当前位置:文档之家› ASTM D638-2003 中文版 塑料拉伸性能测定方法

ASTM D638-2003 中文版 塑料拉伸性能测定方法

ASTM D638-2003  中文版 塑料拉伸性能测定方法
ASTM D638-2003  中文版 塑料拉伸性能测定方法

ISO_527-2塑料拉伸性能测试方法

塑料拉伸性能的测定 第二部分:模塑和挤塑塑料的试验条件 1 范围 1.1GB/T 1040的本部分在第1部分基础上规定了用于测定模塑和挤塑塑料拉伸性能的实验条件。 1.2本部分适合下述范围的材料: ----硬质和半硬质的热塑性模塑、挤塑和铸塑材料,除未填冲类型外还包括列入用短纤棒、细棒、小薄片或细粒料填充和增强的复合材料,但不包括纺织纤维增强的复合材料; ----硬质和半硬质热固性模塑和铸塑材料,包括填充和增强的复合材料,但不包括纺织纤维增强的复合材料; ----热致液晶聚合物。 本部分不适用于纺织纤维增强的复合材料、硬质微孔材料或含有微孔材料夹层结构的材料2.名词和定义 见ISO 527-1:2012,章节3 3原理和方法 见ISO 527-1:2012,章节4 4仪器 4.1概述 见ISO 527-1:2012,章节5,特别是5.1.1致5.1.4 4.2引伸计 4.3测试记录装置 5测试样品 5.1形状和尺寸 只要可能,试样应为如图一所示的1A型和1B型的哑铃型试样,直接模塑的多用途试样选择1A型,机加工试样选择1B型。 关于使用小试样时的规定,见附录A/ISO 20753 注:具有4mm厚的IA型和1B型试样分别和ISO 3167规定的A型和B型多用途试样相同。与ISO 20753的A1和A2也相同

5.2试样的制备 应按照相关材料规范制备试样,当无规范或无其他规定时,应按ISO293、ISO 294-1,ISO295或者ISO 10724-1以适宜的方法从材料直接压塑制备试样,或按照ISO 2818由压塑或注塑板材经机加工制备试样。 试样所有表面应吴可见裂痕、划痕或其他缺陷。如果模塑试样存在毛刺应去掉,注意不要损伤模塑表面。 由制件机加工制备试样时应取平面或曲率最小的区域。除非确实需要,对于增强塑料试样不宜使用机加工来减少厚度,表面经过机加工的试样与未经机加工的试样实验结果不能互相比较。 5.3标线 见ISO 527-1:2012,6.3 5.4检查测试样品 见ISO 527-1:2012,6.4 5.5各向异性 5.6测试样数量 见ISO 527-1:2012,章节7. 6 状态调节 见ISO 527-1:2012,章节8 7 测试过程 见ISO 527-1:2012,章节9 在测量弹性模量时,1A型、IB型试样的试验速度应为1mm/min,对于小试样见附录A。8结果计算和表示 见ISO 527-1:2012,章节10 9精确度 见附录B 10实验报告 试验报告应包扩一下内容: a)注明引用ISO 527的本部分,包括试样类型和试验速度,并按下列方式表示;

塑料力学性能测试标准大全-

塑料力学性能测试标准 GB/T 1039-1992塑料力学性能试验方法总则 plastics--General rules for the test method of mechannlcal properties GB1040 塑料拉伸试验方法 Plastics--Determination of tensile properties GB/T_1041-1992 塑料压缩性能试验方法 Plastics--Determination of compressive properties GB/T 1043-93 硬质塑料简支梁冲击试验方法 Plastics--Determination of charpy impact strength of rigid matericals GB/T 14153-1993硬质塑料落锤冲击试验方法通则 General test method for impact resistance of rigid plastics by means of falling weight GB/T 14484-1993 塑料承载强度试验方法 Test method for bearing strength of plastics GB/T 14485-1993 工程塑料硬质塑料板材及塑料件耐冲击性能试验方法、落球法Standard methods of testing for impact resistance of plats and pats made from englneering plastics by a ball(falling ball GB/T 15047-1994 塑料扭转刚性试验方法 Test method for stiffness proporties in tirsion of plastics GB/T 15048-1994 硬质泡沫塑料压缩蠕变试验方法 Cellular plastics,rigid--Determination of compressive creep GB/T 12027-2004 塑料-薄膜和薄片-加热尺寸变化率试验方法 Plastics--film and sheeting-Determination of dimensional change on heating GB/T 2013525-1992 塑料拉伸冲击性能试验方法 Test method for tensile-impact property of plastics GB/T 11999-1989塑料薄膜和薄片耐撕裂性试验方法埃莱门多夫法 Plastics--Film and sheeting--Determination of tear resistance--Elmendorf method GB/T 10808-1989 软质泡沫塑料撕裂性能试验方法 Cellular plastics--Tear resistance test for flexible materials

拉伸性能的测定

拉伸性能的测定 一.准备工作 (一)测量原始截面积So 测量试样原始截面尺寸时,应按照表选取量具。根据所测得的试样尺寸,(厚度在0.1mm 至小于3 mm 准确到±2%,其它试样准确到±1%)计算横截面积So 并至少保留4位有效数字或保留两位小数点。 量具或测量装置的分辩率 试样横截面尺寸 分辩率不大于 0.1~0.5 0.001 >0.5~2.0 0.005 >2.0~10.0 0.01 >10.0 0.05 圆形截面试样应在试样工作段的两端及中间处两个相互垂直的方向上各测1次直径,取其算术平均值,先用3处测得横截面积的最小值。横截面积So 按下式计算: 214 So d π= 矩形截面试样应在试样工作段的两端及中间处测量其宽度和厚度,选用3处测得横截面积中的最小值。横截面积So 按下式计算: So ab = 圆管纵向弧形试样在试样工作段的两端及中间处测量,选用3处测得横截面

积中的最小值。有关标准或协议无规定时,横截面积So 按下式计算: 当/b D <0.25 时 2 [1]6(2) b So ab D D a =+- 当/b D <0.17时 So ab = 计算时,管外径D 取标称值。 圆管截面试样应在管的一端两个相互垂直的方向各测1次外径,取其算术平均值。在同一管端圆周上相互垂直的方向测量4处管壁厚度,取其算术平均值。用平均外径和平均管壁厚度计算得到的横截面积作为标距内的原始横截面积。原始横截面积 So 按下式计算:()So a D a π=- (二)标记原始标距Lo 试样的原始标距所在位置一般应在平行长度居中对称的位置上。应采用不损伤试样或不影响试验结果的方法标记试样标距。例如采用打点机打的小冲点、细划线或细墨线等标记。标记应清晰,对于脆性试样,应可能采用不损伤表面的方法标记。比例试样的原始标距值,取计算结果最接近5mm 或10mm 的倍数,中间值向大的一方取值,标距的长度应精确到取值数值的±1%。 (三)选取试验机和引伸计 根据试样选取合适的夹持装置以及试验机合适的量程。一般是在量程80%左右。检定过的拉力试验机应满足1级或优于1级的准确度。引伸计标距应不小于试样标距的一半(即Le ≥1/2Lo )。 (四)确定试验速率 如仅测定上屈服强度时试验时的弹性应力速率应在标准的表4规定的范围内尽可能保持恒定的速率如仅测定下屈服强度,平行长度屈服期间应变速率应在0.00025/s ~0.0025/s 范围内尽可能保持恒定。。当不能直接调节这一应变速率,允许调节屈服即将开始前的应力速率,不超过标准的表4规定的最大速率,直至屈服阶段完成之前不再改变试验机的控制。 若仅测定抗拉强度,在弹、塑性范围内,试样工作段的应变速率可达到0.008/s 。 材料弹性模量E/(N/mm 2) 应力速率(N/mm 2)。s 1- 最小 最大 <150 000 2 20 ≥150 000 6 60

聚乙烯拉伸性能试验影响因素的分析

聚乙烯拉伸性能试验影响因素的分析

聚乙烯拉伸性能试验影响因素的分析 摘要:本文分析了影响聚乙烯塑料拉伸实验结果的因素,包括实验仪器、试样制备与处理、实验环境、操作过程、数据处理和人员因素等。通过实验和分析,指出了这些外部因素对试验结果的影响原因和影响方式,并据此给出了聚乙烯拉伸性能的最佳测试条件。 关键词:聚乙烯压片拉伸强度断裂伸长率 1 引言 聚乙烯塑料是一种性能优良的材料,广泛应用于生产、生活的各个方面。在塑料的各项性能中,力学性能是影响塑料实际应用的一个最重要方面,包括拉伸强度、弯曲模量、冲击强度等。其中塑料的拉伸强度和断裂伸长率是决定塑料产品在使用过程中受外力作用下能否保持原有形状的主要因素,因此它们的测试有着非常重要的意义。 实际测试过程中,由于影响拉伸性能试验的因素很多,导致测试结果波动较大,从而影响聚乙烯产品等级的判定。于是厂里成立了技术攻关小组对生产工艺和试验部分加以改进,本人主要负责测试方面的工作。通过对影响整个试验过程的因素的分析,在遵循国家标准的基础上确定了各参测量参数,制定了新的操作规程,为工艺生产及顾客提供真实准确的产品数据。 2 试验部分 2.1 主要仪器和设备 4465型万能试验机(美国INSRON公司) 螺旋测微计可读度0.01mm PL-15型.压片机(西班牙IQAPLAP公司) 2.2 测试方法依从标准 拉伸断裂强度:GB1040-92

压片试验:GB/T9053-88 环境状态调节:GB/T2918-1982 2.3 试验材料 我厂生产的聚乙烯(PE)LLDPE-F-20D008(国家牌号)9085(厂内牌号)200610033(批号) 2.4 PE9085优级品控制指标 熔融指数:0.75±0.2g/10min 密度:0.920±0.002g/cm3 拉伸强度:≥17Mpa 断裂伸长率≥700% 2.5 样条形状 采用GB/1040-1992Ⅱ型(哑铃型)样条 3 结果与讨论:。 3.1 试样的制备对测定结果的影响 标准试样的制备是塑料各项性能测定的基础,对试验结果有决定性的影响。我厂的拉伸性能测试中采用GB/1040-1992Ⅱ型(哑铃型)样条,压片试验方法参考GB/T9053-88。 3.1.1 压片温度对测定结果的影响 图1. 压片温度对断裂伸长率和拉伸强度的影响

拉伸性能的测定修改版(优.选)

拉伸性能的测定修改号0 页数第 1 页共12 页 拉伸性能的测定 1.原理 沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量这一过程中试样承受的负荷及其伸长。 2.术语和定义 2.1标距() 试样中间部分两标线之间的初始距离,以mm为单位。 2.2实验速度() 在实验过程中,实验机夹具分离速度,以mm/min为单位。 2.3拉伸应力tensil e stress σ 在试样标距长度内任何给定时刻每单位原始横截面积上所受的拉伸力以MPa为单位。 2.3.1拉伸屈服应力, 屈服应力tensile stress at yield yield stress σy 发生应力不增加而应变增加时的最初应力以MPa为单位该应力值可能小于材料的最大应力(见图1中的曲线b和曲线c)。 2.3.2拉伸断裂应力tensile stress at break σB 试样断裂时的拉伸应力(见图1)以MPa为单位。 2.3.3拉伸强度tensile strength σM 在拉伸试验过程中试样承受的最大拉伸应力(见图1)以MPa为单位。 2.3.4 x%应变拉伸应力(见4.4) tensile stress at x% strain σx 应变达到规定值x%时的应力以MPa为单位。适用于既无屈服点又不易拉断的软而韧的材料应力-应变曲线上无明显屈服点的情况见图1中的曲线d)x 值应按有关产品标准规定或由相关方商定。但在任何情况下x 都必须小于拉伸强度所对应的应变。如土工格栅产品中的2%、5%拉伸力。 此条用于取代92版的“偏置屈服应力” 2.4拉伸应变tensile strain ε 标距原始单位长度的增量用无量纲的比值或百分数(%)表示。 适用于脆性材料活韧性材料在屈服点以前的应变超过屈服点后的应变则以“拉伸标称 应变”代替。 2.4.1拉伸屈服应变tensile strain at yield εy 屈服应力时的拉伸应变见4.3.1和图1中的曲线b和曲线c用无量纲的比值或百分数%

实验十二 聚合物拉伸性能测试

实验十二聚合物拉伸性能测试 一、实验目的 (1)熟悉电子力学试验机的原理及使用方法; (2)绘制聚合物的应力-应变曲线,测定其拉伸强度、断裂强度和断裂伸长率。 二、实验原理 拉伸性能是聚合物力学性能中最重要、最基本的性能之一。拉伸性能的好坏,可以通过拉伸试验来检验。 拉伸试验是在规定的试验温度、湿度和速度条件下,对标准试样盐纵轴方向施加静态拉伸负荷,直至试样被拉断为止。用于聚合物应力—应变曲线测定的电子拉力机是将试样上施加的载荷、形变通过压力传感器和形变测量装置转变成电信号记录下来,经计算机处理后,测绘处试样在拉伸形变过程中的应力-应变曲线。从应力-应变曲线上可得到材料的各项拉伸性能指标值:如拉伸强度、拉伸断裂应力、拉伸屈服应力、拉伸弹性模量、断裂伸长率等。通过拉伸试验提供的数据,可对高分子材料的拉伸性能做出评价,从而为质量控制,研究、开发与工程设计及其他项目提供参考。 应力-应变曲线一般分为两个部分:弹性变形区和塑性变形区。在弹性变形区,材料发生可完全恢复的弹性变形,应力与应变呈线性关系,符合胡克定律。在塑性变形区,形变是不可逆的塑性形变,应力和应变增加不再呈正比关系,最后出现断裂。图12-1为典型的聚合物拉伸应力-应变曲线。 图12-1 典型的聚合物拉伸应力—应变曲线 不同的高聚物材料、不同的测定条件,分别呈现不同的应力-应变行为。根据应力-应变曲线的形状,目前可大致归纳为五种类型,如图12-2所示。 (1)软而韧拉伸强度低,弹性模量小,且伸长率也不大,如溶胀的凝胶等。 (2)硬而脆拉伸强度和弹性模量较大,断裂伸长率小,如聚苯乙烯等。 (3)硬而强拉伸强度和弹性模量较大,且有适当的伸长率,如硬聚氯乙烯等。 (4)软而韧断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。 (5)硬而韧弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等。

拉伸性能的测定修改版

拉伸性能的测定 1.原理 沿试样纵向主轴恒速拉伸,直到断裂或应力(负荷)或应变(伸长)达到某一预定值,测量这一过程中试样承受的负荷及其伸长。 2.术语和定义 2.1标距(L0) 试样中间部分两标线之间的初始距离,以mm为单位。 2.2实验速度(υ) 在实验过程中,实验机夹具分离速度,以mm/min为单位。 2.3拉伸应力tensile stress σ 在试样标距长度任何给定时刻每单位原始横截面积上所受的拉伸力以MPa为单位。2.3.1拉伸屈服应力, 屈服应力tensile stress at yield yield stress σy 发生应力不增加而应变增加时的最初应力以MPa为单位该应力值可能小于材料的最 大应力(见图1中的曲线b和曲线c)。 2.3.2拉伸断裂应力tensile stress at break σB 试样断裂时的拉伸应力(见图1)以MPa为单位。 2.3.3拉伸强度tensile strength σM 在拉伸试验过程中试样承受的最大拉伸应力(见图1)以MPa为单位。 2.3.4 x%应变拉伸应力(见4.4) tensile stress at x% strain σx 应变达到规定值x%时的应力以MPa为单位。适用于既无屈服点又不易拉断的软而韧的材料应力-应变曲线上无明显屈服点的情况见图1中的曲线d)x 值应按有关产品标准规定或由相关方商定。但在任何情况下x 都必须小于拉伸强度所对应的应变。如土工格栅产品中的2%、5%拉伸力。 此条用于取代92版的“偏置屈服应力” 2.4拉伸应变tensile strain ε 标距原始单位长度的增量用无量纲的比值或百分数(%)表示。 适用于脆性材料活韧性材料在屈服点以前的应变超过屈服点后的应变则以“拉伸标称 应变”代替。 2.4.1拉伸屈服应变tensile strain at yield εy 屈服应力时的拉伸应变见4.3.1和图1中的曲线b和曲线c用无量纲的比值或百分数%表示。 2.4.2拉伸断裂应变tensile strain at break εB 试样未发生屈服而断裂时与断裂应力相对应的拉伸应变见图1中的曲线a和曲线d用无量纲的比值或百分数(%)表示。

拉伸性能测试

拉伸性能测试(静态) 拉伸性能测试主要确定材料的拉伸强度,为研究、开发、工程设计以及质量控制和标准规范提供数据。在拉伸测试中,薄的薄膜会遇到一定困难。拉伸试样的切边必须没有划痕或裂缝,避免薄膜从这些地方开始过早破裂。 对于更薄的薄膜,夹头表面是个问题。必须避免夹头发滑、夹头处试样破裂。任何防止夹头处试样发滑和破裂,而且不干扰试样测试部分的技术如在表面上使用薄的橡胶涂层或使用纱布等都可以接受。 从拉伸性能测试中可以得到拉伸模量、断裂伸长率、屈服应力和应变、拉伸强度和拉伸断裂能等材料性能。ASTM D 638 (通用)[4]和ASTM D 882 [5](薄膜)中给出了塑料的拉伸性能(静态)。 拉伸强度 拉伸强度是用最大载荷除以试样的初始截面面积得到的,表示为单位面积上的力(通常用MPa为单位)。 屈服强度 屈服强度是屈服点处的载荷除以试样的初始截面面积得到的.用单位面积上的力(单位MPa)表示,通常有三位有效数字。 拉伸弹性模量 拉伸弹性模量(简称为弹性模量,E)是刚性指数,而拉伸断裂能(TEB,或韧性)是断裂点处试样单位体积所吸收的总能量。拉伸弹性模量计算如下:在载荷-拉伸曲线上初始线性部分画一条切线,在切线上任选一点,用拉伸力除以相应的应变即得(单位为MPa),实验报告通常有三位有效数字。正割模量(应力-应变间没有初始线性比值时)定义为指定应变处的值。将应力-应变曲线下单位体积能积分得到TEB,或者将吸收的总能量除以试样原有厚度处的体积积分。TEB表示为单位体积的能量(单位为MJ/m3),实验报告通常有两位有效数字。 拉伸断裂强度 拉伸断裂强度的计算与拉伸强度一样,但要用断裂载荷,而不是最大载荷。应该注意的是,在大多数情况中,拉伸强度和拉伸断裂强度值相等。 断裂伸长率 断裂伸长率是断裂点的拉伸除以初始长度值。实验报告通常有两位有效数字。 屈服伸长率 屈服伸长率是屈服点处的拉伸除以试样的初始长度值,实验报告通常有两位有效数字。 塑料薄膜的包装产率 有一种专门的ASTM测试方法(ASTMD 4321[6])测定塑料薄膜的“包装产率”,以试样单位质量上的面积表示。在这种测试中,定义并得到标称产率(用户和供应商之间达成的目标产率值)、包装产率(按标准计算的产率)、标称厚度(用户和供应商之间达成的薄膜厚度目标值)、标称密度和测量密度等值。对于加工厂商来说包装产率值很重要,因为它决定了某种应用中一定质量的薄膜可以得到的实际包装数量。

高分子材料拉伸性能实验

高分子材料拉伸性能实验 1. 实验目的 了解高分子材料的拉伸强度、模量及断裂伸长率的意义和测试方法,通过应力-应变曲线,判断不同高分子材料的性能特征。 2. 实验原理 拉伸强度是用规定的实验温度、湿度和作用力速度,在试样的两端以拉力将试样拉至断裂时所需的负荷力,同时可得到断裂伸长率和拉伸弹性模量。 将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力-应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力-应变曲线上屈服点处的应力(拉伸屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率,以百分数表示)。 3. 实验材料 实验原料:GPPS、PP、PC。 (1)拉伸样条:哑铃型样条,测试标准:ASTM D638。样条如下:

4. 实验设备 万能材料实验机及夹具 5. 实验条件 不同的材料由于尺寸效应不同,故应尽量减少缺陷和结构不均匀性对测定结果的影响,按表2选用国家标准规定的拉伸试样类型以及相应的实验速度。 表 2 拉伸试样类型以及相应的实验速度 ①Ⅲ试样仅用来测试拉伸强度 实验速度为以下九种: A: 1mm/min ±50% B: 2mm/min ±20% C: 5mm/min ±20% D: 10mm/min ±20% E: 20mm/min ±10% F: 50mm/min ±10% G: 100mm/min ±10% H: 200mm/min ±10% I: 500mm/min ±10% 6.实验步骤 (1)实验环境:温度23℃,相对湿度50%,气压86~106KPa。 (2)测量试样中间平行部分的宽度和厚度,精确到0.01mm,每个试样测量三点,取算术平均值。

塑料的拉伸性能试验方法

塑料的拉伸性能试验方法 第二部分:模压与挤压塑料的测试条件 内容: 前言: 1范围 2引用标准 3原则 4定义 5仪器 6测试试样 7测试试样数量 8条件 9步骤 10结果的计算与表达 11预测 12测试报告 附录A (标准)小试样 附件ZA (标准)国际引用标准 相关欧洲出版 图1 测试试样类型1A 和1B 图A.1 测试试样类型1BA 和1BB 图A.2 测试试样类型5A 和5B 文献列表

标准前言 有PRI/21委员会准备的英国标准,EN ISO 527-2:1996 塑料的拉伸性能的试验方法的第二部分:模压与挤压塑料的测试条件为英文标准。与ISO 出版的ISO 527-2:1993 相一致,同时与代替了BS2782:1976里的320A和320F的方法改成了BS2782:1993的321方法合并。BS2782:1976里的320A和320F的方法在修正后删除。 交叉引用 国际标准相应的英国标准 ISO 293:1986 BS2782 塑料的拉伸试验方法 方法901A :1988 热塑性塑料压塑试样ISO 294:1975 方法901A :1997 热塑性塑料注塑试样 ISO 295:1991 方法902A :1992 塑料-热固性塑料压塑试样 ISO 527-1:1993 方法321:1993 拉伸测试试验的一般原理ISO 2818:1980 方法930A :1997 拉伸测试的试验准备 技术委员会回顾了ISO 37:1997和ISO 1926:1979,同时将它们在此标准中作为标准参考文献,与此标准结合使用。 警告:此英国标准与ISO 527-2 相一致,不需要将所有的预防全部列出,具体要求见1974年的Health and Safety at Work 等,注意所有的预防措施,测试需经专业人员操作。 英国标准不包含所有合同的约定,使用英国标准只是为了正确的应用。 按照英国测试标准不能够免除法律的约束。

(整理)D638-97塑料拉伸性能的标准试验方法

ASTM D 638-97 塑料拉伸性能的标准测试方法 1.范围 1.1本测试方法包含对标准哑铃形增强和无增强塑料试样在给定的的预处理,温度,湿度和测试机械速度条件下的拉伸性能的确定。 1.2本测试方法可用于测试任何厚度达到14mm(0.55in)的材料,但是对于落薄板形试样包括厚度小于1.0mm(0.04in)的薄膜,应俦考虑测试方法D882,厚度超过14mm(0.55in)的材料必须加工减薄。 1.3本测试方法包括在室温情况下确定泊松比的选择。 2.参考文件 2.1美材料试验协会标准: D229 纯缘刚性平板材料测试方法 D374 固体绝缘厚度的测试方法。 D412 硫化橡胶,热塑性橡胶,热塑性橡胶拉伸测试方法。 D618 测试用调湿调温处理塑料和绝缘材料的准则。 D638 塑料拉伸性能测试方法 D651 模制绝缘材料抗拉强度的测试方法 D882 塑料薄板拉伸性能的测试方法 D883 有关塑料的术语 D1822 使塑料和绝缘材料断裂的拉伸冲击能量测试方法 D3039/D3039M 聚合基材复合材料拉伸性能的测试方法

D4000 确定塑料材料的分类系统 D4066 尼龙注入和挤压材料的分类系统 E4 测试机械压力校验准则 E83 应力计校验和分类准则 E132 室温下泊松比的测试方法 E691 确定测试方法精度的室内试验研究准则 2.2ISO标准 ISO527-1拉伸性能的确定 3.术语 4.意义和使用 4.1本试验方法被设计成能为塑料控制和技术要求提供拉伸性能数据。这些数据有助于定性描述研究和发展,对许多材料,有可能技术要求需要使用本方法,但是当遵守技术要求时,应首先进行一些程序上的改变,因此建议使用本方法前应查阅该种材料的技术要求,分类D4000中表1列出了目前存在的ASTM材料标准。 4.2应该认识到,如果没有测试该种材料的准备方法,不能对该种材料进行测试。因此,需要材料比较测试时,应特别小心以确保所有试样以同一种方法制作,除非测试包括试样制作的影响。同样,为了对给定的一组试样进行比较,必须注意以确保在具体制作加工处理试样时保持最大程度的同一性。 4.3拉伸性能能为工程设计提供有用的数据。可是由于许多塑料表现出来对应变率和环境和高度敏感性,由本种方法得到的数据应用到负荷时间比例或环境与本方法相差太大的工程中时,被认为是无效的。这些差异性,不能对大部分塑料的有效性界限作出评价。如果拉伸性能要满足工

食品质构检测之面条拉伸性测试方法详解

食品质构检测之面条拉伸性测试方法详解

面条起源于中国,已有四千多年的制作食用历史。因制作简单,烹制多样,既食用方便又具有浓郁的地方特色,在中国和其他世界各地广泛流传,并将风味发展到了极致。 拉面,是深受人们喜爱的一种面条制品,自1999年“兰州拉面”与“北京全聚德烤鸭”、“天津狗不理包子”并称中式三大快餐之后,拉面已然成为“中华第一面”。拉面制作讲究,和、饧、扯、揉、抻、拉一项不能少,工艺繁琐复杂,其中抻和拉的技术要求非常高,决定了拉面的最终口感,比如弹性、爽滑性等。这除了与制作者的拉抻技术有关,最关键的还在于面条自身的拉伸性能。 目前,面条的拉伸性能的测定往往采用比较成熟的拉伸试验,反映在量化指标上主要有“抗拉强度”“应变率”等。抗拉强度,表示面条在拉力作用下抵抗破坏的最大能力,即面条经过屈服阶段进入强化阶段后随着横向截面尺寸明显缩小在拉断时承受的最大力与面条原横截面积的比值,单位为MPa。“应变率”,指的是面条拉伸断裂前的最大伸长量与面条初始长度的比值,单位为%。 采用拉伸试验检测生面条的拉伸性能,除了能直观了解成型面条的抗拉伸断裂的能力以及延展性,还能根据测试数据及相关试验结果描绘出面粉的流变学特性,找出生产面粉的正常数值范围,是对面粉质量监控的一种有效手段。 对于拉面来说,拉面改良剂是广泛用于拉面制作的一种添加剂,能使面团产生较大的吸水性、延展性和粘性,使拉面光滑爽口。通过对添加改良剂的拉面面条进行拉伸试验,能准确的评价改良剂的改良效果,帮助面粉及面制品企业科研人员正确选择和应用不同性质的改良剂。 当拉伸试验应用于熟面条时,更是一种对其韧性、弹性和断裂性的直观评价方法。 拉伸性能测试方法 测试仪器:XLW(EC)智能电子拉力试验机和拉伸测试装置,济南兰光机电技术有限公司。XLW(EC)智能电子拉力试验机, 集成拉伸、剥离、撕裂、热封等八种独立的测试程序,支持拉压双向试验模式,精度优于0.5级。拉伸测试装置是由两个带有卷轴的拉伸杆组成,其中一个拉伸杆固定在基座上。

塑料拉伸性能试验方法

1 塑料拉伸性能试验方法 1992 (页数: 10)中国标准 Plastics-Determination of tensile properties; GB/T 1040-1992; 2 定向纤维增强塑料拉伸性能试验方法 1999 (页数: 7)中国标准 Test method for tensile properties of oriented fiber reinforced plastics; GB/T 3354-1999; 3 塑料拉伸蠕变测定方法 1989 (页数: 8)中国标准 Plastics--Determination of tensile creep; GB/T 11546-1989; 4 塑料拉伸冲击性能试验方法 1992 (页数: 7)中国标准 Test method for tensile-impact property of plastics; GB/T 13525-1992; 5 塑料拉伸性能小试样试验方法 1996 (页数: 8)中国标准 Plastics--Determination of tensile properties by use of small specimens; GB/T 16421-1996; 6 Plastics - Determination of tensile properties - General principles 1994 (页数: 18)国外标准 塑料.拉伸性能测定.第1部分:总则; BS EN ISO 527-1-1994; 7 Plastics - Determination of tensile properties - Test conditions for moulding and extrusion plastics 1994 (页数: 16)国外标准 塑料.拉伸性能测定.第2部分:模压和挤压塑料试验条件; BS EN ISO 527-2-1994; 8 Glass fibre reinforced plastics - Tensile test 1998 (页数: 18)国外标准 玻璃纤维增强塑料.拉伸试验; BS EN 2747-1998; 9 Plastics - Determination of tensile-impact strength 2004 (页数: 26)国外标准 塑料.拉伸冲击强度测定; BS EN ISO 8256-2004; 10 Plastics -- Determination of tensile properties Part 1: General principles 1994 (页数: 18)国外标准 塑料.拉伸特性的测定.第1部分:一般规则; JIS K7161-1994; 11 Plastics -- Determination of tensile properties Part 2: Test conditions for moulding and extrusion plastics 1994 (页数: 12)国外标准 塑料.拉伸特性的测定.第2部分:铸塑和压塑塑料的试验条件; JIS K7162-1994; 12 Testing method for tensile properties of plastics

GB-T-1040.1-2006-塑料-拉伸性能的测定-第1部分:总则

GB/T 1040.1-2006 塑料拉伸性能的测定第1部分:总则基本信息 【英文名称】Plastics―Determination of tensile properties―Part 1:General principles 【标准状态】现行 【全文语种】中文简体 【发布日期】2006/8/24 【实施日期】2007/1/1 【修订日期】2006/8/24 【中国标准分类号】G31 【国际标准分类号】83.080.01 关联标准 【代替标准】GB/T 1039-1992,GB/T 1040-1992 【被代替标准】暂无 【引用标准】GB/T 2918-1998,GB/T 17200-1997,ISO 2602:1980 适用范围&文摘 1.1GB/T 1040的本部分规定了在规定条件下测定塑料和复合材料拉伸性能的一般原则,并规定了几种不同形状的试样以用于不同类型的材料,这些材料在本标准的其他部分予以详述。 1.2本方法用于研究试样的拉伸性能及在规定条件下测定拉伸强度、拉伸模量和其他方面的拉伸应力/应变关系。 1.3本方法适用于下列材料: ――硬质和半硬质热塑性模塑和挤塑材料,除未填充类型外还包括填充的和增强的混合料,硬质和半硬 质热塑性片材和薄膜; ――硬质和半硬质热固性模塑材料,包括填充的和增强的复合材料,硬质和半硬质热固性板材,包括层 压板; ――混入单向或无定向增强材料的纤维增强热固性和热塑性复合材料,这些增强材料如毡、织物、无捻

粗纱、短切原丝、混杂纤维增强材料、无捻粗纱和碾碎纤维等;预浸渍材料制成的片材(预浸料坯); ――热致液晶聚合物。 本方法一般不适用于硬质泡沫材料或含有微孔材料的夹层结构材料。 1.4本方法所用试样可以按所选尺寸模塑而成,也可以从模塑件、层压板、薄膜、挤塑或铸塑片材等成品或 半成品中用切削、冲切等机加工方法制成。在某些情况下可以使用多用途试样(见ISO 3167:1993《塑料――多用途试样的制备和使用》)。 1.5本方法规定了试样的优先选用尺寸。用不同尺寸或在不同条件下制备的试样进行试验,其结果不可比。 其他因素,如试验速度和试样的状态调节,也能影响试验结果。因此,当需要进行数据比较时,必须严格控制 并记录这些影响因素。

聚合物拉伸性能测试

实验四聚合物拉伸性能测试 一、实验目的 1.熟悉高分子材料拉伸性能测试标准条件和测试原理。 2.了解万能拉力试验机原理以及熟悉其使用方法 3.绘制聚合物的应力一应变曲线。测定其屈服强度、拉伸强度、断裂强 度和断裂伸长率。 二、实验原理 拉伸实验是在规定的试验温度、湿度和速度条件下,对标准试样沿纵轴方向施加静态拉伸负荷,直到试样被拉断为止。用于聚合物应力—应变曲线测定的电子拉力机是将试样上施加的载荷、形变通过压力传感器和形变测量装置转变成电信号记录下来,经计算机处理后,测绘出试样在拉伸变形过程中的拉伸应力一应变曲线。 聚合物的拉伸性能可通过其应力一应变曲线来分析,典型的聚合物拉伸应力一应变曲线如图2所示。在应力一应变曲线上,以屈服点为界划分为两个区域。屈服点之前是弹性区,即除去应力后材料能恢复原状,并在大部分该区域内符合虎克定律。屈服点之后是塑性区,即材料产生永久性变形,不再恢复原状。根据拉伸过程中屈服点的表现, 伸长率的大小以及其断裂情况,应力一应变曲线大致可分为如图2所示的五种类型:①软而弱;②硬而脆;③硬而强;④软而强;⑤硬而韧。

图2五种典型聚合物拉伸应力-应变曲线 1-软而弱;2-硬而脆:3-硬而强:4-软而强;5-强而韧而且,从图中我们还可以得到材料的各项拉伸性能指标值:如拉伸强度、拉伸断裂应力、拉伸屈服应力、偏置屈服应力、拉伸弹性模量、断裂伸长率等。 影响聚合物拉伸强度的因素有: (1)高聚物的结构和组成聚合物的相对分子质量及其分布、取代基、交联、结晶和取向是决定其机械强度的主要内在因素;通过在聚合物中添加填料.采用共聚和共混方式来改变高聚物的组成可以达到提高聚合

塑料薄膜拉伸性能试验方法标准要求

塑料薄膜拉伸性能试验方法标准要求 中华人民共和国国家标准 塑料薄膜拉伸性能试验方法 Plastics-Determinationoftensileproperiesoffilms 本标准参照采用国际标准ISO1184—1983《塑料薄膜拉伸性能的测定》。 1主题内容与适用范围 本标准规定了塑料薄膜和片材的拉伸性能试验方法。 本标准适用于塑料薄膜和厚度小于1mm的片材。不适用于增强薄膜、微孔片材和膜。 2引用标准 GB2918塑料试样状态调节和试验的标准环境 GB6672塑料薄膜和薄片厚度的测量机械测量法 中华人民共和国国家标准 塑料薄膜拉伸性能试验方法 Plastics-Determinationoftensileproperiesoffilms 本标准参照采用国际标准ISO1184—1983《塑料薄膜拉伸性能的测定》。 1主题内容与适用范围 本标准规定了塑料薄膜和片材的拉伸性能试验方法。 本标准适用于塑料薄膜和厚度小于1mm的片材。不适用于增强薄膜、微孔片材和膜。 2引用标准 GB2918塑料试样状态调节和试验的标准环境 GB6672塑料薄膜和薄片厚度的测量机械测量法 4.1试样形状及尺寸

本方法规定使用四种类型的试样,Ⅰ、Ⅱ、Ⅲ型为哑铃形试样。见图1~图3。Ⅳ型为长条型试样,宽度10~25mm,总长度不小于150mm,标距至少为50mm。 国家技术监督局1991-07-03批准1992-04-01实施 GB13022-91 4.2试样选择

可根据不同的产品或按已有的产品标准的规定进行选择。一般情况下,伸长率较大的试样不宜采用 太宽的试样。 4.3试样制备 4.3.1试样应沿样品宽度方向大约等间隔裁取。 4.3.2哑铃形及长条形试样均可用冲刀冲制,长条形试样也可用其他裁刀裁取。各种方法制得的试样 应符合4.1要求。试样边缘平滑无缺口。可用低倍放大镜检查缺口,舍去边缘有缺陷的试样。 4.3.3按试样尺寸要求准确打印或画出标线。此标线应对试样不产生任何影响。 4.4试样数量 试样按每个试验方向为一组,每组试样不少于5个。 5试验条件 5.1试样状态调节和试验的标准环境 按GB2918中规定的标准环境正常偏差范围进行状态调节,时间不少于4h,并在此环境下进行试验。 5.2试验速度(空载) GB13022-91 5.2.1试验速度如下: a.1±0.5mm/min; b.2±0.5mm/min或2.5±0.5mm/min; c.5±1mm/min; d.10±2mm/min; e.30±3mm/min或25±2.5mm/min;

YBB60322012拉伸性能测定法

YBB60322012 拉伸性能测定法 Lashen Xingneng Cedingfa Tests for Tensile Properties 本法适用于塑料薄膜和片材(厚度应不大于1mm)的拉伸强度和断裂伸长率的测定。 拉伸强度系指在拉伸试验中,试验直至断裂为止,单位初始横截面上承受的最大拉伸负荷。 断裂伸长率系指在拉伸试验中,试样断裂时,标线间距离的增加量与初始标距之比,以百分率表示。 仪器装置仪器应有适当的夹具,夹具应使试样长轴与通过夹具中心线的拉伸方向重合,夹具应尽可能避免试样在夹具处断裂,并防止被夹持试样相对于夹具中滑动。夹具的移动速度应满足试验要求。仪器的示值误差应在±1%内。 试样形状及尺寸 本方法规定使用四种类型的试样,Ⅰ、Ⅱ、Ⅲ型为哑铃形试样。见图1~图3。Ⅳ型为长条型试样,宽度10~25mm,总长度不小于150mm,标距至少为50mm。试样形状和尺寸根据各品种项下规定进行选择。 L2-总长120;L1-夹具间初始距离86±5;L0-标线间距离40±0.5;d-厚度; R-大半径25±2;r-小半径14±1;b-平行部分宽度10±0.5;b1-端部宽度25±0.5 图1 Ⅰ型试样

L3-总长115;L2-夹具间初始距离80±5;L1-平行部分长度33±2;L0-标线间距离25±0.25 R-大半径25±2;r-小半径14±1;b-平行部分宽度6±0.4;b1-端部宽度25±1;d-厚度 图2 Ⅱ型试样 L3-总长150;L2-夹具间初始距离115±5;L1-平行部分长度60±0.5;d-厚度 L0-标线间距离50±0.55; R-半径60;b-平行部分宽度10±0.5;b1-端部宽度20±0.5 图3 Ⅲ型试样 试样制备 试样应沿纵、横方向大约等间隔裁取。哑铃形及长条形试样可用冲刀冲制,长条型试样也可用在标准试片截取板上用裁刀截取。试样边缘必须平滑无缺口损伤,按试样尺寸要求准确打印或画出标线。此标线应对试样产品不产生任何影响。 试样按每个试验方向为一组,每组试样不少于5个。试样应在23℃±2℃、50%±5%相对湿度的环境中放置4小时以上,并在此条件下进行试验。 试验速度(空载) a. 1 mm/min±0.2mm/min; b. 2 mm/min±0.4mm/min或2.5 mm/min±0.5mm/min; c. 5 mm/min±1mm/min; d.10 mm/min±2mm/min; e.30 mm/min±3mm/min或25 mm/min±2.5mm/min; f.50 mm/min±5mm/min; g.100 mm/min±10mm/min;

聚氨酯泡沫塑料的料拉伸强度测试.

聚氨酯泡沫塑的料拉伸强度测试 本法按GB6344—96、GB9641—88标准执行。 (1)定义 拉伸试样至断裂时所施加的最大拉伸应力。 (2)试样的制备 硬泡样品:硬质泡沫塑料质地较脆,不宜采用冲切法截取试样。先用立切裁样机制出检测厚度的样片,再用钢锯或裁纸刀裁取样品,然后在砂纸上磨制成规定的尺寸,或用专用夹具按规定方法进行制样,至少5个样品。试样的形状和尺寸见图1。所有试片的表面不得有明显的裂缝或缺陷。 图1 软泡样品用裁样机裁取哑铃状试样,至少5个。试样厚度10~15 mm,试样尺寸见图。拉伸速率为500±50 mm/mm。 (3)操作 测量试片横切面的长度和宽度,取几个点,记录最小数值,准确至0.05 mm。 试片置于拉力机的夹具上,选择合适的载荷范围和拉伸速度。慢慢调节样品在中心轴上,开动仪器,记下负荷计数,测定和记录试片断裂时的负荷数值,软泡试样应记录试样断裂前瞬间两基准线内侧线间的距离,剔除断裂在标距外的试样。同一试样至少测定5个不同部位的样品,取平均值。

(4)计算 按下式计算: (标准测试结果表征单位为:kPa) 式中F--断裂荷载,N; A--平均截面积,mm2。 2.3 伸长率(扯断伸长率)测试 (1)定义试样断裂时的伸长百分率 (2)试样的制备和尺寸同2.2。 (3)操作同2.2。 (4)计算根据GB/T6344—86,按下式计算: 式中L0--试片原始标线间的距离,mm; L1--试样断裂时标线间的距离,mm。 2.4 撕裂强度测试 本法GB10808—89标准执行。 (1)试样尺寸 见图3。试样应从中心部位切取,无空隙块状物或不均匀大泡孔等。试样一端切一40 mm长的切口。AB的尺寸为试样厚度,厚度的方向为泡沫上升的方向。试样数量至少3个。

高分子材料的拉伸性能测试

《高分子材料的拉伸性能测试》实验指导书 一、实验目的 1、测试热塑性塑料拉伸性能。 2、掌握高分子材料的应力—应变曲线的绘制。 4、了解塑料抗张强度的实验操作。 二、实验原理 拉伸试验是材料最基本的一种力学性能试验方法,可以得到材料的各种拉伸性能,包括拉伸强度、弹性模量、泊松比、伸长率、应力-应变曲线等。拉伸试验是指在规定的温度、湿度和试验速度下,在试样上沿纵轴方向施加拉伸载荷使其破坏,此时材料的性能指标如下: 1.拉伸强度为: (1) 式中σ--拉伸强度,MPa; P---破坏载荷(或最大载荷),N; b---试样宽度,cm; h---试样厚度,cm. 2.拉伸破坏(或最大载荷处)的伸长率为: (2) 式中ε---试样拉伸破坏(或最大载荷处)伸长率,%; ΔL0-破坏时标距内伸长量,cm; L0---测量的标距,cm, 3.拉伸弹性模量为: (3) 式中E t---拉伸弹性模量,MPa; ΔP—荷载-变形曲线上初始直线段部分载荷量,N; ΔL0—与载荷增量对应的标距内变形量,cm。 4.拉伸应力-应变曲线 如果材料是理想弹性体,抗张应力与抗张应变之间的关系服从胡克定律,即:σ = Eε 式中: E-杨氏模量或拉伸模量;σ-应力;ε-应变

聚合物材料由干本身长链分子的大分子结构持点,使其具有多重的运动单元,因此不是理想的弹性体,在外力作用下的力学行为是一个松弛过程,具有明显的粘弹性质。拉伸试验时因试验条件的不同,其拉伸行为有很大差别。起始时,应力增加,应变也增加,在A点之前应力与应变成正比关系,符合胡克定律,呈理想弹性体。A点叫做比例极限点。超过A点后的一段,应力增大,应变仍增加,但二者不再成正比关系,比值逐渐减小;当达到Y点时,其比值为零。Y点叫做屈服点。此时弹性模最近似为零,这是一个重要的材料持征点。对塑料来说,它是使用的极限。如果再继续拉伸,应力保持不变甚至还会下降,而应变可以在一个相当大的范围内增加,直至断裂。断裂点的应力可能比屈服点应力小,也可能比它大。断裂点的应力和应变叫做断裂强度和断裂伸长率。 高分子材料是多种多样的,它们的应力—应变曲线也是多样的并且受外界条件的极大影响。 材料的应力—应变曲线下的面积,表示其反抗外力时所做的功,因此根据应力-应变曲线的形状就可以大致判断出该材料的强度和韧性。

相关主题
文本预览
相关文档 最新文档