地面高程点,后面计算都一样。

污水处理厂的工艺流程设计

目录 设计任务书 2 第一章环境条件 4 第二章设计说明书 5 第三章污水厂工艺设计及计算 7 第一节格栅 7 第二节推流式曝气池 9 第三节沉淀池 11 第四节混凝絮凝池 14 第五节气浮池 15 第六节污泥浓缩池 17 第七节脱水机房 19 第八节其他 19 第四章水头损失 21 第五章总结与参考文献 22

设计任务书 1 设计任务: 某化工区2.5万m3/d污水处理厂设计 2 任务的提出及目的,要求: 2.1 任务的提出及目的: 随着经济飞速发展,人民生活水平的提高,对生态环境的要求日益提高,要求越来越多的污水处理后达标排放。在全国乃至世界范围内,正在兴建及待建的污水厂也日益增多。有学者曾根据日处理污水量将污水处理厂分为大、中、小三种规模:日处理量大于10万m3为大型处理厂,1-10m3万为中型污水处理厂,小于1万m3的为小型污水处理厂。近年来,大型污水处理厂建设数量相对减少,而中小型污水厂则越来越多。如何搞好中、小型污水处理厂,特别是小型污水厂,是近几年许多专家和工程技术人员比较关注的问题。 根据所确定的工艺和计算结果,绘制污水处理厂总平面布置图,高程图,工艺流程图。 2.2 要求: 2.2.1 方案选择合理,确保污水经处理后的排放水质达到国家排放标准 2.2.2 所选厂址必须符合当地的规划要求,参数选取与计算准确 2.2.3 全图布置分区合理,功能明确;厂前区,污水处理区污泥处理区条块分割清楚。延流程方向依次布置处理构筑物,水流创通。厂前区布置在上风向并用绿化隔离带与生产区隔离,以尽量减少对厂前区的影响,改善厂前区的工作环境。 2.2.4 构筑物的布置应给厂区工艺管线和其他管线设有余地,一般情况下,构筑物外墙距道路边不小于6米。 2.2.5 厂区设置地坪标高尽量考虑土方平衡,减少工程造价,同时满足防洪排涝要求。 2.2.6 水力高程设计一般考虑一次提升,利用重力依次流经各个构筑物,配水管的设计需优化,以尽量减少水头损失,节约运行费用, 2.2.7 设计中应该避免磷的再次产生,一般不主张采用重力浓缩池,而是采用机械浓缩脱水的方式,随时将排出的污泥进行处理。 2.2.8 所选设备质优、可靠、易于操作。并且设计必须考虑到方便以后厂区的改造。 2.2.7 附有平面图,高程图各一份。 3 设计基础资料: 该区为A市重要的工业及化工区,化工业门类比较齐全,主要为石油化工类,并规模较大,具有的化工厂目前为十多家,每天排出生活污水量8000m3左右,工业废水量为18000m3,污水BOD、COD、SS、酸、碱、硫化物、石油、苯等浓度较高,若未经处理处理直接排海,将会对生态环境造成重大影响,根据化工区规划,必须建设一座污水处理厂。 3.1 水量 最大时水量:1042m3/h 总设计规模为25000m3/d。(远期设计规模为:100000 m3/d)

CASS池的设计计算

CASS 池的设计计算 1. BOD------污泥负荷(S N ) 25**0.0168*30.0*0.750.44/(*0.85 S k Se f N kgBOD kgMLSS d η=== 式中:2k =0.0168,2k ------为有机物基质降解速率常数 Se=30.0,se------为混合液中残留成分的有机基质,/mg L f =0.75,f ------为溶液中挥发性悬浮物固体浓度与总悬浮物固体浓度的比值 η=0.85,η------有机基质降解率 121200300.85200 BOD BOD BOD η--=== 2.曝气时间 02424*200 1.45**0.44*3*2500 A S S T N m X === 式中 :0S ------进水BOD 浓度 X------混合污泥浓度,取25003 /g m 1/m ------排水比,取m=3 3:活性污泥界面的初始沉降速率 4 1.74 1.77.4*10**7.4*10*10*2500 1.24MAX V t X --=== 水温10℃,MLSS ≤3000/mg L 4 1.264.6*10* 2.41MAX V X -== 水温20℃,MLSS >3000/mg L 式中:t------水温,℃ 4:沉淀时间 max 1[*()][6*0.33 1.5] 2.81.24 S H m T V ε++=== h 水温10℃ max 1[*()][6*0.33 1.5] 1.42.41 S H m T V ε++=== h 水温20℃

式中:H------反应器有效水深,取6m ε-----安全高度,取1.5m 5:运行周期 1.45 1.4 1.0 3.85A S D T T T T =++=++=h 式中:D T -----排水时间,h ,取1.0h 因此,取一周期时间为4小时 周期数,6次/天 6:CASS 池容积 采用负荷计算法,3 *()100000*(20030)*1010303.0**0.44*5.0*0.75 a e e w Q S S V m N N f ---=== 本水厂设计CASS 池N=10座,每座容积310303.01030.310 i V m = = 排水体积法进行复核,单池容积为33*1000005000*6*10i m V Q m n N === 反应池总容积3*5000*1050000i V N V m === 式中:i V ------单池容积,3 m n------周期数 N------池数 Q------平均日流量,3/m d 7:CASS 池的容积负荷 7.1池内设计最高水位和最低水位之间的高度 1*100000*62n*6*50000 Q H H m V === 7.2滗水结束时泥面高度,3(m)H 已知撇水水位和泥面之间的安全距离,H2=ε=1.5m 312()6(2 1.5) 2.5H H H H m =-+=-+= 7.3 SVI —污泥体积指数, /ml g 3 3 2.5*1083.3/*6*5.0 W H SVI ml g H N === 此数值反映出活性污泥的凝聚、 沉降性能良好。 8:CASS 池外形尺寸 8.1**V L B H N = 式中:B 为池宽,m ,B:H=1~2; L 为池长,m ,L :B=4~6

(完整版)南方CASS工程应用道路断面土方计算实例教程

南方CASS工程应用--道路断面土方计算实例教程 一、系统环境: (1)操作系统WIN XP ; (2)应用环境:南方CASS7.0 FOR CAD2004或CAD2006 二、实例数据:坐标高程数据文件:dgx.dat (路径:\Program Files\CASS70\DEMO\dgx.dat ) 三、准备工作: 展绘坐标数据文件dgx.dat 中的测点点号,并绘制等高线。基本操作如下:( 1 )【绘图处理】菜单-- 【展野外测点点号】;弹出“输入坐标数据文件名”对话框中,打开dgx.dat 文件,展绘出测点点号; (2)【等高线】菜单--【建立DTM ;弹出“建立DTM对话框中, “选择建立DTM方式”中单选“又数据文件生成”;“坐标数据文件名”中打开dgx.dat 文件;“结果显示”中单选“显示建三角网结果”; 单击【确定】完成DTM勺建立。 (3)【等高线】菜单-- 【绘制等高线】;弹出“绘制等值线”对话框,修改“等高距”为0.5米;“拟合方式”中单选“三次B样条拟合”;单击【确定】完成等高线勺绘制。 (4)【等高线】菜单--【删三角网】。

四、道路断面设计阶段工作: 1. 设计线路走向,即确定纵断面线:在等高线地形图中绘制道路的纵断面剖面线:使用pline绘多段线命令,连接dgx.dat中测点点号421 和227,起点测点421,终点测点227。如图所示: 2. 绘制道路的纵断面图,以便下一步中确定“横断面设计文件”中的各个横断面的中桩设计高。基本操作如下:

【工程应用】菜单- 【绘断面图】- 【根据已知坐标】,弹出“断面线上取值”对话框,在“选择已知坐标获取方式”中单选“由数据文件生成”;在“坐标数据文件名”中打开dgx.dat 文件;注意在“采样间距”中输入25 米(该值可输入与横断面间距相同的数值,便于查看横断面个数及其中桩处的地面高程,并最终确定各里程处横断面的中桩设计高程);单击【确定】按钮。 弹出“绘制纵断面图”对话框,在“断面图比例”中默认横向1:500;纵向1: 100;在“断面图位置”中单击“ ??? ”按钮,用鼠标在绘图 区空白处指定纵断面图左下角坐标,返回“绘制纵断面图”对话框后,单击【确定】按钮。 3. 在纵断面图中“拉坡”大致确定道路中桩设计高:使用pline 多段线从纵断面图图左侧高程标尺1375米处,连接右侧高程标尺1 380米处。如图所示:图中红色曲线即为道路地面断面,白色直线为人工绘制的道路设计断面,每隔25米处有横断面的中桩地面高程,并可大致判断各里程处横断面的中桩设计高程,该纵断面按25 米的间距有6个横断面。

污水处理厂工艺流程范本

第二部分 污水处理厂 一、工艺流程 典型的城市污水处理工艺流程主要包括机械处理、生化处理、污泥处理等工段,如图1。由机械处理以及生化处理构成的系统属于二级处理系统,其BOD5和SS去除率可达到9 0%~98%。处理效果介于一级和二级处理之间的一般称为强化一级处理、一级半处理或不完全二级处理,主要有高负荷生物处理法和化学法两大类,BOD5去除率可达到45%~75%。具有生物除磷脱氮功能的二级处理系统通常称为深度二级处理。为了去除特定的物质,在二级处理之后设置的处理系统属三级处理,例如化学除磷、絮凝过滤、活性炭吸附等。 机械处理工段 机械(一级)处理工段包括格栅、污水提升泵房、沉砂池、初沉池等构筑物,以去除粗大颗粒和悬浮物为目的,处理的原理在于通过物理法实现固液分离,将污染物从污水中分离,这是普遍采用的污水处理方式。机械(一级)处理是所有污水处理工艺流程必备工程(尽管有时有些工艺流程省去初沉池),城市污水一级处理BOD5和SS的典型去除率分别为25%和50%。

生化处理工段 生化处理是整个污水处理过程的核心,因此我们称污水处理工艺是特指这部分,如氧化沟法、SBR法、A/O法等。污水生化处理属于二级处理,以去除不可沉悬浮物和溶解性可生物降解有机物为主要目的。目前大多数城市污水处理厂都采用活性污泥法。生化处理的原理是通过生物作用,尤其是微生物的作用,完成有机物的分解和生物体的合成,将有机污染物转变成无害的气体产物(CO2)、液体产物(水)以及富含有机物的固体产物(微生物群体或称生物污泥);多余的生物污泥在沉淀池中经沉淀固液分离,从净化后的污水中除去。污泥处理工段 生化处理工段的污泥,先到污泥泵房,部分污泥回流至生化处理工段,另一部分污泥(剩余污泥)用污泥泵快速输入到污泥浓缩池。污泥浓缩池浓缩一定时间后,上清液回流到污水提升泵房的集水池;浓缩后的污泥再回到另一格污泥调节池,用污泥泵提升到污泥脱水机房。污泥在脱水机房脱水后,制成泥饼外运。 格栅

城市污水处理工艺流程

城市污水处理工艺流程 曝气生物滤池 工艺简介 曝气生物滤池(Biological Aeration Filtration),就是在生物滤池处理装置中设置填料,通过人为供氧,使填料上生长大量的微生物。曝气生物滤池由滤床、布气装置、布水装置、排水装置等组成。曝气装置采用配套专用曝气头,产生的中小气泡经填料反复切割,达到接近微控曝气的效果。由于反应池内污泥浓度高,处理设施紧凑,可大大节省占地面积,减少反应时间。 工艺流程 工艺特点 ①克服了污泥膨胀,处理效果稳定,运行管理简单。②改变了传统的高负荷生物滤池自然通风的供气方式,人为供氧,强化处理效果,出水水质提高。③耐冲击负荷能力强,特别适合于工业废水所占比例越来越高的现代城市污水处理。 ④生物填料对空气有相互切割作用,可以明显提高氧气利用率。⑤根据需要可以组合成具有生物除磷脱氮功能的A2/O工艺。⑥采用中小气泡专用曝气头,杜绝了微孔曝气头容易堵塞、破裂的缺陷。⑦采用北京桑德环保产业集团开发的特种生物填料,污泥浓度高,处理设施紧凑,占地面积小。 应用范围

中、小型城市污水处理厂 城市污水SPR除磷工艺 工艺简介 水体富营养化主要原因是人类向水体排放了大量的氨氮和磷,磷更是水体富营养化的最主要因素。纵观国内污水处理厂,除磷技术一直是困扰污水处理厂运行的难题。传统的物化除磷技术需要大量的药剂,具有运行成本高,污泥产量大的缺点;前置厌氧的生物除磷工艺具有运行费用低的优点,但是由于完全依赖于微生物的摄磷、释磷作用,难以达到国家污水综合排放的要求。当考虑中水回用时,则更难以达到要求。为此,我公司在现有的物化除磷与生化除磷的技术基础上,结合我公司的实际工程经验,开发出了城市污水深度除磷技术—SPR除磷工艺。该工艺以厌氧生物除磷机理为主要技术依托,采用SPR除磷工艺,通过强化厌氧释磷,并辅以物化沉淀去除释放磷的方法,达到整个生化处理系统的除磷要求。 工艺流程 工艺特点 ①除磷效果好,较传统的前置厌氧除磷的释磷效果增大10倍以上,回流污泥的摄磷能力也可以提高很多倍。②运行稳定可*,在进水TP 7mg/L的条件下,

CASS池设计计算

------------------- 时需Sr彳-------- ---- ---- -- 2.5生物反应池(CASS反应池) 2.5.1 CASS反应池的介绍 CASS是周期性循环活性污泥法的简称,是间歇式活性污泥法的一种变革,并保留了其它间歇式活性污泥法的优点,是近年来国际公认的生活污水及工业污水处理的先进工艺。 CASS工艺的核心为CASS池,其基本结构是:在SBR的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法中的二沉池和污泥回流系统,同时可连续进水,间断排水。 CASS工艺与传统活性污泥法的相比,具有以下优点: 建设费用低。省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可 节省20%~30%。工艺流程简单,污水厂主要构筑物为集水池、沉砂池、CASS 曝气池、污泥池,布局紧凑,占地面积可减少35%; 运转费用省。由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶段和排水阶段溶解氧降低,重新开始曝气时,氧浓度梯度大,传递效率高,节能效果显著,运转费用可节省10%~25%; 有机物去除率高。出水水质好,不仅能有效去除污水中有机碳源污染物,而 且具有良好的脱氮除磷功能; 管理简单,运行可靠,不易发生污泥膨胀。污水处理厂设备种类和数量较少,控制系统简单,运行安全可靠; 污泥产量低,性质稳定。

布晶忖呎 2.5.2 CASS反应池的设计计算 图2-4 CASS工艺原理图 (1)基本设计参数 考虑格栅和沉砂池可去除部分有机物及SS,取COD,BQ[NH-N,TP去除率为20% SS去除率为35% 此时进水水质: COD=380mg/L (1-20%) =304mg/L BOI5=150mg/L X( 1-20%) =120mg/L NH_N=45mg/L X( 1-20%) =36mg/L TP=8mg/L X( 1-20%) =6.4mg/L SS=440mg/L X( 1-35%) =286mg/L 处理规模:Q=14400r/d,总变化系数1.53 混合液悬浮固体浓度(MLSS:Nw=3200mg/L 反应池有效水深H —般取3-5m,本水厂设计选用4.0m 1 1 排水比:入=—= =0.4 m 2.5 (2)BOD-污泥负荷(或称BOD-SS负荷率)(Ns) =K^^ Ns——BOD污泥负荷(或称BOD-SS负荷率),kgBOD/(kgMLSS ? d);

污水处理厂自控完整系统工艺介绍

污水处理厂自控系统工艺介绍 污水处理厂位于市区或市郊,出水排入河流,水质达到国家一级排放标准。 工程采用水解-AICS处理工艺。其具体流程为:污水首先分别经过粗格栅去除粗大杂物,接着污水进入泵房及集水井,经泵提升后流经细格栅和沉砂池,然后进入水解池,。水解池出水自流入AICS进行好氧处理,出水达标提升排入河流。AICS反应器为改进SBR的一种。其工艺流程如下图1所示:矚慫润厲钐瘗睞枥庑赖。 污水处理厂自控系统设计的原则 从污水处理厂的工艺流程可以看出,主要工艺AICS反应器是改进SBR的一种,需要周期运行,AICS反应器的进水方向调整、厌氧好氧状态交替、沉淀反应状态轮换都有电动设备支持,大量的电动设备的开关都需要自控系统来完成,因此自控系统对整个周期的正确运行操作至关重要。而且好氧系统作为整个污水处理工艺能量消耗的大户,它的自控系统优化程度越高,整个污水处理工艺的运行费用也会越低,这也说明了自控系统在整个处理工艺中的重要性。聞創沟燴鐺險爱氇谴净。 为了保证污水厂生产的稳定和高效,减轻劳动强度,改善操作环境,同时提高污水厂的现代化生产管理水平,在充分考虑本污水处理工艺特性的基础上,将建设现代化污水处理厂的理念融入到自控系统设计当中,本自控系统设计遵循以下原则:先进合理、安全可靠、经济实惠、开放灵活。残骛楼諍锩瀨濟溆塹籟。

自控系统的构建 污水处理厂的自控系统是由现场仪表和执行机构、信号采集控制和人机界面(监控)设备三部分组成。自控系统的构建主要是指三部分系统形式和设备的选择。本执行机构主要是根据工艺的要求由工艺专业确定,预留自控系统的接口,仪表的选择将在后面的部分进行描述。信号采集控制部分主要包括基本控制系统的选择以及系统确定后控制设备和必须通讯网络的选择。人机界面主要是指中控室和现场值班室监视设备的选择。酽锕极額閉镇桧猪訣锥。 1、基本系统的选择 目前用于污水处理厂自控系统的基本形式主要有三种DCS系统、现场总线系统和基于PC控制的系统。从规模来看三种系统所适用的规模是不同。DCS系统和现场总线系统一般适用于控制点比较多而且厂区规模比较大的系统,基于PC的控制则用于小型而且控制点比较集中的控制系统。彈贸摄尔霁毙攬砖卤庑。 基于PC的控制系统属于高度集成的控制系统,其人机界面和信号采集控制可能都处于同一个机器内,受机器性能和容量的限制,本工程厂区比较大,控制点较多,因此采用基于PC的控制系统是不太合适的。謀荞抟箧飆鐸怼类蒋薔。

污水处理CASS池设计计算

2.5 生物反应池(CASS反应池) 2.5.1 CASS反应池的介绍 CASS是周期性循环活性污泥法的简称,是间歇式活性污泥法的一种变革,并保留了其它间歇式活性污泥法的优点,是近年来国际公认的生活污水及工业污水处理的先进工艺。 CASS工艺的核心为CASS池,其基本结构是:在SBR的基础上,反应池沿池长方向设计为两部分,前部为生物选择区也称预反应区,后部为主反应区,其主反应区后部安装了可升降的自动撇水装置。整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法中的二沉池和污泥回流系统,同时可连续进水,间断排水。 CASS工艺与传统活性污泥法的相比,具有以下优点: ●建设费用低。省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可 节省20%~30%。工艺流程简单,污水厂主要构筑物为集水池、沉砂池、CASS 曝气池、污泥池,布局紧凑,占地面积可减少35%; ●运转费用省。由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶 段和排水阶段溶解氧降低,重新开始曝气时,氧浓度梯度大,传递效率高,节能效果显著,运转费用可节省10%~25%; ●有机物去除率高。出水水质好,不仅能有效去除污水中有机碳源污染物,而 且具有良好的脱氮除磷功能; ●管理简单,运行可靠,不易发生污泥膨胀。污水处理厂设备种类和数量较少, 控制系统简单,运行安全可靠; ●污泥产量低,性质稳定。

2.5.2 CASS 反应池的设计计算 图2-4 CASS 工艺原理图 (1)基本设计参数 考虑格栅和沉砂池可去除部分有机物及SS ,取COD,BOD 5,NH 3-N,TP 去除率为20%,SS 去除率为35%。 此时进水水质: COD=380mg/L ×(1-20%)=304mg/L BOD 5=150mg/L ×(1-20%)=120mg/L NH 3-N=45mg/L ×(1-20%)=36mg/L TP=8mg/L ×(1-20%)=6.4mg/L SS=440mg/L ×(1-35%)=286mg/L 处理规模:Q=14400m 3/d,总变化系数1.53 混合液悬浮固体浓度(MLSS ):Nw=3200mg/L 反应池有效水深H 一般取3-5m,本水厂设计选用4.0m 排水比:λ= m 1 =5 .21 =0.4 (2)BOD-污泥负荷(或称BOD-SS 负荷率)(Ns ) Ns= η f S K ??e 2 Ns ——BOD-污泥负荷(或称BOD-SS 负荷率),kgBOD 5/(kgMLSS ·d); K 2——有机基质降解速率常数,L/(mg ·d),生活污水K 2取值范围为

南方CASS9.0 土方量的计算操作流程

南方CASS9.0 土方量的计算操作流程 DTM法土方计算 由DTM模型来计算土方量是根据实地测定的地面点坐标(X,Y,Z)和设计高程,通过生成三角网来计算每一个三棱锥的填挖方量,最后累计得到指定范围内填方和挖方的土方量,并绘出填挖方分界线。 DTM法土方计算共有三种方法,一种是由坐标数据文件计算,一种是依照图上高程点进行计算,第三种是依照图上的三角网进行计算。前两种算法包含重新建立三角网的过程,第三种方法直接采用图上已有的三角形,不再重建三角网。下面分述三种方法的操作过程: 1. 根据坐标计算 ●用复合线画出所要计算土方的区域,一定要闭合,但是尽量不 要拟合。因为拟合过的曲线在进行土方计算时会用折线迭代,影响计算结 果的精度。 ●用鼠标点取“工程应用\DTM法土方计算\根据坐标文件”。 ●提示:选择边界线用鼠标点取所画的闭合复合线弹出如图7-3 土方计算参数设置对话框。 图7-3土方计算参数设置 区域面积:该值为复合线围成的多边形的水平投影面积。 平场标高:指设计要达到的目标高程。 边界采样间隔:边界插值间隔的设定,默认值为20米。 边坡设置:选中处理边坡复选框后,则坡度设置功能变为可选,选中放坡的方式(向上或向下:指平场高程相对于实际地面高程的高低,平场高程 高于地面高程则设置为向下放坡不能计算向内放坡。不能计算向范围线内部 放坡的工程)。然后输入坡度值。 ●设置好计算参数后屏幕上显示填挖方的提示框,命令行显示: 挖方量= XXXX立方米,填方量=XXXX立方米 同时图上绘出所分析的三角网、填挖方的分界线(白色线条)。 如图7-4所示。计算三角网构成详见cass\system\dtmtf.log文件。

(工艺技术)污水处理厂工艺

污水处理厂工艺 污水处理厂工艺的选择,直接关系到一个地区污水处理的效果,关系到整个地区的可持续发展和环境建设。处理厂工艺是指在达到所要求的处理程度的前提下,污水处理各单元的有机组合。而污水处理厂工艺的选择,直接关系到建设费用和运行费用的多少、处理效果的好坏、占地面积的大小、管理上的方便与否等关键问题。因此,在进行污水处理厂设计时,必须做好工艺流程的比较,以确定最佳方案。 1?污水处理级别的确定 选择污水处理工艺流程时首先应按受纳水体的性质确定出水水质要求,并依此确定处理级别,排水应达到国家 排放标准(GB8978- 1996)。设市城市和重点流域及水资源保护区的建制镇必须建设二级污水处理设施;受纳水体为封闭或半封闭水体时,为防治富营养化,城市污水应进行二级强化处理,增强除磷脱氮的效果;非重点流域和非水源保护区的建制镇,根据当地的经济条件和水污染控制要求,可先行一级强化处理,分期实现二级处 理。 2. 工艺流程选择应考虑的因素 2.1技术因素 处理规模;进水水质特性,重点考虑有机物负荷、氮磷含量;出水水质要求,重点考虑对氮磷的要求以及回用 要求;各种污染物的去除率;气候等自然条件,北方地区应考虑低温条件下稳定运行;污泥的特性和用途。 2.1经济因素 批准的占地面积,征地价格;基建投资;运行成本;自动化水平,操作难易程度,当地运行管理能力。 3. 工艺流程选择的原则 保证出水水质达到要求;处理效果稳定,技术成熟可靠、先进适用;降低基建投资和运行费用,节省电耗;减 小占地面积;运行管理方便,运转灵活;污泥需达到稳定;适应当地的具体情况;可积极稳妥地选用污水处理新技术。 4. 处理工艺 4.1 一级强化处理工艺 一级强化处理,应根据城市污水处理设施建设的规划要求和建设规模,选用物化强化处理法、水解好氧法前段 AB法前段工艺、工艺、高负荷活性污泥法等技术。

污水处理厂工艺流程图

污水处理工艺流程图 污水进入厂区先通过截流井(让厂能处理的污水进入厂区进行处理)进入粗格栅(打捞较大的渣滓)到污水泵(提升污水的高度)到细格栅(打捞较小的渣滓)到沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除)到生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入终沉池(排除剩余污泥和回流污泥)进入D型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线消毒(杀灭水中的大肠杆菌)然后出水 生化池、终沉池出的污泥一部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运 主要有物理处理法,生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法,mbr 等方法。 污水处理 sewage treatment.wastewater treatment 为使污水经过一定方法处理后.达到设定的某些标准.排入水体.排入某一水体或再次使用等的采取的某些措施或者方法等. 现代污水处理技术.按处理程度划分.可分为一级.二级和三级处理. 一级处理.主要去除污水中呈悬浮状态的固体污染物质.物理处理法大部分只能完成一级处理的要求.经过一级处理的污水.BOD一般可去除30%左右.达不到排放标准.一级处理属于二级处理的预处理. 二级处理.主要去除污水中呈胶体和溶解状态的有机污染物质(BOD.COD 物质).去除率可达90%以上.使有机污染物达到排放标准. 三级处理.进一步处理难降解的有机物.氮和磷等能够导致水体富营养化的可溶性无机物等.主要方法有生物脱氮除磷法.混凝沉淀法.砂率法.活性炭吸附法.离子交换法和电渗分析法等. 整个过程为通过粗格删的原污水经过污水提升泵提升后.经过格删或者筛率器.之后进入沉砂池.经过砂水分离的污水进入初次沉淀池.以上为一级处理(即物理处理).初沉池的出水进入生物处理设备.有活性污泥法和生物膜法.(其中活性污泥法的反应器有曝气池.氧化沟等.生物膜法包括生物滤池.生物转盘.生物接触氧化法和生物流化床).生物处理设备的出水进入二次沉淀池.二沉池的出水经过消毒排放或者进入三级处理.一级处理结束到此为二级处理.三级处理包括生物脱氮除磷法.混凝沉淀法.砂滤法.活性炭吸附法.离子交换法和电渗析法.二沉池的污泥一部分回流至初次沉淀池或者生物处理设备.一部分进入污泥浓缩池.之后进入污泥消化池.经过脱水和干燥设备后.污泥被最后利用.

CASS工艺处理计算

目录: 第一章设计原始资料----------------------2 第二章工艺流程-------------------------4 第三章计算-----------------------------4 第一节污染物去除率--------------------------4 第二节格栅计算------------------------------5 第三节调节池计算----------------------------8 第四节配水井设计计算------------------------9 第五节工艺比选-----------------------------10 第六节CASS池计算---------------------------12 第七节接触池计算---------------------------16 第八节加氯间计算---------------------------17 第九节压滤机房计算-------------------------19 第四章参考文献------------------------20

第一章设计原始资料: 1.某制浆造纸厂,以落叶松为原料,采用硫酸盐法制浆,生产新闻纸,年总产量约3万吨。废水来源与生产安排同上。设计废水流量10000 m3/d,混合废水水质如下: CODcr BOD5 SS pH 800 mg/L 400 mg/L 200 mg/L 6~9 2.要求应根据该废水的水质和排放量,按照我国2008年8月1日实施的《制浆造纸工业水污染物排放标准》(GB3544-2008)规定,污染物排放限值:CODcr BOD5 SS pH 150 mg/L 30 mg/L 50 mg/L 6~9 3污水设计流量 Q=10000m3/d =416.67m3/h =0.1157m3/s 3 0.116/ m s 4. 造纸废水来源:

南方CASS方格网计算土方量流程总结

南方CASS方格网计算土方量流程总结 一、方格网计算由三个要素组成:计算范围+原地面标高数据文件+完成面标高三角网 二、计算范围 计算范围一定要用复合线(PL)画,且最后闭合(CAD按c闭合); 三、生成原地面标高数据文件要将原地面标高生成高程点坐标数据文件(*.dat ),方法有以下 2 种: 1对有坐标数据(X,Y,H )的,直接在记事本上按以下格式(序号,编码,Y, X,H)操作: 1,,Y,X,H 2 ,,Y,X,H 另存为*.dat 文件。 2、对于CAD图上有原地面标高的,可以直接在图上导出来建立数据文件(*.dat) 步骤:工程应用——高程点生成数据文件——无编码文件;注意:原地面高程点所在图层不要有完成面标高存在,否则计算结果不准确! 四、生成完成面标高三角网文件要将完成面标高生成三角网文件(*.sjw ) 1、首先要生成完成面标高数据文件(*.dat ), 步骤同上生成原地面标高数据文件; 2、接着生成三角网: 第一步:建立DTM模型,可以由已有设计标高数据文件或图面高程点生成。步骤:等高线一一建立DTM(由已有数据文件或图面高程点生成); 第二步:建立三角网并生成三角网文件;步骤:等高线——三角网存取——写入文件(*.sjw ) 五、方格网法计算过程 步骤:工程应用——方格网法土方计算——确定范围——高程点数据文件*.dat (原地面)——三角网文件*.sjw(完成面)。 特别注意问题:1、计算范围一定要是复合闭合线; 2、对于直接在CAD导出标高数据生成文件时候,原地面标高数据和完成面标高数据不要在同一图层。 土方量计算 一、方格网法Cass7.0 软件中的方格网法,需要提供计算区域的“高程点数据坐标文件”作为计算的依据,其具体计算操作如下:首先是导入“高程点坐标数据文件”,然后选择设计面:1)、当设计面为平面时,需要输入“目标高程”,在“方格宽度”一项中输入你需要设 置的方格网规格,例如输入20m则为才用20m >20m方格网进行土方计算; 2 )、当设计 面为斜面时,有“基准点”和“基准线”两种方法,其原理是相同的,只是计算条件不同而已。我们以 “基准点”法为例,它需要确定斜面的“坡度”,然后是“基准点”,也就是坡顶点的“坐标”和“高程”,再者就是坡线的“下边点”的坐标了,也就是斜坡方向,最后确定“方格宽度”即可计算出土方量;3)、当设计面非平面也非斜面时,这种情况在土方工程比较常见,场地经开挖或回填后变得杂乱无章就属于这种情况,假如我们有场地前期的“高程点坐标 数据文件”,那么我们则可利用它生成“三角网文件”,然后在设计面选项中选择“三角网文件”,然后导入文件,最后确定“方格宽度”即可计算出土方量(把设计高输入cass 做成三角网文件,场地设计高选择三角网就可以)。 通过对Cass7.0 软件中的方格网法的了解,我们不难看出其计算理论与传统的方格网法事一样的。只是用户在提交相关的计算条件,如设计面高程、坡度、方格宽度、三角网文件等计算条件后,电脑自动在设计面及待计算场地平面设置相同的方格网,根据“高程点坐标数据文件”、设计面高程、坡度等内插出各方

某城镇污水处理厂工艺设计

一、总论 (4) 1、设计题目 (4) 2、设计资料 (4) 1.2.1城市概述 (4) 1.2.2自然条件 (4) 1.2.3规划资料 (4) 二、污水处理工艺流程说明 (5) 1、方案确定的原则 (5) 2、可行性方案的确定 (5) 3、污水处理工艺流程的确定 (5) 4、污水处理工艺流程说明 (6) 2.4.1进出污水水质 (6) 三、处理构筑物设计 (7) 1、格栅 (7) 3.1.1栅条间隙数n: (7) 3.1.2有效栅宽: (7) 3.1.3过栅水头损失: (8) 3.1.4栅后槽的总高度: (8) 3.1.5格栅的总长度: (8) 3.1.6每日栅渣量: (9) 2、污水提升泵房 (9) 3.2.1设计计算 (9)

3、沉砂池 (10) 3.3.1平流式沉沙池的设计参数 (10) 3.3.2平流式沉砂池设计 (10) 4、氧化沟 (12) 3.4.1氧化沟类型选择 (13) 3.4.2设计参数 (13) 3.4.3设计流量 (14) 3.4.4去除 (14) 3.4.5脱氮 (15) 3.4.6除磷 (16) 3.4.7氧化沟总容积及停留时间 (16) 3.4.8需氧量 (17) 3.4.9氧化沟尺寸 (18) 3.4.10进水管和出水管 (18) 3.4.11出水堰及出水竖井 (19) 5、浓缩池 (19) 3.5.1设计参数 (19) 3.5.2中心管面积 (19) 3.5.3沉淀部分的有效面积 (20) 3.5.4浓缩池有效水深 (20) 3.5.6校核集水槽出水堰的负荷 (21) 3.5.7浓缩部分所需的容积 (21)

3.5.8圆截锥部分的容积 (21) 3.5.9浓缩池总高度 (21) 四、参考文献 (23)

南方cass各种计算土方汇总

各种土方量的计算方法汇总 8.2.1 DTM法土方计算 由DTM模型来计算土方量是根据实地测定的地面点坐标(X,Y,Z)和设计高程,通过生成三角网来计算每一个三棱锥的填挖方量,最后累计得到指定范围内填方和挖方的土方量,并绘出填挖方分界线。 DTM法土方计算共有三种方法,一种是由坐标数据文件计算,一种是依照图上高程点进行计算,第三种是依照图上的三角网进行计算。前两种算法包含重新建立三角网的过程,第三种方法直接采用图上已有的三角形,不再重建三角网。下面分述三种方法的操作过程: 1. 根据坐标计算 ●用复合线画出所要计算土方的区域,一定要闭合,但是尽量不要拟合。 因为拟合过的曲线在进行土方计算时会用折线迭代,影响计算结果的精 度。 ●用鼠标点取“工程应用\DTM法土方计算\根据坐标文件”。 ●提示:选择边界线用鼠标点取所画的闭合复合线弹出如图8-3土方计 算参数设置对话框。 图8-3土方计算参数设置 区域面积:该值为复合线围成的多边形的水平投影面积。 平场标高:指设计要达到的目标高程。 边界采样间隔:边界插值间隔的设定,默认值为20米。 边坡设置:选中处理边坡复选框后,则坡度设置功能变为可选,选中放坡的方式(向上或向下:指平场高程相对于实际地面高程的高低,平场高程高于地面高程则设置为向下放坡)。然后输入坡度值。 ●设置好计算参数后屏幕上显示填挖方的提示框,命令行显示: 挖方量= XXXX立方米,填方量=XXXX立方米 同时图上绘出所分析的三角网、填挖方的分界线(白色线条)。 如图8-4所示。计算三角网构成详见dtmtf.log文件。

图8-4 填挖方提示框 关闭对话框后系统提示: 请指定表格左下角位置:<直接回车不绘表格> 用鼠标在图上适当位置点击,CASS 7.0会在该处绘出一个表格,包含平场面积、最大高程、最小高程、平场标高、填方量、挖方量和图形。 如图8-5所示。 图8-5 填挖方量计算结果表格

污水处理工艺流程及其指标

污水处理工艺流程及指标 §1.1 污水处理工艺流程 图1 污水处理活性污泥法(treatment wastewater)工艺流程图 §1.1.1 一级处理(即物理处理) 主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求,经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准,一级处理属于二级处理的预处理。 1、污水进入厂区先通过截流井(让厂能处理的污水进入厂区进行处理)进入粗格栅(打捞较大的渣滓); 2、再经过污水提升泵(提升污水的高度)提升后,经过细格栅(打捞较小的渣滓); 3、之后进入沉砂池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除); 4、经过砂水分离的污水进入初次沉淀池。 §1.1.2 二级处理(即生化处理) 图2 生物处理方法分类

生化处理的主要去除污水中呈胶体和溶解状态的有机污染物质(BOD、COD、SS和以各种形式的氮或磷),去除率可达90%以上,使有机污染物达到排放标准。 生物处理设备的出水进入二次沉淀池(排除剩余污泥和回流污泥,二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用),二沉池的出水经过消毒排放或者进入三级处理。 §1.1.2.1 活性污泥法 活性污泥法是当前应用最为广泛的一种生物处理技术,活性污泥就是生物絮凝体,上面栖息、生活着大量的好氧微生物,这种微生物在氧分充足的环境下,以溶解型有机物为食料获得能量、不断生长,从而使废水得到净化。该方法主要用来处理低浓度的有机废水。本方法的主要设备为反应装置和提供氧气的曝气设备。 传统的活性污泥法由初次沉淀池、曝气池、二次沉淀池、供氧装置以及回流设备等组成,基本流程如图3所示。由初沉池流出的废水与从二沉池底部流出的回流污泥混合后进入曝气池,并在曝气池充分曝气产生两个效果:①活性污泥处于悬浮状态,使废水和活性污泥充分接触;②保持曝气池好氧条件,保证好氧微生物的正常生长和繁殖。废水中的可溶性有机物在曝气池内被活性污泥吸附、吸收和氧化分解,使废水得到净化。二次沉淀的作用有两个:①将活性污泥与已被净化的水分离;②浓缩活性污泥,使其以较高的浓度回流到曝气池。二沉池的污泥也可以部分回流至初沉池,以提高初沉效果。 图3 活性污泥法基本流程 活性污泥法的反应器有曝气池、氧化沟等,在人工充氧条件下,对污水和各种微生物群体进行连续混合培养,形成活性污泥。利用活性污泥的生物凝聚、吸附和氧化作用,以分解去除污水中的有机污染物。然后使污泥与水分离,大部分污泥再回流到曝气池,多余部分则排出活性污泥系统。 §1.1.2.2 生物膜法 生物膜法和活件污泥法一样,同属好氧生物处理方法。但活性污泥法是依靠

相关主题
文本预览
相关文档 最新文档