当前位置:文档之家› AD_DNS_DHCP_WINS冗余部署实例教程

AD_DNS_DHCP_WINS冗余部署实例教程

AD_DNS_DHCP_WINS冗余部署实例教程
AD_DNS_DHCP_WINS冗余部署实例教程

AD/DNS/DHCP/WINS冗余部署实例——写给刚接触AD不久的会员们

冗余, Winos, 实例, 会员, 部署

对于部署了AD架构的企业来说AD/DNS/DHCP/WINS都是我们必须用到的服务,一但这些服务中断会导致整个企业IT系统无法正常运作,如何保障这些基础服务的高可用性是我们每一位管理员需要考虑的。

一般的中小企业最少都会用两台或多台服务器做冗余保证企业内基础服务的高可用性,当一台服务器坏了或需要维护另一台服务器照样能够提供相同的服务来保障企业IT系统的正常运作。

下面是一张很经典的AD部署场景图,图里用了两台计算机做服务器,同时提供了AD/DNS/DHCP/WINS服务。对AD/DNS/DHCP/WINS服务不了解的朋友请先学习一下理论知识,要动手实验朋友请先把下面的图看懂了再动手,本帖子适合对AD入门的朋友,老鸟们就直接跳过吧^_^。

下面是两台服务器的配置过程

在配置前请先在两台计算机上安装好Windows 2003 操作系统,升级打好最新补订!

一、WinOSDC2服务器的配置过程

1、AD的配置

2、DNS的配置

3、DHCP的配置

4、WINS的配置

二、WinOSDC3服务器的配置过程

1、AD的配置

2、DNS的配置

3、DHCP的配置

4、WINS的配置

三、验证两台服务器是否能够提供冗余服务、

一、WinOSDC2服务器的配置过程——1、AD的配置

1、登录到WinOSDC2服务器,安装DNS/DHCP/WINS网络服务;

2、配置本机的网络IP,子网掩码,网关,DNS,WINS;

3、在“开始菜单”“运行”输入AD配置命令 dcpromo ;

4、下一步

5、选择“新域的域控制器”“下一步”

6、选择“在新林中的域”“下一步”

7、输入要建立的或名 winos.ad ;

8、输入域的NETBIOS名;

9、默认“下一步”

10、默认“下一步”

11、选择第二项“下一步”

12、不考虑NT系统,选择第二项;

13、输入目录还原的密码,在日后的还原AD数据时会用到,

14、“下一步”

AD在配置中

15、完成

16、重启计算机

下载 (13.09 KB)

2008-12-24 23:13

一、WinOSDC2服务器的配置过程——2、DNS的配置

经过前面的操作我们的AD已经建立起来了,DNS正向查找区域在配置AD的时候也自动建立起来了,我们需要手工的配置DNS的反向查找区域,否则运行nslookup的时候会有错误提示。

1、打开“控制面板”“管理工具”“DNS”;

2、选择“反向查找区域”点击右键“新建区域”;

3、下一步;

4、选择“主要区域”如下图,下一步;

5、选择第三项,下一步;

6、输入我们的网络地址;

7、选择第一项,下一步;

8、点击完成;

如果企业需要上Internet的话,还必须配置DNS外部转发

1、选择WINOSDC,右键选择“属性”;

2、选择“转发器”,添加Internet上的外部DNS,这个DNS地址可以问你的Internet接入提供商得到;

[本帖最后由 zh_cxl 于 2008-12-24 23:41 编辑]

一、WinOSDC2服务器的配置过程——3、DHCP的配

动态主机配置协议(DHCP)是一种使网络管理员能够集中管理和自动分配 IP 网络地址的通信协议。

为了实现冗余我们采用两台服务器来实现,每台服务器的IP地址池各占50%,具体分配如下:

WinosDC2 可分配IP范围 192.168.2.50-192.168.2.150

WinosDC3可分配IP范围 192.168.2.151-192.168.2.253

下面是WinosDC2 的操作;

1、打开“控制面板”“管理工具”DHCP;

2、选择WinOSDC2服务器,点击鼠标右键选择“授权”;

3、点击鼠标右键,选择“新建作用域”;

SCADA系统的冗余环网连接

SCADA系统的冗余环网连接 2004-5-12 16:01:36未知来源供稿 简介 如今所有正在应用的成功的SCADA ( 管理控制和数据采集) 系统提供了高级的控制和实时的监视,这些都使当前的以太网和因特网连接技术能在世界范围内得到应用。使用以太网连接信息和控制层的设备可以提高工厂的效率,并且由此盈利。当实现一个SCADA系统时,系统设计者必须考虑到一个非常重要的问题,即,如果系统的硬件和软件出现故障怎么办?大多数设备都是有良好的可靠性设计,这当然是不用说的,但是故障仍然会发生的,特别是在设备被使用在要求的环境中。一个典型的情况就是所谓的“单个设备点的故障”。即,当只有一个设备(比如一台计算机)出现故障,整个系统都瘫痪了。如果系统所应用的某些场合是和过程是非常重要的,或者系统停机的代价是非常高的话,那么为整个系统建立一个冗余是解决这个问题的一条途径。 这里有许多不同的方法,每个都使用不同的设备来为系统提供冗余。例如,在应用软件这个水平上,您可以建立双服务器来提供备份以防主计算机和软件出现故障,并且在现场您可以连接平行的设备(如PLC)和相同的现场设备。但是,所有的设备仍然需要连接到网络上,为了使系统的可靠性最大化,您同样必须建立一个冗余的以太网络。 冗余网络拓扑 为了建立一个冗余的网络,环状拓扑提供了一个最简单的设计和节约费用的解决方案。理论上,以太网不能作为环网连接,因为由广播产生的数据包会引起传输负荷增大导致阻塞。解决的方法就是使用配备了生成树协议(802.1D)或者快速生成树协议(802.1w)的以太网交换机来实现这种拓扑网络。当以太网交换机安装了这几个协议之一后,就可以建立一个环网了,一个网段会被自动从逻辑上阻塞,这样广播数据包风暴就不会引起问题了。如果另一个网段出现故障,前面阻塞的网段将会运行起来,让系统连续运转。

双链路冗余

版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章原始出处、作者信息和本声明。否则将追究法律责任。https://www.doczj.com/doc/256268758.html,/247606/94114 Cisco双ISP线路路径优化备份冗余之 单路由器解决方案 通过双ISP(如:一条电信、一条网通)链路可实现网络路径优化、负载均衡及备份冗余,以前本人一直认为Cisco不能实现单路由器双ISP链路的冗余备份,后经过多次测试,发现通过SLA(服务水平)+route-map完全可以实现,在这里愿意和大家一起分享。 网络拓朴:

实验任务: ●?? PC1/PC2到1.1.1.1流经ISP1,PC1/PC2到2..2.2.2流经ISP2 ●?? 通过SLA+Route-map实现网络路径优化、负载分担、备份冗余 环境描述: ●?? 3台Cisco3640 + NE-4E模块,该配置拥有4个Ethernet、2台PC ●?? ISP1、ISP2分别模拟两个不同ISP(internet服务提供商) ●?? ISP1 loopback1:1.1.1.1/24、ISP2 loopback1:2.2.2.2/24用来测试 ●?? R1作为企业边界路由器e0/0、e0/1、分别连接ISP1、ISP2 地址分配:

详细配置: 1、IP地址设置 ISP1 (config) #int e0/2 ISP1 (config-if) #ip add 192.168.2.1 255.255.255.0 ISP1config-if) #no shutdown ISP1(config)# int e0/0 ISP1 (config-if) #ip add 192.168.0.2 255.255.255.0 ISP1config-if) #no shutdown ISP1(config)# int lo1 ISP1 (config-if) #ip add 1.1.1.1 255.255.255.0 ISP1(onfig-if) #no shutdown …………………………………………………………………………. ISP2 (config) #int e0/2 ISP2 (config-if) #ip add 192.168.2.2 255.255.255.0 ISP2 (onfig-if) #no shutdown ISP2(config)# int e0/1 ISP2 (config-if) #ip add 192.168.1.2 255.255.255.0 ISP2config-if) #no shutdown ISP2(config)# int lo1 ISP2 (config-if) #ip add 2.2.2.2 255.255.255.0 ISP2 (config-if) #no shutdown …………………………………………………………………………… R1 (config) #int e0/0 R1 (config-if) #ip add 192.168.0.1 255.255.255.0 R1 (config-if) #no shutdown R1 (config)# int e0/1 R1 (config-if) #ip add 192.168.1.1 255.255.255.0 R1 (config-if) #no shutdown R1 (config)# int e0/2 R1 (config-if) #ip add 192.168.20.1 255.255.255.0 R1 (config-if) #no shutdown 2、定义相关ACL R1(config)#ip access-list extended all-net ……………………匹配所

工业冗余环网与民用三层网络比较

工业冗余环网与民用三层网络比较 1、引言 有鉴于目前工业设计院和工业系统集成单位,为工业客户设计实施现场工业以太网方案时,仍然采用三层网络结构。本文就工业冗余环网与民用三层网络做了个比较。 2、工业化设计冗余环网 交换机数据转发延迟小,存储转发(Store and Forward)是网络领域使用最为广泛技术之一,以太网交换机控制器先将输入端口到来数据包缓存起来,先检查数据包是否正确,并过滤掉冲突包错误。确定包正确后,取出目址,查找表找到想要发送输出端口址,然后将该包发送出去。交换机数据存储转发由硬件实现,数据转发延迟为1~2ms 交换机带宽高, 100M。 提供冗余链路,网络故障恢复时间<300ms。工业冗余环网网络环境里,交换机不会立即开始转发功能,主交换机(Local)由手动指定,选择主链路和备份 链路建立一个指定路径,由Supreme-Ring协议自动指定。一个工业冗余环网网络里面只能有一个主交换机(Local)。主交换机(Local)会定期发送配置信息,这种配置信息将会被所有从交换机(Remote)发送。一旦网络结构发生变化,网络状态将会重新配置。 当指定主交换机(Local)之后,转发数据包之前,所有端口都以阻塞方式启动。运用Supreme-Ring算法,主交换机(Local)选择最低COST值端口作为主链路,另一条COST值高端口作为备份链路。备份链路不转发数据,只接收和处理HELLO包,处于热备(Hot Standby)状态。从交换机(Remote)没有主链路和备份链路区别。Supreme-Ring协议是一种简洁高效冗余协议,能够保证环网链路故障时,300ms之内恢复网络通信。 Supreme-Ring状态: 运行Supreme-Ring协议交换机上端口,总是处于下面四个状态中一个:阻塞:所有端口以阻塞状态启动止回路,处于阻塞状态端口不转发数据帧但可接受HELLO包。

网络设备冗余和链路冗余-常用技术(图文)

网络设备及链路冗余部署 ——基于锐捷设备 8.1 冗余技术简介 随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。 为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。本章将对这三种冗余技术的基本原理和实现进行详细的说明。 8.2设备级冗余技术 设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。 在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。 8.2.1S6806E交换机的电源冗余技术 图8-1 S6806E的电源冗余 如图8-1所示,锐捷S6806E内置了两个电源插槽,通过插入不同模块,可以实现两路AC电源或者两路DC电源的接入,实现设备电源的1+1备份。工程中最常见配置情况是同

时插入两块P6800-AC模块来实现220v交流电源的1+1备份。 电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。 注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。 8.2.2 S6806E交换机的管理板卡冗余技术 图8-2 S6806E的管理卡冗余 如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。承担着系统交换、系统状态的控制、路由的管理、用户接入的控制和管理、网络维护等功能。管理模块插在机箱母板插框中间的第M1,M2槽位中,支持主备冗余,实现热备份,同时支持热插拔。 简单来说管理卡冗余也就是在交换机运行过程中,如果主管理板出现异常不能正常工作,交换机将自动切换到从管理板工作,同时不丢失用户的相应配置,从而保证网络能够正常运行,实现冗余功能。 在实际工程中使用双管理卡的设备都是自动选择主管理卡的,先被插入设备中将会成为主管理卡,后插入的板卡自动处于冗余状态,但是也可以通过命令来选择哪块板卡成为主管理卡。具体配置如下 注意:在交换机运行过程中,如果用户进行了某些配置后执行主管理卡的切换,一定要记得保存配置,否则会造成用户配置丢失 在实际项目中,S65和S68系列的高端交换机一般都处于网络的核心或区域核心位置,承

AB冗余配置操作步骤(自编)

AB PLC冗余系统刷机攻略 1.安装20.01编程软件(默认操作即可) 2.参照文档将RSlink 授权成GATE WAY 版本 3.设置节点数:将IO机架的CN2R模块拨成01 02。。。(有几个机架拨到几)将两个CPU 机架上的CN2R模块拨成N+1(N为IO机架的数量),一般原则是CPU机架的节点数大于IO机架的节点数 4.设置IP:一种是模块上直接拨码***(默认是192.168.1.***)另外一只是出厂时拨码999, 在中BOOTP-DHCP通过MAC码来刷EN2T模块的IP(好处是可以任意设置网段)具体操作参照胡品来文档 5.打开RSLINK CLASSIC 后新建以太网驱动configure devices 中的Ethernet devices 新建个 驱动。IP与PLC模块设置的IP保持一致 6.冗余包(V20.055_kit4_ENHCLXRED 为CONTROLL FLAS软件Red_Mod_CT_V8.2.1.0为冗余 模块配置工具RMCT )在此之前UPLOAD 每个模块的EDS文件直至所有模块的图标显示正常;在RSLINX中设置冗余模块,选中冗余模块后,点击右键,选中Module Configuration,将数据同步改为Always;热备冗余:在编程软件中只需要组态一个主机架,然后点击主控制器的右键,选择Properies,将Redundancy上的Redundancy Enabled 前面的选中打上勾。 7.接下来配置C网,(软件是RSNtwxCN)参照文档设置即可,最后要保存(即下载配置) 8.如果主从机架通讯正常时时同步,那么主机架上的冗余模块显示为PRIM,从机架上的 冗余模块显示为SYNC。进行热备切换后,显示的PRIM与SYNC互换。

FTV SE7.0 服务器冗余配置说明

RSView SE 服务器冗余配置说明 准备3台电脑,一台作主服务器、一台作从服务器、最后一台作客户机。 1、系统:Windows 7 Ultimate 2、上位机软件:RSView SE 3、主服务器IP地址;子网掩码; 用户名(管理员) : KLT1 ; 密码: klt1 ; 工作组:WORKGROUP 。 计算机名:KLT1-PC 4、从服务器IP地址;子网掩码; 用户名(管理员) : KLT2 ; 密码: klt2 ; 工作组:WORKGROUP 。 计算机名:KLT2-PC 5、客户机IP地址;子网掩码; 用户名(管理员) : KLT3 ; 密码: klt3 ; 工作组:WORKGROUP 。 计算机名:KLT3-PC 6、系统安装过程中,设定计算机用户名,用户密码、安装完毕后设定 IP地址、子网掩码、工作组。 7、安装RSView SE 软件,安装过程中会有安装IIS组件的过程,IIS一定要安装正确。 8、安装上位机软件之后进行系统设置 (1) 启用来宾帐户 打开控制面板(查看方式:类别) 用户账户和家庭安全——用户帐户——管理帐户——来宾帐户(Guest)——启用 (2) 关闭防火墙 控制面板——系统和安全——Windows 防火墙——打开或关闭Windows 防火墙——选择关闭 (3) 删除“拒绝从网络上访问这台计算机”项中的guest账户

运行组策略()——本地计算机——计算机配置——Windows 设置——安全设置—— 本地策略——用户权利指派——拒绝从网络上访问这台计算机——删除guest账户。 (3) 公用文件夹共享 控制面板——网络和 Internet——选择家庭组和共享选项——更改高级共享设置——公用 ——公用文件夹共享——启用共享以便可以访问网络的用户。 (4) 以上设置完毕后,打开计算机,以主服务器为例,在windows 地址栏中输入\\,可 以访问从服务器的共享文件,以此类推,三台计算机可以相互访问对方的共享文件。 9、检测IIS是否正常 三台电脑每台都要检测,以主服务器为例,在IE浏览器中输入,会出现下图 图标 10、检测RSViewse是否正常 三台电脑每台都要检测,以主服务器为例,在IE浏览器中输入, 会出现下图图标 11、以上两项检测全部正常后,配置SE冗余。 12、三台电脑都要做以下设置, 打开电脑左下角开始——所有程序——Rockwell Software——FactoryTalk Tools—— FactoryTalk Directory Configuration Wizard——Configure settings——选择Configure the FactoryTalk Network Directory——Next——输入本机的用户名和密码——等待完成设置。13、设定通讯路径

环网冗余的配置与查看

环网冗余的配置与查看 根据《交换机配置》文档中的操作方法将实验台上的交换机按照预先的分配设置好相应的IP地址和Device Name,然后再进行后续的工作。 构成环网是冗余网络的一种方法,通过环网上的冗余管理器来实现冗余管理。由于一些配置、系统稳定等实现上的要求,采用X414E来作为冗余管理器。构成环网就必须要有一个冗余管理器,而且只能有一台,在硬件实现环网连接之前要先对各个交换机先行设置,主要是设置X414E为环网管理器,否则会引起广播风暴出现网络瘫痪。 打开IE浏览器,在地址栏中输入已经配置好的IP地址,在弹出的对话框中,用户名和密码都为“admin”,即可进入该交换机的配置参数。

首先可以从交换机的状态指示灯看出该模块的状态和端口信息。 选中其中的某一项可以看到其具体的信息,如“RM(Redundancy Manager冗余管理器)”,打勾表示当前被选中的功能使能,如环网冗余使能、冗余管理器使 能,以及构成环网的端口等,可以进行修改后点击“Set Value”。 其他的状态灯,如系统错误F,电源和冗余电源L1/L2,输入输出端口等信息均

可以快速查看到,特别是对当前已经连接上的端口,而下面的数字则表示当前模块在机架上的槽号(可能与实际模块外壳不同,要以实际机架插槽为准)。 下面按步骤配置交换机的环网使能及环网冗余使能。选择System—〉Select/Set Button,在第二项的冗余管理器前打勾选中,并“Set Value”。 选择X-400—〉Ring Config,选择环网冗余使能和冗余管理器使能,并对环网端口进行选择(该端口为环网实际需要连接的端口),注意由于环网上跑的数据量较大,最好选择带宽更大的端口,比如千兆的光口等。 具体的状态情况可以从事件日志中查看到,选择System—〉Restart & Defaults,在交换机的参数发生变化时,正常需要重启操作,主要有重启系统、从存储卡中

各种链路冗余(聚合)介绍

一、MPIO及MC/S (1) 1.MPIO (1) 2.MC/S (2) 3.Windows Inititaor MPIO MC/S配置方法: (2) 1)MC/S配制方法: (2) 2)MPIO配制方法 (5) 二、LACP (11) MC/S MPIO 绑定 LACP TRUNKING 一、MPIO及MC/S 1.MPIO 在Microsoft Windows server基础系统中,Microsoft MPIO驱动程序允许发起端以多个会话的方式连接到同一个目标端并且合并由于多链路而复制出的相同磁盘。每一个会话必须使用不同的网卡及目标端口,如果一个会话失效(或网络中断),其他的会话会继续工作而不用停止应用。

2.MC/S MC/S (Multiple Connections per Session) 是ISCSI协议的一个特征,它可以将多条链路结合到一个会话中从而实现提高性能或冗余的功能。这种方式,数据I/O可以通过多个TCP/IP连接发送到目标端。如果一个连接失效(或网络中断),其他的会话会继续工作而不用停止应用。 MPIO与MC/S的区别: MC/S是属于ISCSI协议层,而MPIO则属于更高层。因此所有MPIO架构都可以传输SCSI信息例如包括FC,SAS架构。他们最大的不同就是建立连接的数据层不同。MPIO在一个目标端建立多个会话,负载均和和故障切换都在多个会话中进行。MC/S则是对一个会话建立多个连接从而实现负载均和和故障切功能。 1.如果使用硬件ISCSI HBA卡,则只能使用MPIO 2.如果用户明确指出需要使用不同的负载均衡协议给不同的LUN,则必须使用MPIO 3.MPIO只能支持Windows Server 版本(2000 2003)如果是使用win7 xp Vista则只能使用MC/S。 4.MC/S可以提供更高的吞吐量但是比MPIO消耗的CPU资源更多。 3.Windows Inititaor MPIO MC/S配置方法: 测试环境介绍:服务器两片千兆网卡,分别直连磁盘阵列两个数据口,服务器网卡和磁盘阵列数据口不做任何冗余配置,仅用Windows Initiator做MC/S或MPIO。磁盘阵列分为三个LUN并映射。 1)MC/S配制方法: 打开Initiator软件,选择Discovery选项卡,Add添加磁盘阵列第一个数据口IP地址,端口号保持默 认3260(如图1)

软件冗余的原理和配置

软件冗余的原理和配置 7.1 软件冗余基本信息介绍 软件冗余是Siemens实现冗余功能的一种低成本解决方案,可以应用于对主备系统切换时间为秒级的控制系统中。 7.1.1系统结构 Siemens软件冗余系统的软件、硬件包括: (1)1套STEP7编程软件(V5.2或更高)加软冗余软件包(V1.x); (2)2套PLC控制器及I/O模块,可以是S7-300(313C-2DP,314C-2DP,31X-2DP)或S7-400(全部S7-400系列CPU)系统; (3)3条通讯链路,主系统与从站通讯链路(PROFIBUS 1)、备用系统与从站通讯链路(PROFIBUS 2)、主系统与备用系统的数据同步通讯链路(MPI 或 PROFIBUS 或 Ethernet); (4)若干个ET200M从站,每个从站包括2个IM153-2接口模块和若干个I/O模块;Y-Link不能用于软冗余系统; (5)除此之外,还需要一些相关的附件,用于编程和上位机监控的PC-Adapter(连接在计算机串口)或CP5611(插在主板上的PCI槽上)或CP5511(插在笔记本的 PCMIA槽里)、PROFIBUS电缆、PROFIBUS总线链接器等。 系统架构如图7-1所示: 图7-1软冗余的系统架构

可以看出,系统是由两套独立的S7-300或S7-400 PLC系统组成,软冗余能够实现: 主机架电源、背板总线等冗余;PLC处理器冗余;PROFIBUS现场总线网络冗余(包括通讯接口、总线接头、总线电缆的冗余);ET200M站的通讯接口模块IM153-2冗余。 软冗余系统由A和B两套PLC控制系统组成。开始时,A系统为主,B系统为备用,当主系统A中的任何一个组件出错,控制任务会自动切换到备用系统B当中执行,这时,B 系统为主,A系统为备用,这种切换过程是包括电源、CPU、通讯电缆和IM153接口模块的整体切换。系统运行过程中,即使没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主备系统切换,这种手动切换过程,对于控制系统的软硬件调整,更换,扩容非常有用,即Altering Configuration and Application Program in RUN Mode 。 7.1.2 系统工作原理 在软冗余系统进行工作时,A、B控制系统(处理器,通讯、I/O)独立运行,由主系统的PLC掌握对ET200从站中的I/O控制权。A、B系统中的PLC程序由非冗余(non-duplicated)用户程序段和冗余(redundant backup)用户程序段组成,主系统PLC执行全部的用户程序,备用系统PLC只执行非冗余用户程序段,而跳过冗余用户程序段。 软冗余系统内部的运行过程参考图7-2。 图7-2软冗余系统内部的运行过程 主系统的CPU将数据同步到备用系统的CPU需要1到几个程序扫描循环,如图7-3所示:

冗余配置例子

1 引言 Controllogix是Rockwell公司在1998年推出AB系列的模块化PLC,代表了当前PLC发展的最高水平,是目前世界上最具有竞争力的控制系统之一,Control- logix将顺序控制、过程控制、传动控制及运动控制、通讯、I/O技术集成在一个平台上,可以为各种工业应用提供强有力的支持,适用于各种场合,最大的特点是可以使用网络将其相互连接,各个控制站之间能够按照客户的要求进行信息的交换。 Controllogix可以提供完善的控制器的冗余功能,采用热备的方式构建控制器,两个控制器框架采用完全相同的配置,它们之间使用同步电缆连接,不仅控制器可以采用热备,通讯网络也可以采用相似的方式进行热备,除以上的部分可以热备外,控制器的电源也可以进行热备,这样大大提高了控制器的运行的可靠性。 2 系统介绍 在某焦化厂干熄焦汽轮机发电项目的DCS控制系统中,采用了冗余的Controllogix,系统结构如图1所示。上位机通过交换机与PLC处理器通讯,远程框架通过冗余的ControlNet连接到控制器框架,同时,远程框架采用了冗余电源配置。整套系统具有很高的可靠性,满足了汽轮机发电系统对于PLC控制部分需要长期无故障运行的要求。上位机采用Rsview32软件,用以监控现场设备的运行。 图1 系统结构图 本地框架由L1和L2 框架构成,运行时L1和L2互为热备,构成了冗余,L1和L2框架各个槽位的所配置的模块如表1所示。R1,R2和R3是远程框架,所有的点号都连接到远程框架的模块,远程框架的供电使用了AB的冗余电源(1756-PAR2)。 收藏 引用 muzi_woody 1楼2007-9-21 7:41:00 表1 L1和L2框架各个槽位的所配置的模块 设置主从控制器框架的1756-CNBR/D的节点地址时应注意,他们的地址拨码应该相同,应该是系统中挂接在冗余ControlNET网上所有节点的最高地址,在本系统里面都设置为4,远程站的节点地址分别为1,2,3。在冗余系统正常运行时,从控制器框架的CNBR/D 节点地址会自动加1,变为5。 1757-SRM是用于同步的冗余模块,主从控制器框架的SRM通过光纤连接。正常工作时,1756- L61中所有的程序和数据通过光纤进行同步,在RSLOGIX5000编程中,不必对此模块进行组态。 1756-ENBT是以太网接口模块,通过网线连接到交换机。ENBT的地址分配为两个连续的IP即可,在这个系统中IP地址分别为192.168.1.11和192.168.1.12。 3 模块的升级 冗余系统中,主控制器框架和从控制器框架上各个模块的版本必须严格一致,

多链路负载均衡及冗余

多链路负载均衡及冗余

目录 1.目的 (3) 2.环境拓扑 (3) 3.链路负载均衡 (3) 3.1 基于源IP的负载均衡 (4) 3.2基于权重的负载均衡 (6) 3.3基于出口流量阀值的负载均衡 (6) 3.4 其他负载均衡 (7) 3.5 策略路由 (7) 4.链路冗余 (8) 4.1 检测服务器 (8) 4.2管理距离与优先级 (8) 5.负载均衡与冗余 (9) 6.参考 (9)

1.目的 本文档针对FortiG ate在具有两条或两条以上出口时的负载均衡及链路冗余配置进行说明。Fortigate在多链路可以支持不同方式的负载均衡,在链路负载均衡的同时,也可以实现链路的冗余。 2.环境拓扑 本文使用FortiGate-VM 做演示。本文支持的系统版本为FortiOS v4.0MR3 Patch2及更高。 该配置中使用FortiGate-VM1 模拟两条WAN线路,通过FortiGate-VM2连接至外网,实际环境可以据此参考。 3.链路负载均衡 链路负载均衡功能需要为2个不同的出网接口分别配置一条默认路由,如果实现负载均衡,需要2条或多条静态路由的管理距离以及优先级保持一致。同时也需要保证配置内网去往2条出口的策略。 如果使用静态路由的话可以把出网路由的管理距离配置成相等的,也就是等价路由。如果是ADSL、DHCP等动态获取的网关的话可以把“从服务器中重新得到网关”选中同时将动态获取的路由的管理距离配置即可。在默认路由已经配置完成的情况下,如果仍然有某些特定的数据流需要从指定的出口出网的话,可

以使用策略路由功能来完成这样的需求。策略路由的优先级高于动态和静态路由,按照从上到下的次序来匹配的。 负载均衡包括三种模式: 1.基于源IP的负载均衡; 2.基于权重的负载均衡; 3.基于出口流量阀值的负载均衡。 3.1 基于源IP的负载均衡 基于源IP的负载均衡, 当路由表中有多个出网路由时,FortiGate设备会按内置的算法实现负载均衡,这个算法不能被修改。这个算法是:假设路由表中有n条出网路由,则防火墙会将内网源IP地址的最后一组数值除n取余,余1走第一条出网路由,余n-1走第n-1条出网路由,余0走第n条出网路由。 本例的出网规则是:,如果想让某些IP走特定的接口需要策略路由来实现。

S7-400冗余系统组态

S7-400冗余系统组态 S7-400 H硬件组态 以例子的形式介绍S7-400H系统的组态过程 2.1 例子所需硬件和软件 1、硬件: 一套S7-400H PLC,包括 (1) 1个安装机架UR2-H (2) 2个电源模板PS 407 10A (3) 2个容错CPU,CPU414-4H或CPU 417-4H (4) 4个同步子模板 (5) 2根光缆 一个ET200M分布式I/O 设备,包括 (6) 2个IM 153-2 (7) 1个数字量输入模板 (8) 1个数字量输出模板 必备的附件,如PROFIBUS 屏蔽电缆及网络连接器等。 2、软件: STEP 7 V5.3 SP2标准版(已集成冗余选件包)或更高版本。 2.2硬件安装 (1)设置机架号 CPU V3版本,通过同步子模板上的开关设置; CPU V4版本,通过CPU背板上的开关设置; CPU通电后此机架号生效。 (2)将同步子模板插到CPU板中。 (3)连接同步光缆 将两个位于上部的同步子模板相连; 将两个位于下部的同步子模板相连; 在打开电源或启动系统之前要确保CPU的同步光缆已经连接。同步光纤的连接如图2-1所示: 图2-1 S7-400H 同步光纤的连接 (4)组态分布式I/O站ET200M ,使其作为具有切换功能的DP从站。 (5)将编程器连到第一个容错CPU(CPU0)上,此CPU 为S7-400H 的主CPU。 (6)通电后CPU自检查 CPU第一次通电时,将执行一次RAM 检测工作,约需3分钟。这段时间内CPU 不接收通过MPI 接口来的数据,并且STOP LED 灯闪烁。如果有备用电池,再次通电时不再做此项检查工作。 (7)启动CPU 装入程序后执行一个热启动操作:首先启动主CPU ,然后启动热备CPU。 2.3 使用STEP 7 进行组态 2.3.1创建项目组态S7-400H 在STEP7中新建一个项目,在Insert菜单下的Station选项中选择SIMATIC H Station,添 加一个新的S7-400H的站,如图2-2所示:

工业以太网交换机环网冗余的实现

Network World ? 网络天地Electronic Technology & Software Engineering 电子技术与软件工程? 11【关键词】工业 以太网技术 冗余 工业以太网它的成本低,效率高,方便 安装且功耗较低吸引了越来越多的厂商。控制 系统和自动化系统通常使用的该技术来完成任 务。核电力的实际应用在许多领域,电力和运 输是一个复杂的工业,控制环境变化使用户对 以太网的可靠性的要求也越来越高。为了保证 整个通信系统的网络系统不受干扰通信系统的 影响,或产生其他通信或通信系统瘫痪的问题, 以太网冗余技术被广泛采用来提高容错率。 1 工业以太网技术 以太网具有通信速率高、兼容性好、互 联扩展性好、功耗低、安装方便等优点。所谓 的工业以太网是什么?其实就是在工业上广泛 应用的一种技术,与其他以太网的技术都是类 似的。因此,工业以太网技术继承了以太网技 术的优势,与传统的现场总线相比较具有很多 优点。主要的有点体现在下面几个方面: (1)以太网在计算机网络技术中的应 用中最为广泛,它得到了广泛的技术支持。 以太网最典型的应用形式是以太网+TCP/ IP+Web 。常用的编程语言,如Java 、Visual C++和Visual Basic ,都支持以太网的应用开发, 这些编程语言特别受欢迎,软件开发人员都喜 欢应用这些编程语言,开发前景一片良好。工 业控制领域采用以太网通信,可以选择更多的 开发工具,开发环境。 (2)由于商用以太网的广泛应用,主要 的通信设备开发商和制造商致力于以太网交换 机的开发和生产,这使得工业以太网交换机更 便宜。因为他应用的广泛,硬件价格很低,现 在以太网网卡它的价格在现场总线价格的十分 之一左右,而且随着集成电路技术的快速发展, 其价格还会更低。 (3)目前,该技术比较成熟,广泛使用 的以太网通信速率为10M 、100M 和1000M 。 这比任何当前的现场总线都快。因此,以太网 能够满足工业控制对带宽不断增长的要求。工业以太网交换机环网冗余的实现 文/孟飞 (4)基于TCP/IP 协议模型的以太网是完全开放的。因此,信息网络与控制网络可以实现无缝集成。因此,嵌入式控制器、智能现场测控仪器和传感器可以方便地连接到现场控制网络,甚至管理网络。2 环网冗余技术以太网环网是环网冗余最为简单的拓扑结构。任何网络节点都有一个交换机和两个相邻的节点。如果其中一个端口被设置成了默认阻止,那么我们可以认为交换机此时工作正常,用来防止以太网的数据帧转发,并且保证它在物理上是一个循环,不论它有没有逻辑循环。所以,一般主交换机有两个端口,同时也存在两个检测问题的办法。首先端口为主端口和辅助端口,检测方法为故障报警以及循环检测,主端口包括环路上其他设备的端口,辅助端口为拥塞端口一般只存在一个,而检测主要是为了保证环网的连通性,以防发生问题。(1)主设备节点首先要转发端口,其次发送循环检测,所谓循环检测就是按照规定时间发送检测帧,它的功能为检测环网的问题,当它正常工作时主设备节点的下级端口就会接收环网一周左右的检测帧,但是在规定时间中没有接收到检测帧,主设备节点会快速的打开阻塞端口。以此保证它在逻辑上的线性结构,紧接着主设备节点要进行的是清空交换机中的转发表(FDB 表),清空之后会发送数据包,然后剩下的节点都会跟从主设备节点清空FDB 表。这样的话所有交换机就会学习新的网络拓扑。交换机的接口出现问题时就会向主设备节点报警,以此来打开拥塞控制,然后清空FDB 表,一般的环网交换机都存在两个接口,任意一个发生问题都会报警。在最后主节点将数据包发送到环上的每一个节点,节点接到指示后清空FDB 表并学习全新的拓扑结构。(2)环网冗余切换机制在环网出现问题的情况下,主要的设备实现节点定期发送测试帧在主端口,如果环网故障恢复,那么下一个测试帧就会准时接收端口,然后主节点就会恢复正常,从时间端口就会拥塞控制包,更新FDB 表,给传输节点发送控制消息,传输节点接收指示,根据指示内容也会更新FDB 表,并学习新的网络拓扑。3 以太网中环网冗余的具体实现之所以快速环网会被研究出来,主要是为了方便用户发现环网中存在的问题,以方便 及时的修复,以免造成更大的损失。这个技术是美国知名的控制公司研究实现的,它的工作原理主要如下:当环网出现断链的问题时,就可以在交换机上报警,用户就会收到报警的消息,从而及时的处理问题,该项技术的优点就是,可以快速的修复环网在网络上的故障,也是以此来减少因故障带来的损失。快速环网技术使用过程中时,我们可以形成一个简单地环网,首先在众多交换机当中设置一个主交换机,其次把每一个交换机的两个端口相互连接,还需要把每个交换机都设置成快速环网,这样连接的两个端口就可以保持正常运行。在主交换机的网络中会存在备用端口,所谓备用端口就是在紧急情况下可以进行网络修复的。网络在正常运行时,备用端口进入休眠状态,不会影响每个交换机之间的相互工作,如果备用端口被激活。那么就证明线缆连接中出现了问题,备用端口就会发挥它的作用,保证环网工作的正常进行,指导主交换机发起报警,出现的问题被修复之后,备用端口就会再次进入休眠状态。而且快速环网还可以支持双环网的连接,在每一个方面都会拥有更大的灵活性。4 总结随着工业以太网技术在工业控制领域的广泛应用,其可靠性越来越受到重视。保证工业以太网可靠性的方法是利用设备冗余为以太网中的交换设备和链路提供冗余保护。参考文献[1]周乐文.高可靠千兆以太网交换机研究[D].长沙:国防科技大学,2011.[2]邹航宇.工业以太网冗余协议研究[D].上海:上海交通大学,2013.[3]孙明刚.工业以太网中冗余问题的研究[D].成都:西南大学,2008.作者简介孟飞(1986-),男,河北省无极县人。硕士研究生学历。工程师。主要研究方向为计算机网络。作者单位北京计算机技术及应用研究所 北京市 100854

组态软件操作指南 冗余系统

本章内容 双机热备 双网络冗余 双设备冗余 双IOServer冗余 概述 KingSCADA 提供全面的冗余功能,能够有效地减少数据丢失的可能,增加了系统的可靠性,方便系统维护。KingSCADA提供四重意义上的冗余功能,即双机热备、双网络冗余、双设备冗余、双IOServer。 第一节双机热备 1、原理 双机热备主要是实时数据、报警信息和变量历史记录的热备。主从机都正常工作时,主机从实时数据服务器获取数据,并产生报警和事件信息。从机通过网络从主机获取实时数据和报警信息,而不会从实时数据服务器读取或自己产生报警信息。主从机都各自记录变量历史数据。同时,从机通过网络监听主机,从机与主机之间的监听采取请求与应答的方式,从机以一定的时间间隔(冗余机心跳检测时间)向主机发出请求,主机应答表示工作正常,主机如果没有应答,从机将切断与主机的网络数据传输,转入活动状态,改由实时数据服务器获取数据,并产生报警和事件信息。此后,从机还会定时监听主机状态,一旦主机恢复,就将数据备份给主机。只有从机坏掉之后,主机才会从实时数据服务器获取数据。通过这种方式实现了热备。 2、主机网络配置 第一步,KingSCADA开发系统树型目录区中选择“网络配置”→“本服务器设置”选项并双击,弹出网络配置对话框,对话框设置如图所示。 勾选网络模式,配置主站的名称,网络IP,根据需要配置主站备份IP;勾选使用双机热备,配置从站的名称,从站的网络IP,或者根据需要配置从站的备份网络IP。

图10-1网络参数设置对话框 主站点名:即本站点名称。进入网络的每一台计算机必须具有唯一的节点名,默认为当前计算机名。 主站网络IP:即本节点的IP地址,长度最长是15个字符。 主站备份网卡IP:当网络中使用双网络结构时,需要对每台连网的机器安装两个网卡——主网卡和从网卡,此处表示从网卡(亦称备份网卡)。在该编辑框中输入从网卡的IP地址,长度最长是15个字符。 双机热备:KingSCADA提供双机热备功能,如果使用该功能的话,选中“使用双机热备”选项,然后根据当前计算机的工作状态设置本机为主机或从机。 从站名称:当选择使用双机热备功能,此选项有效,需要在此处键入从站名称。 从站网络IP:在此处键入从站的IP地址。 从站备份网卡IP:当网络中存在双网络冗余时,需要安装两个网卡,需要在此处键入从站备份网卡的IP地址。 冗余状态检测通道:为保证冗余机之间状态的正确,防止误切换以及及时同步数据,KingSCADA设置了冗余状态检测通道和同步数据通道分别是串口和网卡。 串口:通过串口检测冗余状态,并选择串口名称及通讯参数。 网卡:通过专用网卡实现主、从机同步数据,并输入对方网卡IP地址。 心跳检测时间:此参数在本节点做“服务器”或“客户端”时都有效,以此时间间隔检测数据链路是否畅通。单位为秒。

ipsec-vpn高可用性链路冗余备份实例

ipsec-vpn高可用性链路冗余备份实例

标题:ipsec vpn的高可用性 目的:实现vpn链路的冗余备份 拓扑: 步骤: 1.按照拓扑给路由器的接口分配地址 Ip地址规划 Branch上 branch(config)#int f0/0 branch(config-if)#ip add 202.100.1.1 255.255.255.0 branch(config-if)#no sh branch(config-if)#int lo 0 branch(config-if)#ip add 1.1.1.1

255.255.255.0 isp上 isp(config)#int f0/1 isp(config-if)#ip add 202.100.1.10 255.255.255.0 isp(config-if)#no sh isp(config-if)#int f0/0 isp(config-if)#ip add 61.128.1.10 255.255.255.0 isp(config-if)#no sh isp(config-if)#int f1/0 isp(config-if)#ip add 137.78.5.10 255.255.255.0 isp(config-if)#no sh active上 active(config)#int f0/1 active(config-if)#ip add 61.128.1.1 255.255.255.0

active(config-if)#int f0/0 active(config-if)#ip add 10.1.1.10 255.255.255.0 active(config-if)#no sh standby上 standby(config)#int f0/1 standby(config-if)#ip add 137.78.5.1 255.255.255.0 standby(config-if)#no sh standby(config-if)#int f0/0 standby(config-if)#ip add 10.1.1.20 255.255.255.0 standby(config-if)#no sh inside上 inside(config)#int f0/1 inside(config-if)#ip add 10.1.1.1 255.255.255.0

s7 400h冗余系统硬件组态操作流程

一.所需软硬件: 所需软件:STEP7 SP3 所需硬件:一套S7-400H PLC,包括: (1) 1个安装机架UR2-H (2) 2个电源模板PS 407 10A (3) 2个容错CPU,CPU414-4H或CPU 417-4H (4) 4个同步子模板(型号必须相同) (5) 2根光缆 必备的附件,如PROFIBUS 屏蔽电缆及网络连接器等。 二.硬件安装 (1)设置机架号 CPU V3版本,通过同步子模板上的开关设置; CPU V4版本,通过CPU背板上的开关设置; CPU通电后此机架号生效。 (2)将同步子模板插到CPU板中。 (3)连接同步光缆 将两个位于上部的同步子模板相连; 将两个位于下部的同步子模板相连; 在打开电源或启动系统之前要确保CPU的同步光缆已经连接。同步光纤连接如图1所示:

图1 S7-400H 同步光纤的连接 三.通过STEP7进行硬件组态 1.创建项目并组态站S7-400H在STEP7中新建一个项目,在“插入”菜单下的“站点”选项中选择SIMATIC H 站所示:2的站,如图S7-400H点,添加一个新 的. S7-400H站图2 创建项目和添加配置硬件2. 打开硬件配置;硬件”S7-400H (1) 在站目录下,双击“ 3所示:(2) 添加一个UR2-H机架,如图

机架3 添加UR2-H图所示:4如图,2默认为主站的地址,PROFIBUS DP 上CPU并设定,CPU配置电源和3. S7-400H CPU图4 添加电源和所示:,如图5槽位上和添加同步子模板到4. IF1IF2 添加同步子模块5 图 5)添加以太网网卡,设置MAC网络地址和IP地址,如图6所示:

冗余链路会产生的问题

冗余链路会产生的问题: 1.广播风暴 2.多帧复制 3.MAC地址表不稳定 4.多个回路 解决办法是选择生成树协议,阻塞多余的冗余端口。 生成树协议的目的是维持一个无回路的网络。 如果一个设备在拓扑中发现一个回路,它将阻塞一个或多个冗余的端口。当网络拓扑发生变化时,生成树协议将重新配置交换机的各个端口以避免链接丢失或者出现新的回路。 生成树协议的基本规则: 1.选择一个根桥:一个网段(物理网段)只能有一个根桥,根桥上的所有端口都是"指定端口",可以转发数据。 2.非根桥只有"根端口"可以转发数据,用来和根桥相连的"根端口"只能有一个。其余端口不是"根端口",将被阻塞。 根桥 ==> 所有端口都是"指定端口" 非根桥 ==> 一个"根端口",其余阻塞。 只有"指定端口"和"根端口"可以转发数据。 根桥的选择方法: 采用生成树算法的交换机通过"网桥协议数据单元"(BPDU)的数据包定期交换配置信息,其中包括桥ID(Bridge ID) 信息。 [桥ID=优先级+交换机MAC] 桥ID小的交换机将成为根桥。优先级可以指定,默认为32768. 非根桥上的根端口选择方法: 路过··走过···需要的时候记得回来看看····因为容易得到所以得不到大家的珍惜·即使这样我们也要

非根桥到达根桥只需要一个端口(根端口),选择的时候会选择到达根桥路径代价最低的端口,这个端口就叫做根端口。如果到达根桥的路径代价相等则比较端口的MAC,最低的选择为"根端口". 到达路径的代价一般以带宽为依据,IEEE802.1d规定的路径的代价既开销(cost)如下: 10Gbps=2 1Gbps=4 100Mbps=19 10Mbps=100 开销小的将被选择为根端口。 非根桥上的非根端口在阻塞状态下也能够监听BPDU数据包,如果20秒收不到根桥的信息则开始转换自己的状态: blocking(阻塞)——20秒——>listening(监听)——15秒——>learning (学习)——15秒——>forwarding(转发) 这样大约50秒的时间非根端口转变成为"根端口"或者变为"指定端口"开始转发数据。 关闭交换机上的生成树协议(Catalyst 1900): (config)#no span 1 关闭VLAN1上的生成树协议。 如果有冗余链路的存在并且关闭了交换机上的生存树协议的话网络将很容易瘫痪 路过··走过···需要的时候记得回来看看····因为容易得到所以得不到大家的珍惜·即使这样我们也要

相关主题
文本预览
相关文档 最新文档