当前位置:文档之家› SR1018 Datasheet V1.5

SR1018 Datasheet V1.5

SR1018 – GSM/GPRS/EDGE Transceiver The Spreadtrum SR1018 is a single-chip radio transceiver for quad-band GSM/GPRS/EDGE cellular applications. The SR1018 has been implemented in bulk CMOS and the design has been optimized to meet the challenges of integrated handset design.

The performance of the transmit chain requires no additional RF filters to meet the specification for out-of-band emissions. The SR1018 exceeds all ETSI radio design requirements and its enhanced transmit architecture permits the rapid design of stable, high performance handsets only requiring a single radio shield.

SR1018 Functional Block Diagram

SR1018 Product Feature Summary

●Transceiver Functions

○Integrated radio transceiver fully supporting GSM, GPRS and EGPRS

○GPRS and E-GPRS class 12 supported

○True quad-band GSM operation (USGSM850, EGSM900, DCS1800, PCS1900)

○Direct LO modulator in GMSK mode

●General Features

○Mixed signal interface to a cellular base band

○Digital tuning of reference crystal

○ 2.7V to 3.3V single supply range

○-40°C to +85°C operation

Table 1: Absolute Maximum Ratings

Parameter Min Max Unit Supply voltage (VDD pins) 3.6 V

Ambient operating temperature -40 85 °C

Storage temperature -50 125 °C

Total power dissipation 475 mW

Input voltage range, any pin GND VDD V

ESD, MM 100 V

ESD, CDM 500 V

ESD, HBM (Digital interface pins) 2 kV

ESD, HBM (All other pins) 1 kV

Note: Stresses above these absolute maximum ratings may cause permanent damage.

These are stress ratings only and functional operation at these conditions is not implied.

Exposure to maximum rating conditions for extended periods may reduce device reliability.

Spreadtrum believes the furnished information is correct and accurate at the time of this printing.

However, Spreadtrum Communications reserves the right to make changes to its products without notice.

Spreadtrum Communications does not assume responsibility for the use of the described product(s).

Table 2: Operating Conditions

Parameter Min Typ Max Unit Condition

Operating Range

Supply voltage (all VDD pins) 2.7 2.8 3.3 V

Operating ambient temperature -40 25 85 °C

Storage temperature -50 125 °C

Table 3: Supply Current

All VDD pins = 2.8V, T ambient = 25°C, unless otherwise noted

Parameter Min Typ Max Unit Condition

Total Supply Current

Total receive Reg 0x00[11:0]=0x7CF

USGSM850, EGSM900 65 75 mA

DCS1800, PCS1900 65 75 mA

Total transmit Reg 0x00[11:0]=0x0FF

Low Band 120 136 mA

High Band 106 127 mA

Low power modes VDD DIG/IO=2.8V, REF2 EN=0

Idle mode 3.5 5.5 mA DCXO is on

Doze mode 14 30 μA DCXO is off

Isolated Supply Currents

Receive mode Reg 0x00[11:0]=0x7CF

VDD1 33 38 mA RF IC circuitry positive supply

VDD2 27 30 mA Synthesizer and BB circuitry positive supply VDD DIG IO 5 7 mA DCXO, Digital, and RCB positive supply Transmit mode Reg 0x00[11:0]=0x0FF

VDD1 83 90 mA RF IC circuitry positive supply

VDD2 24 29 mA Synthesizer and BB circuitry positive supply VDD DIG IO 13 17 mA DCXO, Digital, and RCB positive supply Interface only

VDD DIG IO 3.5 5.5 mA DCXO, Digital, and RCB positive supply

Table 4: DC Parameters

All VDD pins = 2.8V, T ambient = 25°C, unless otherwise noted

These parameters are not tested in mass production

Parameter Min Typ Max Unit Condition

Baseband Analog Ports ? RX Output Pins 15-18

Output common mode

DC level 8/25 x VDD 12/25 x VDD 16/25 x VDD V

DC resolution 1/25 x VDD 1/25 x VDD mV / LSB

Current load -100 0 +100 μA

Source resistance 500 1000 Ω (se)

Differential load impedance

Resistive 3 20 kΩ (dif)

Reactive 1 15 pF (dif)

'Off' resistance

Differential 20 24 kΩ (dif)

Common mode 100 120 kΩ

Baseband Analog Ports ? TX Input Pins 15-18

Input common mode 1.26 1.4 1.54 V

Input voltage range GND + 350mV VDD ÷ 2 VDD - 350mV

Input impedance

Resistive 10 12 kΩ (dif)

Reactive 1 2 pF (dif)

'Off' resistance

Differential 20 24 kΩ (dif)

Common mode 100 120 kΩ

Digital DC Parameters ? RCB Port Pins 21-23

Logic levels

Input logic low 0 0.1 0.5 V

Input logic high 1.45 1.8 VDD + 0.2 V

Input current 0.001 0.5 μA

"TEMP OUT" Output Pin 4

Absolute accuracy -3 3 °C

Voltage output (VTEMP)

T DIE = -40?C 57 83 109 mV

T DIE = +25?C 947 973 999 mV

T DIE = +85?C 1772 1798 1824 mV

Source resistance 900 1200 Ω

Current consumption 0.8 1 mA Drawn from "VDD2"

Temperature equation Temp=0.0695*m-45.326 m=temp sensor reading

in mV

Table 5: AC Parameters: RF Input Ports

All VDD pins = 2.8V, T ambient = -40°C to +85°C, unless otherwise noted

Measured in a 50Ω impedance system, including external balun (~1dB IL) and required matching components unless otherwise noted

Parameter Min Typ Max Unit Condition

RF Input Ports

USGSM850 869 894 MHz

EGSM900 925 960 MHz

DCS1800 1805 1880 MHz

PCS1900 1930 1990 MHz

Characteristic input impedance

USGSM850 150 || 1 Ω || pF

EGSM900 150 || 1 Ω || pF

DCS1800 150 || 1 Ω || pF

PCS1900 150 || 1 Ω || pF

Table 6: GSM Receiver RF Specifications

All VDD pins = 2.8V, T ambient = -40°C to +85°C, unless otherwise noted

Parameter Min Typ Max Unit Condition

Cascaded noise figure @ 25°C Reg 0x00[11:0]=0x7CF

USGSM850 2.5 3 dB

EGSM900 2.5 3 dB Excludes SAW/PCB losses (~1.5dB)

DCS1800 2.5 3 dB

PCS1900 2.5 3 dB

Maximum cascaded voltage gain Reg 0x00[11:0]=0x7CF

USGSM850 91 94 97 dB

EGSM900 91 94 97 dB

DCS1800 91 94 97 dB

PCS1900 91 94 97 dB

Minimum cascaded voltage gain Reg 0x00[11:0]=0x141

USGSM850 11 14 17 dB

EGSM900 11 14 17 dB

DCS1800 5 9 12 dB

PCS1900 5 9 12 dB

Baseband step Minimum step size ±0.75 ±1 ±1.25 dB

Cascaded gain control linearity

Integrated -0.5 0 0.5 dB

Differential Over any 20dB step -0.5 0 0.5 dB

Differential Over any 2dB step -0.5 0 0.5 dB

Table 7: RF Front End

All VDD pins = 2.8V, T ambient = -40°C to +85°C, unless otherwise noted

Parameter Min Typ Max Unit Condition

RF front end voltage gain (high gain) Reg 0x00[10]=1

USGSM850 3.5 4 4.5 dB

EGSM900 3.5 4 4.5 dB

DCS1800 3.5 4 4.5 dB

PCS1900 3.5 4 4.5 dB

RF front end voltage gain (low gain) Reg 0x00[10]=0

USGSM850 -23.5 -23 -22.5 dB

EGSM900 -23.5 -23 -22.5 dB

DCS1800 -26.5 -26 -25.5 dB

PCS1900 -26.5 -26 -25.5 dB

Input P1dB high gain Reg 0x00[11:0]=0x770

USGSM850 -18 dBm

EGSM900 -18 dBm

DCS1800 -18 dBm

PCS1900 -18 dBm

Input P1dB low gain Reg 0x00[11:0]=0x141

USGSM850 -8 dBm

EGSM900 -8 dBm

DCS1800 -8 dBm

PCS1900 -8 dBm

Input IP3 Reg 0x00[11:0]=0x770

USGSM850 -12 dBm

EGSM900 -12 dBm

DCS1800 -12 dBm

PCS1900 -12 dBm

Input IP2 Reg 0x00[11:0]=0x770

USGSM850 40 44 dBm

EGSM900 40 44 dBm

DCS1800 40 44 dBm

PCS1900 40 44 dBm

Image rejection Reg 0x00[11:0]=0x7CF

USGSM850 40 48 dB

EGSM900 40 48 dB

DCS1800 40 48 dB

PCS1900 40 48 dB

Quadrature gain mismatch -0.5 0 0.5 dB

Table 8: TX Specification

All VDD pins = 2.8V, T ambient = -40°C to +85°C, unless otherwise noted

Parameter Min Typ Max Unit Condition

TX Baseband Input Ports

Input signal level voltage swing 0.5 1 2 Vpp (dif)

Differential input offset voltage 16 32 63 mV

Table 9: GSM Transmitter RF Modulation Specification

All VDD pins = 2.8V, T ambient = -40°C to +85°C, unless otherwise noted

Parameter Min Typ Max Unit Condition

TX RF Output Ports

RF output frequency Reg 0x00[11:0]=0x0FF

USGSM850 824 849 MHz

EGSM900 880 915 MHz

DCS1800 1710 1785 MHz

PCS1900 1850 1910 MHz

GMSK programmable output power Reg 0x00[11:0]=0x0FF

USGSM/EGSM port -2 0 6 dBm

DCS/PCS port -2 0 6 dBm

GMSK saturated output power Reg 0x00[11:0]=0x0FF

USGSM/EGSM port 6 7 dBm

DCS/PCS port 6 7 dBm

8PSK maximum output power

USGSM/EGSM port -2 0 2 dBm RF attenuator set to 0dB

DCS/PCS port -2 0 2 dBm RF attenuator set to 0dB 8PSK minimum output power

USGSM/EGSM port -46 -44 -42 dBm RF attenuator set to 44dB

DCS/PCS port -46 -44 -42 dBm RF attenuator set to 44dB 8PSK RF Attenuator

Total attenuation range 0 25 45

Attenuator step size 0.4 0.5 0.6

Differential attenuation accuracy -0.25 0 0.25

Integrated attenuation accuracy -0.3 0 0.4

Output power variation Reg 0x00[11:0]=0x0FF

USGSM/EGSM port -2 0 2 dB

DCS/PCS port -2 0 2 dB

Table 10: GSM Transmitter RF Modulation Specification (Part 2)

All VDD pins = 2.8V, T ambient = -40°C to +85°C, unless otherwise noted

Parameter Min Typ Max Unit Condition

TX Modulated

RMS phase error Reg 0x00[11:0]=0x0FF

USGSM850 1 1.5 ?

EGSM900 1 1.5 ?

DCS1800 1.5 2 ?

PCS1900 1.5 2 ?

Peak phase error Reg 0x00[11:0]=0x0FF

USGSM850 4 6 ?

EGSM900 4 6 ?

DCS1800 5 8 ?

PCS1900 5 8 ?

RF modulation spectrum (GMSK) Reg 0x00[11:0]=0x0FF USGSM850 band fc ± 400kHz -67 -63 dBc

EGSM900 band fc ± 400kHz -67 -63 dBc

DCS1900 band fc ± 400kHz -65 -63 dBc

PCS1900 band fc ± 400kHz -65 -63 dBc

RMS error vector magnitude

USGSM850 2.5 4 %

EGSM900 2.5 4 %

DCS1800 2.5 6 %

PCS1900 2.5 6 %

Peak error vector magnitude

USGSM850 4 10 %

EGSM900 4 10 %

DCS1800 5 10 %

PCS1900 5 10 %

RF modulation spectrum (8PSK)

USGSM850 band fc ± 400kHz -63 -60 dBc

EGSM900 band fc ± 400kHz -63 -60 dBc

DCS1900 band fc ± 400kHz -63 -60 dBc

PCS1900 band fc ± 400kHz -63 -60 dBc

USGSM850 band fc ± 600kHz -70 -65 dBc

EGSM900 band fc ± 600kHz -70 -65 dBc

DCS1900 band fc ± 600kHz -69 -65 dBc

PCS1900 band fc ± 600kHz -69 -65 dBc

Output harmonics level Reg 0x00[11:0]=0x0FF

USGSM/EGSM 2 x fc -26 -20 dBc

USGSM/EGSM 3 x fc -16 -10 dBc

DCS/PCS 2 x fc -26 -20 dBc

DCS/PCS 3 x fc -26 -20 dBc

Output load Impedance 50 Ω

Table 11: LO Synthesizer Specification

All VDD pins = 2.8V, T ambient = -40°C to +85°C, unless otherwise noted

Parameter Min Typ Max Unit Condition

LO Synthesizer

Lock time

Receive mode 100 150 μs Settling to within 0.1ppm of target frequency referenced Transmit mode 100 150 μs

Synthesizer frequency range 3292 3600 3984 MHz VCO frequency

Spurious levels -74 -71 dBc Foffset > 400kHz

Table 12: DCXO Specification

All VDD pins = 2.8V, T ambient = -40°C to +85°C, unless otherwise noted

Parameter Min Typ Max Unit Condition

DCXO Reference Configuration (Crystal Reference, "REF IN-" & "REF IN+" Ports) Pins 25 & 26

Capacitive step size (coarse)

Reg 0x3A[3:0] = 0000 3 pF

Reg 0x3A[3:0] = 0001 2.8 pF

: : pF

Reg 0x3A[3:0] = 1111 0 pF

Capacitive tuning range (fine tuning)

Reg0x39[13:0] = 0x3FFF 3.9 4 4.4 pF

Reg0x39[13:0] = 0x0000 7.35 7.65 8.05 pF

Capacitive step size (fine) 0.21 0.22 0.24 fF/LSB

Oscillation startup

Input resistance -1000 -450 -150 Ω

Transconductance 9.5 mS

Nominal voltage swing

"REF IN+" terminal 1.35 1.8 Vpp

"REF IN-" terminal 1.36 1.6 Vpp

Reference Crystal Requirements

Frequency tolerance -10 0 10 ppm

Temperature stability -10 0 10 ppm –20?C < T ambient < +85?C

Aging -1 0 1 ppm/year

Drive level 100 200 μW

Pulling sensitivity 14 25 ppm/pF

Load capacitance (CL) 6.5 8 9 pF No external capacitor required.

Use coarse setting to adjust for crystal

CL value

Motional series resistance (RS) 20 60 Ω

TCXO Reference Configuration (External Reference, "REF IN+" Port) Pin 26

Input coupling requirement AC

Input impedance

Resistive 12 15 kΩ

Reactive 8 10 pF

Input voltage swing 650 1000 mVpp

Input duty cycle 40 50 60 %

Phase noise

1kHz offset -132 -129 dBc/Hz

Table 13: Reference Output Specification

All VDD pins = 2.8V, T ambient = -40°C to +85°C, unless otherwise noted

Parameter

Min Typ Max Unit Condition

Reference Clock Output Pins 27 & 28 Reference frequency

26 MHz Frequency compensation range ±27 ±40 ppm Frequency compensation resolution 0.005 0.02 ppm/LSB

Output duty cycle 40 50 60 % Amplitude (Ref Out)

Note:

For Ref2 Out control, the register location is x38[9:8] Reg0x38[13:12] = 11 1200 mVpp Reg0x38[13:12] = 10 950 mVpp Reg0x38[13:12] = 01 750 mVpp Reg0x38[13:12] = 00

600 mVpp Clock jitter 10 20 ps rms Drive capacity

10 pF Power-up settling time

2

3

ms

Functional Description:

Overview

The SR1018 is an integrated solution for multi-band GSM/GPRS/EDGE applications. It integrates a complete quad-band wireless receiver, transmitter, and a fractional-N frequency synthesizer including the voltage controlled oscillator (VCO) and loop filter. The RF portion of the receiver consists of a four band integrated Low Noise Amplifier (LNA) and a quadrature down-converter. The receive chain is fully differential resulting in improved noise rejection during operation. The receive channel filter is implemented in an RX filter strip. It comprises a blocker-reject low-pass channel filter (LPF) and two digitally controlled variable gain amplifiers (VGA).

crystal

operation

The RX blockers.

In order to minimize the set-up of the SR1018, extensive on-chip automatic calibration has been implemented. All DC offsets are automatically calibrated out. Internal DC calibration ensures that externally generated DC offsets do not overload the receive chain. An on-chip state machine generates the timing control signals for this DC calibration and the calibration routine is initiated via the RCB. In normal operation the state machine is started, the RX filter strip is powered up and any inherent DC offsets are removed. These correction signals are then held constant as the RF front end is powered up for the receive chain to process the incoming signal. None of these calibrations require any interaction with the baseband sub-system.

Transmit Chain

Figure 2: SR1018 Transmit Chain

For

For

Frequency Sources

There are two frequency sources on the SR1018. The first is the RF frequency synthesizer, which serves as the LO for both receive and transmit chains. The VCO for the synthesizer is fully integrated and no calibration is required as this is all performed automatically on the SR1018. During reception or transmission in normal operation, the frequency synthesizer is operated at twice the desired frequency of operation in PCS and DCS modes and at four times the desired frequency of operation in EGSM and USGSM modes. On-chip dividers (÷2 for PCS/DCS and ÷4 EGSM/USGSM) then reduce to actual the frequency of the operation. The outputs of these dividers are buffered before being applied to the up or down converters. The loop filter of the frequency synthesizer is fully integrated. This reduced component count and form factor minimizes the number of sensitive components in the design.

crystal continues

output is

Radio Configuration Bus (RCB)

A radio configuration bus is used to control the various modes of operation within the SR1018. This bus is implemented as a 3-wire serial interface. The signals are Data, Clock and Latch Enable (DATA, CLK, and LE). Power must be applied to the SR1018 to program the registers but none of the radio circuitry needs to be active. This minimizes current consumption and also allows pre-programming during normal operation to minimize clock interference.

Figure 4: RCB Format

Figure 5: SR1018 Radio Configuration Bus Timing

Figure 6: RCB Clock Rising & Falling Edges

(T amb = 25°C, All VDD = 2.8V, unless otherwise noted)

Parameter

Description Min Typ Max Unit t RISE CLK rise time 100 ns t FALL

CLK fall time

100

ns

(T amb = 25o

C, All VDD = 2.8V, unless otherwise noted)

Parameter Description Min Typ Max Unit F CLK CLK Frequency 5 26 80 MHz t CPH CLK pulse high 5 ns t CPL CLK pulse low

5 ns t CLH CLK low period before rising edge

5 ns t LC LE to CLK setup

5 ns t LCS LE rising edge past CLK rising edge

10 ns t LPH Latch pulse high

5 ns T DCRS DATA to CLK rising edge setup 5 ns T DCRH

DATA pas CLK rising edge hold

5

ns

Package Options:

There are four types of packages, all are compatible with each. The only difference is the “pin 1” marking. Please note each package type and its pin 1 marking.

Figure 7: SR1018 28-pin QFN package (Option 1)

Figure 8 SR1018 28-pin QFN package (Option 2)

相关主题
文本预览
相关文档 最新文档