当前位置:文档之家› 混凝土破坏准则 william-warnke模型

混凝土破坏准则 william-warnke模型

混凝土破坏准则 william-warnke模型
混凝土破坏准则 william-warnke模型

Constitutive model for the triaxial behaviour of concrete

Author(en):William, K.J. / Warnke, E.P.

Objekttyp:Article

Zeitschrift:IABSE reports of the working commissions = Rapports des commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen

Band(Jahr):19(1974)

Persistenter Link:https://www.doczj.com/doc/2518510500.html,/10.5169/seals-17526

Erstellt am:22.08.2011

Nutzungsbedingungen

Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die

angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre, Forschung und für die

private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot k?nnen

zusammen mit diesen Nutzungsbedingungen und unter deren Einhaltung weitergegeben werden.

Die Speicherung von Teilen des elektronischen Angebots auf anderen Servern ist nur mit vorheriger

schriftlicher Genehmigung des Konsortiums der Schweizer Hochschulbibliotheken m?glich. Die

Rechte für diese und andere Nutzungsarten der Inhalte liegen beim Herausgeber bzw. beim Verlag.

SEALS

Ein Dienst des Konsortiums der Schweizer Hochschulbibliotheken

c/o ETH-Bibliothek, R?mistrasse 101, 8092 Zürich, Schweiz

retro@seals.ch

http://retro.seals.ch

IABSE AIPC IVBH

SEMINAR on:

?CONCRETE STRUCTURES SUBJECTED TO TRIAXIAL STRESSES?17th-19th MAY,1974-ISMES-BERGAMO(ITALY)

III-l

Constitutive Model for the Triaxial Behaviour of Concrete Stoffmodell für das mehrachsiale Verhalten von Beton

Modlle de Constitution pour le Comportement Triaxial du Biton

K.J.WILLAM

Ph. D.,Project Lcader

Institut für Statik und Dynamik der Luft-und Raumfahrtkonstruktionen University of Stuttgart E.P.WARNKE

Dipl.-Ing.,Research Associate Institut für Statik und Dynamik der Luft-und Raumfahrtkonstruktionen University of Stuttgart

SUMMARY

This paper describes different modeis for the failure surface and the constitutive behaviour

of concrete under triaxial conditions.The study serves two objectives,the working stress

design and the ultimate load analysis of three-dimensional concrete components.

In the first part a three parameter failure surface is developed for concrete subjected to triaxial loading in the tension and low compression regime.This model is subsequently refined by adding two additional parameters for describing curved meridians,thus extend ing the r?nge of appli?cation to the high compression zone.

In the second part two constitutive modeis are formulated for elastic perfectly plastic be?haviour in compression and elastic perfectly brittle behaviour in tension.Based on the normality principle,explicit ex pressions are developed for the inelastic deformation rate and the correspon?ding incremental stress-strain relation Thus these modeis can be readily applied to ultimate load analysis using the initial load technique or the tangential stiffness method.

Dedicated to the60th birthday of Professor Dr.Drs.h.c.J.H.Argyris.

1.INTRODUCTION

Over the last two decades a profound change has taken place with the appearance of digital Computers and recent advances in structural analysis[l],[2],[3].The close symbiosis between Computers and structural theories was instrumental for the development of large scale finite element Software packages[4]which found a wide r?nge of application in many fields of eng i nee ring sciences.

The high degree of sophistication in structural analysis has clearly left behind many other disciplines,one of them being the field of material science.The proper description of the relevant constitutive phenomena has posed a major limitation on the analysis when applied to complex ope?rating conditions.

In the following a constitutive model is presented for the over load and ultimate load ana?lysis of three-dimensional concrete structures, e.g.Prestressed Concrete Reactor Vessels and Con?crete Dams.Considering the size of finite elements in a typical idealization one is clearly deal ing with material behaviour on the continuum level,in which the micro structure of piain and rein?forced concrete components can be neglected.This scale effect of the analysis allows a macro-scopic point of view according to which material phenomena such as cracking can be simulated by

the behaviour of an equivalent continuum.

The objective of this study is twofold:First a mathematical model is developed for the description of initial concrete failure under triaxial conditions.Subsequently,this formulation is applied to construct a constitutive model for the over load and ultimate load analysis of three-dimensional concrete Structures.Alternative ly,the failure surface can be applied to working stress design using relevant safety philosophies.

In the first part a three parameter model is developed which defines a conical failure sur?face with non-circular base section in the principal stress space,thus the strength depends on the hydrostatic as well as deviatoric stress state.The proposed failure surface is convex,continuous

and has continuous gradient directions furnishing a close fit of test data in the low compression r?nge. In the tension regime the model may be augmented by a tension cut-off criterion.This basic formu?lation is refined in AppendixII by a five parameter model with curved meridians which provides a close fit of test data also in the high compression regime.

Subsequently,a material model is constructed based on an elastic perfectly plastic formu?lation which is augmented by a brittle failure condition in the tensile regime.In this context equivalent constitutive constraint conditions are developed,based on the"normality"principle, which can be readily applied to the finite element analysis via the concept of initial loads.

In the past considerable experimental evidence has been gathered which could be used for the construction of a triaxial failure envelope of concrete.However,most of the data were ob-tained from tests with proportional loading and uniform stress or strain conditions which were distorted by unknown boundary layer effects.For the ultimate load analysis via finite elements these two assumptions are clearly invalid.The non-linearity is responsible for local unloading even if the structure is subjected to monotonically increasing stresses.Moreover,the action of a curved thick-walled structure is control led by non-uniform stress distributions,even if global bending effects and local stress concentrations are neglected for the time being.However,for obvious reasons it is customary to assume that test results from uniform stress-or strain experiments can be used to predict the failure behaviour of structural components subjected to non-uniform stress or strain conditions. One should be aware that this fundamental hypothesis has little justification,except that it is at present the only realistic approach for construct ing a phenomenological constitutive law.The actual mechanism of crack initiation and crack propagation could in fact differ fundamental ly between uniform and non-uniform stress distributions.

Considerable test data has accumulated on the multiaxial failure behaviour of mortar and concrete specimens subjected to short term loads.The experimental results can be classified into tests in which either two or three stress components are varied independently.To the first category belong the classical triaxial compression tests on cylindrical specimens(triaxial cell experiments) [5],[6],[7],[8],[9]and the biaxial tension-compression tests on hollow cylinders[lO],

[l1J In addition,there is the class of biaxial compression and tension-compression tests on slabs [12]/D3L t14L L15L L16l E17"L t18L[191-The second category contains experi?ments in which cubic specimens are subjected to arbitrary load combinations[20J,[21J Some of these types of tests are present ly still being processed[22],[23],[24J

So far few attempts have been made to utilize this experimental evidence for construct ing

a mathematical model of the triaxial failure behaviour of concrete.A comprehensive study of this problem was undertaken in[25],for which similar conclusions were reached in[26J,[27].

All three modeis fall into the class of pyramidal failure envelopes which have been examined extensive ly within the context of brittle material modeis as general izations of the Mohr-Coulomb criterion[28].In the same publication different modifications of the Griffith criterion are discussed,which have also been applied in[20]to model the failue surface of cubic mortar specimens in the tension-compression regime.

None of these previous studies on failure envelopes was directed towards the non-linear analysis of concrete structures.To this end a number of rather simple material formulations were reviewed in[29],[30],[31]and applied to the ultimate load analysis of different concrete structures.

TRIAXIAL FAILURE SURFACE

In the following a mathematical model is developed for the triaxial failure surface of con?crete type materials.Assuming isotropic behaviour the initial failure envelope is fully described

in the principal stress space.

Figure1shows the triaxial envelope of concrete type materials.The failure surface is basically a cone with curved meridians and a non-circular base section.The limited tension capacity is responsible for the tetrahedral shape in the tensile regime,while in compression a cylindrical form is ultimate ly reached.

For the mathematical model only a sextant of the principal stress space has to be considered, if the stress components are ordered according to S,>Ct>Gs The surface is conveniently represented by hydrostatic and deviatoric sections where the first one forms a meridianal plane which contains the equisectrix S.?6,.?Gh as an axis of revolution The deviatoric section lies in a plane normal to the equisectrix,the deviatoric trace being described by the polar coordinates

r,?see Fig. 2.

Basically,there are four aspects to the mathematical model of the failure surface:

1Close fit of experimental data in the operating r?nge.

2.Simple identification of model parameters from Standard test data.

3.Smoothness-continuous surface with continuously varying tangent planes.

4.Convexity-monotonically curved surface without inflection points.

Close approximation of concrete data is reached if the failure surface depends on the hydrostatic as well as the deviatoric state,whereby the latter should distinguish different strength values according to the direction of deviatoric stress.Therefore,the failure envelope must be basically a conical surface with curved meridians and a non-circular base section.In addition,

in the tensile regime the failure suface could be augmented by a tension cut-off criterion in the form of a pyramid with triangul?r section in the deviatoric plane.

Simple identification means that the mathematical model of the failure surface is defined

by a very small number of parameters which can be determined from Standard test data, e.g. uniaxial tension,uniaxial compression,biaxial compression tests,etc.The description of the failure surface should also encompass simple failure envelopes for specific model parameters.In other words,the cylindrical von Mises and the conical Drucker-Prager model should be special cases of the sophisticated failure formula tion.

Continuity is an important property for two reasons:From a computational point of view,

it is very convenient if a single description of the failure surface is valid within the stress space under consideration.From the theoretical point of view the proposed failure surface should have

a unique gradient for defining the direction of the inelastic deformations according to the

1normolity principle1.The actual nature of concrete failure mechanisms also supports the concept

of a gradual change of strength for small variations in loading.

Geometrical ly,the smoothness condition implies that the failure surface is continuous and has continuous derivatives.Therefore,the deviatoric trace of the failure surface must pass through r,and ru with the tangents4:,and tr at9-O*and0-CO°,see Fig. 2.Recall that

for Isotropie conditions only a sextant of the stress space has to be considered,O^O*60*.

Convexity is an important property since it assures stable matenal behaviour according to the postulate of Drucker[32],if the"normolity"principle determi es the direction of inelastic deformations.Stability infers positive dissipation of inelastic work during a loading cycle according to the coneepts of thermodynamics Figure3indicates that convexity of the overall deviatoric trace can be assured only if there are no inflection points end if the position vector satisfies the basic convexity condition

JL>J_where r;r(0.:*,i2o",z4o#)

Ti.*r(?*£3,iSo^soo)W Continuity infers compatibility of the position vectors and the slopes et0?O*and0|GOD. Consequently,there are at least four conditions for curve-fitting the deviatoric trace within

O**0*GOt In addition,the convexity condition implies that the curve should have no inflection points in this interval,thus the approximation can not be based on trigonometric functions[30]or Hermitian Interpolation.If the curve should also degenerate to a circle for r,-r^then an elliptic approximation has to be used for the functional Variation of the deviatoric trace.The ellipsoidal surface assures smoothness and convexity for all position vectors r satisfy ing

|rl4r

The geometric construction of the ellipse is shown in Fig.4,the details of the derivation are given in the Appendix I.The half axes of the ellipse a,b are defined in terms of the position vectors

Ert-4.r,(3)

a.r,1'-Sr.ty*Lr%

|

4.r,-Brt

The elliptic trace is expressed in terms of the polar coordinates r,B by

(r>-r.*)cos9*rt(ir.-r?)&(tf-tf)o?9?Sif-Ar.rj(4a) rf8x1ft,

with the angle of similarity9

^,^gt"2-g3>(4b) a

In the following the deviatoric trace is used as base section of a conical failure surface with the equisectrix as axis of revolution.A linear Variation with hydrostatic stress generates a cone with straight line meridians.In this case the failure surface is defined in principal stress space by a homogeneous expansion in the"average11stress components$>??:?.and the angle of similarity9

IdW^MJ.i^^J-i(5)

The average stress components6?,t?.represent the mean distribution of normal and shear stresses on an infinitesimal spherical surface.These values are normolized in the failure condition eq.(5)by the uniaxial compressive strength f^The stress components are defined in terms of principal stresses by

(6)

^-jL[(?.-*£-(*-*£>+t*?-**]*

These scalar representations of the state of stress at a point are related to the stress components on the"octahedral"plane60^o by

**s*o

(7a)

**?ff t0

The average stress components also correspond to the first principal stress invariant I,and the second deviatoric stress invariant I%according to

**-T*.

(7b)

?.-nfi^-RW?^

For material failure,-f(>)*0the following constraint condition must hold between the average normal stress and the average shear stress

t-rt^D-Ht]

i?.1(8)

The free parameters of the failure surface model fc H and f?.are identified below from typical concrete test data,such as the uniaxial tension test?f t the uniaxial compression test

f4a and the biaxial compression test^Introducing the strength ratios ocft,?c0

*z*ft/fco(9) the three tests are characterized by

6.

TEST Wf?,?/??.e

r.

*,-ft+--(¥->

6??feo

3K CO***x

ei*^"£fc"*??R-O*n

(10)

Substituting these strength values into the failure condition eq.8,the model parameters

are readily obtained

n

<*o Af?

*?-**

?Tu**

£?r+?*

*o?tjt

*????<*.-?z

(11)

The apex of the conical surface lies on the equisectrix at

*??*

The opening angle

and

tan

?+0-GO°

(12)

(13) The proposed three parameter model is illustrated in Fig.5for the strength ratios0(O'

and42*o.i The hydrostatic and deviatoric sections indicate the convexity and smoothness failure envelope.The proposed failure surface degenerates to the Drucker-Prager model of a circular cone if

In this case the conical failure surface is described by the two parameters2and r0

±_**^-^-1i.i of the

(14)

(15)

The single parameter von Mises model is obtained/if in addition

7.

2.-t>oo

(16)

[21].In this case the Drucker-Prager cone degenerates into a circular cylinder whose radius is defined by

r.fo (17)

with the strength ratios

**m **"|(18)

Figure 6shows a comparison between the failure surface and experimental data reported in

Close agreement can be observed in the low pressure regime for the strength ratios *oc'-?and *i?o.i?In the high compression regime there is considerable disagreement mainly along the compressive branch.Therefore,the three parameter model is refined in the Appendix II by two additional parameters,extend ing the r?nge of application to the high compression regime.This five parameter model establishes a failure surface with curved meridians in which the generators are approximated by second order parabolas along 0s O*and 0*Go with a common apex at the equisectrix,see also Fig.11

Figure 7shows the biaxial failure envelope of the three parameter model for three different

strength ratios otu*l&*^?o-U &u~)o,**.*o.o%and *u-l-&j **-o.is A comparison with test data from [18]^2l]indicates that the shear strength is overestimated consi-derably because of the acute intersection with the biaxial stress plane.However,if we consider the dominant influence of the post-failure behaviour on the structural response [30J,there is little reason for further refinements of the initial failure surface model.3.CONSTITUTIVE MODEL

In the following the previous model of the failure envelope is utilized for the development

of an elastic perfectly plastic material formula tion in compression.The constitutive model is sub?sequently augmented by a tension cut-off criterion to account for cracking in the tension regime.In both cases it is assumed that the normo lity principle determines the direction of the inelastic deformation rates for ductile as well as brittle post failure behaviour.

3.1Elastic Plastic Formulation

Inviscid plasticity is the classical approach for describing inelastic behaviour via incremen-

tal stress-strain relations.The constitutive model is based on two fundamental assumptions,an appropriate description of the material failure envelope and the definition of inelastic deformation rates e.g.via the normo lity principle.

a.Yield Condition

The yield surface serves two objectives,it distinguishes linear from non-linear and

elastic from inelastic deformations.The failure envelope is defined by a scalar function of stress,$(J5?o indicating plastic flow if the stress path intersects the yield surface.For concrete type of materials the yield condition can be approximated by the three parameter model shown in Fig.5or more accurately by the five parameter model developed in the Appendix II.

b.Flow Rule

For perfectly plastic behaviour the yield surface does not change its configuration

during plastic flow,hence the stress path describes a trajectory on the initial yield surface,while

the inelastic strains increase continuously.In this case the inelastic deformations do not contri-bute to the elastic strain energy,thus the inner product of plastic strain and elastic stress

rates must be zero

n**-°

09)-

In other words,the plastic strain rate must be perpendicular to the yield surface

V^(2°) where the normal n is the unit gradient vector of the yield surface

9j/9*(21)

m

Explicit expressions of2f/d9are developed in Appendix III for different yield surfaces.

The normal defines the direction of the plastic strain rate,the length of which determines the loading parameter a The normality condition follows from Drucker's stability postulate which assures non-negative work dissipation during a loading cycle,also infernng convexity of the yield surface.For perfectly plastic behaviour the material stability is"indifferent"in the small, corresponding to the"neutral"loading condition for which initial yield and subsequent flow is governed by

*?>-0and fC*>-o(22) The consistency condition implies that

?(?>-Tt*"°(23) This Statement is clearly equivalent to the normality principle stated in eq.(19).

c.Incremental Stress-Strain Relations

In the following an elastic perfectly plastic consitutive model is derived using the previous Statements and the kinematic decomposition of the total deformations

y-C+Ylf,and TF"*+V(24) The linear elastic material behaviour is given by the rate formulation of generalized Hooke's law

*Ei-£(i-^(25) Substituting the stress rate into the consistency condition,eq.(23),we obtain

£?-n4E(JHW(26) This expression yields for the undetermined loading parameter a

htE(T-n\)-o(27)

and hereby

±

i'WTT"E*

(28) x The dot indicates the rate of change.

9. The plastic strain rate follows from eq.(20)

(29) The incremental stress-strain relations are obtained by Substitut ing y*v into the expression of

the stress rate,eq.(25)

Note the linear relationship between the stress and deformation rates in eq.(30)

&F Y od The tangential material law Tr is defined by

For perfectly plastic behaviour,T depends only on the elastic properties and the instantaneous stress state via II The second term of eq.(32)represents the degradation of the material Constitution due to plastic flow.

3.2Elastic Cracking Formulation

Small tensile strength is the predominant feature of concrete-type materials.In the following a simple constitutive model is developed for perfectly brittle behaviour in the tensile regime.In analogy to the elastic plastic formulation the elastic cracking model is based on two fundamental assumptions,a tension cut-off criterion for the prediction of cracking and an appro-priate description of inelastic deformation rates e.g.via the normality principle.

a.Crack Condition

The tension cut-off criterion distinguishes elastic behaviour from brittle fracture,i.e. Separation of the material constituents due to excess tension.To this end it is assumed that the scale of Observation justifies a continuum approach.For concrete-type materials cracking may be predicted by the single one parameter model based on the major principal stress

^t**)<5-.-^e wifh*>i*^i>^i(33) where C\corresponds in general to the uniaxial tensile strength ft The failure surface is shown in Fig.8,which indicates the pyramidal shape and the triangul?r base section in the deviatoric plane.Alternative ly,the tension cut-off condition could also be expressed in terms of the three parameter model of the previous section or the five parameter model developed in

the Appendix II.

b.Fracture Rule

For ductile behaviour in the post failure r?nge the inelastic deformation rate due to cracking is derived exactly along the formulation of an elastic plastic solid.The ductile

post failure behaviour forms an upper bound of the actual soften ing behaviour[30J,which may develop in concrete components due to reinforcements,dowel action and aggregate interlock.

In the following/the case of perfectly brittle post-failure behaviour is discussed,since it requires slight modifications of the previous constitutive model for an elastic perfectly plastic solid. In analogy to elasto-plasticity the inelastic deformations due to cracking tlc do not contribute to the elastic strain energy

t

YI.5-°/iü\

10.

This normality principle corresponds to the flow rule of plasticity stating that the inelastic strain rate due to cracking is perpendicular to the plane of fracture

T|c-nX(35) For the maximum stress tension cut-off criterion the normal vector f\is defined by the direction of the major principal stress;thus in the principal stress space

m ?f/???

(36)

n|9$/9?M^i

where£,is the unit vector

?,-[l,o,o,o,o.°i(37) For perfectly brittle behaviour the loading parameter X is determined from the sofrening condition

|C?}-0and£C?^*-*t(360 In this case the consistency condition infers that

|t**t(39)

c.Inelastic Strain Increments

In the following an expression is derived for the inelastic deformation rotes due to cracking.Substituting the stress rate expression eq.(25)into the consistency condition eq.(39)

&*-**(*-M w we obtain an expression for the undetermined loading parameter A

?*6(*-?.X)--?e.(") and hereby

*-?Fg-*,(*,*T+<)(?)

Note the equivalence to the elastic plastic formulation in eq.(28)except for the release of^

due to brittle softening.The resulting inelastic fracture strain rate follows from eq.(35)

(43)

The first portion of this expression can be used to construct incremental stress-strain rela-tions in analogy to the elastic plastic formulation,see eq.(30).This part would correspond

exactly to a ductile cracking model in which the major principal stress is kept constant at the

tensile strength S,^e The corresponding tangential material law would become transversely isotropic with zero stiffness along the major principal axis.Additional cracking in other directions can be considered according ly.

The second portion of eq.(43)represents the sudden stress release due to brittle fracture,*\, which is projeeted onto the structural level by a single initial load step in the analysis.

11.

3.3Transition Problem

The previous rate formulation for elastic plastic and brittle behaviour is valid in a diffe?rential sense only.In a numericaj environment clearly finite increments prevail during numerical Integration of the rate equations[33J,[34J.This approximation problem is magnified by the sudden transition from elastic to plastic or elastic to brittle behaviour.In the latter case the dis-continuity of the process is further increased due to the immediate stress release if the failure condition has been reached.Clearly,the success of the numerical technique depends prim?rily on the proper treatment of the transition problem for finite increments.

Consider the most general case of a finite load step shown in Fig.9.At the outset we assume that the stress path has reached point A for which^C?*V°indicates an elastic state. Due to the finite load increment a fully elastic stress path would reach point B penetrating the yield surface at C for proportional loading.The condition$C^O>°violates Tne constitutive constraint condition

^?^°(45) and suggests two strategies for numerical implementation.

a.^P^^^J.^6.^^*J£n Method

Assuming proportional loading the load increment is subdivided into two parts,an elastic portion for the path A-C and an inelastic portion governing the behaviour after the failure surface has been reached at C.The evaluation of the penetration point C reduces to the geometric problem of intersecting a surface with a line,a task which is non-linear for curved failure envelopes.The computation of the stress trajectory on the yield surface involves the numerical integration of

5^1F if(46)

since the tangential material law varies with the current state of stress.In addition we have to assume that the inelastic strains increase proportional ly from ycto

b.Normal Penetration Method

In this scheme we assume that the elastic path reaches the yield surface at the inter-section with the normal ns The evaluation of the foot point D reduces to the geometric-prob?lem of minimizing the distance between B and the failure envelope,see Fig.9

The extremum condition is used to determine the components of C^by solving the linear system of equations.

subjected to the constraint condition

ft?*)*?(49)

Note that the loading parameter X is proportional to the distance d,thus the length of the inelastic deformation increment is determined from

12.

where the normal is defined by the stress at point D

**/???

(51)

In principle both methods are feasible,yielding stress values which satisfy the constitutive constraint condition.Both formulations distort the actual path of evolution,an effect which is reduced primarily by using smaller load increments.From the stand point of Computer application the normal penetration approach is more efficient than the proportional penetration method,since the Integration of eq.(46)is avoided.

4.CONCLUDING REMARKS

Two topics were discussed,an appropriate model for concrete failure under triaxial con?ditions and the ensuing constitutive law for elastic perfectly plastic behaviour in compression and elastic perfectly brittle behaviour in tension.

First a three parameter failure surface was developed providing a close fit of concrete data in the low compression regime.The mathematical model establishes a convex failure envelope which is continuous with continuous first derivatives.For application in the high compression regime the formulation was extended to a five parameter model introducing curved meridians at the hydrostatic sections0*o°and9?Go*

Subsequently,those failure concepts were applied to construct a constitutive model for elastic perfectly plastic behaviour in the compression regime.An analogous formulation was developed for the elastic perfectly brittle behaviour in tension using a strain soften ing plasticity formulation.Both constitutive modeis were based on appropriate failure descriptions and the normality principle determining the direction of the inelastic deformation rates.For numerical implementation the transition problem was studied in the light of finite load increments.Two penetration methods were explored for decomposing the total deformation rate into elastic and inelastic components.The normal penetration scheme offers computationaladvantages,in which case the transition point is determined by the intersection of the normal_with the yield surface.

Some of the aspects above have been examined numerical ly in[30].The unified consti?tutive model is presently incorporated in the finite element Software system SBB which is developed at the ISD for the analysis of prestressed concrete reactor vessels[35J.

At the present state there is little need for further refinements of the failure surface model.

Future research should be rather directed towards the development of more sophisticated theories to trace the actual fracture mechanism under non-uniform stress conditions.Clearly,the two extreme concepts of brittle fracture and ductile yielding provide nothing but lower and upper bounds of the real behaviour in the post-failure regime and lead to a wide Variation of the structural response

[30],The failure condition$(%Vo alone is insufficient,since the mechanism of crack propa?

gation depends strong ly on the distribution of stresses.

In addition,the normality principle should be revised since considerable dilatancy effects are introduced by the proposed model which were observed experimental ly only in the vicinity of failure[24].To this end the inelastic Volumetrie response could be control led by an elliptical cap of the failure surface under hydrostatic compression[36J

ACKNOWLEDGEMENTS

The authors would like to thank Professor K.S.Pister for his stimulating criticism of consti?tutive modelling an identification.The support of G.Faust is also gratefully acknowledged.

This study was supported by the Bundesministerium für Forschung und Technologie, F?rderungsvorhaben SBB4.

13.

APPENDICES

A I.Elliptic Trace of Failure Surface.

A II.Five Parameter Model with Curved Meridians.

AMI.Gradients of Different Failure Models.

14.

AI.ELLIPTIC TRACE OF FAILURE SURFACE

In the following,the curve fitting of an ellipse is briefly summarized in the devia?toric section of the failure surface.The derivation involves considerable algebra,thus only

the very essential steps are indicated.

Fig.10shows the geometric relationships of the ellipse with x.y as principal axes.

The continuity conditions of Fig.2imply that the minor y-axis must coineide with the

position vector r;and the ellipse must pass through the point?<_(**,*}with the normal

n(T?/2-,'/z.^The half axes a.t>are determined below in terms of the position vectors

r,,rt The Standard form of an ellipse is

Sampling this equation at the point Tx(m,**)yields

Partial differentiation of eq.(1.1)establishes for the direction cosines

"*'-~**

with^(^^(1.3)

*Jl£--L

Sampling the normal at the point T^(m,n)yields for the two components

"aT^T(1.4)

±IL-TL-L.

These two relations form a condition for a.W

ftt-inr1-*0.5)

The coordinates of the point^.are readily expressed by the position vectors r,;rt and

the half axis t>

(1.6)

n-t>-(/-t O

The half axes a,b are determined if we Substitute eqs.(1.6)and(1.5)into eq(1.2)

*"

Sv,.-4?,(1.7)

zV-gr.ru+Z-?^

15. In the following the cartesian description of the ellipse is transformed into the polar coordi-nates r,£with the centroid at O.To this end we recall the polar equation of an ellipse where the pole is at the centre O*see Fig.10

*-SLü.(1.8) The transformation of the$/^-coordinates into*',^follows from trigonometric relations

and properties of the triangle<~-,c',~P

4-n-?--rrV^(i-9) and*/

v.-V^co^G(!-10)

+C?.-^)L-2-v C

Using the trigonometric relation for sums of angles,we obtain from eq.(i.S

re^&-Cv>-^)

n in C*/*^"(1.11)

Substitution into eq.(1.8)yields for the position vector<>

U-^1(112) ^--OL1+2g-\J tOS.t-

Equating eq.(1.10)with eq.(1.12)establishes the ellipse in terms of the polar coordinates o^Qy Q*?

r,?where

Substitution of the half axes a^into eq.(1.13)yields the final form of K?^in terms of the parameters r,

t rc

2,^(jN^Vosg**tU?,-*C)|A(^lf^coste?^rNiMi.(ij4) x

^

Note that the ellipse degenerates into a circle for Y\VL or equivalently a b.

At the meridians?*o and t>=G?j the position vector r(0)turns into r.and r?.

16.

All.FIVE PARAMETER MODEL WITH CURVED MERIDIANS

In the following the three parameter model of Section2is refined by adding two additional degrees of freedom for describing curved meridians.In this way,the failure

surface model can be applied to low as well as high compression regimes.

In contrast to eq.(5)the linear relationship of the average stress components is replaced by the more general failure condition

4(S)=^b^t^O^-^-^-I(2.,)

In this case the constraint condition of material failure,3fC?)=0,infers that the average shear stress is restricted to

^-rt?.,^(2.2)

Note that tr?is now a Single function of5n f0instead of being the product of two dis-joint functions in5*?and0see eq.(o).As consequence,the proposed five parameter model removes the affinity of deviatoric sections which was built into the previous three parameter model.

The failure surface model is constructed by approximating the meridians at S=0°and0=60°by two second order parabolas which are connected by an ellipsoidal surface, the trace of which is shown in Fig.4*The surface is defined by an extension of eq.(4a)to incorporate the dependence on the average normal stress^

uact d\e.fvC^-r^^co^G^ftC^^-v^^4C?^Y^Vol?+Sv^-4M^,

i0~

The position vectors r,,rL describe the meridians at?=0and060°as functions of the average stress*r?

The six degrees of freedom aoja^at^*,!?;,^are identified below from experimental data.To this end,the uniaxial tension test4ft#the uniaxial compression testet?,and the biaxial compression test{dare used in addition to two strength values in the high compression regime

4*1--5S.y*~(2.5)

Moreover,the two parabolas have to pass through a common apex6V?.at the equisectrix, thus imposing an additional constraint condition

fs-r.fOi-K.fOv^O(2-6) 4*ü-?r.C^-V.Q-Vo

17. The stress states of the five tests are summarized below together with the constraint con?dition of the common apex.

TEST6*/fcu Xa./jcü0rO5*.^

*.*?t i**ü??0°',(**")

**-*l*\<*>-§*0iS??ca v\(s<^

-l S'ou r,(^

&\=yco\

2>

15G?'rYtoS

-l$?-Go'*(*>>

y o Q>c Vc(*^

(2.7)

For0=0°and0=60°the transcendental expression of eq.(2.3)reduces to ft(5o^t Vt($i) Therefore,only test results along these meridians are used for the identification of the six parameters a0,a(/at/^t?,,bL which involves the Solution of a linear problem

Substituting the first three strength values of eq.(2.7)into the failure condition eq.(2.2) establishes the parameters ou,a,;aL at the"tensile"meridian0=0°

ao*"^*o OV,--^6VoL GU+\%<*o

Ol"

The apex of the failure surface follows from the condition tr,(?a)*O hence

ix-]a,c-ktxoCXi

2dx (2.8) (2.9)

Substituting the second three strength values of eq.(2.7)into the failure condition eq(2.2) establishes the parameters Lc,t>4,t>t at the"compressive"meridian$=60°

18.

%"V

^a-i)-fe(v-P(2-10) The proposed five parameter model features a smooth surface since the continuity conditions

of Section2are incorporated in the formulation of the position vector,eq.(2.3).The sur?

face is also convex if the model parameters satisfy the following constraints,

o Qnd ft.^o aLto

and in addition

r\Ov>

>T"(2.12) The five parameter model is illustrated in Fig.11where it is compared with experimental data reported in[21J Close agree ment can be observed for hydrostatic as well as for deviatoric

sections.In the low compression regime the surface strong ly resembles a tetrahedron,the planes of which bulge with increasing hydrostatic compression approximating asymptotically a circular cone.

In summary,the proposed five parameter model reproduces the principal features of the triaxial failure surface of concrete:It consists of a conical shape with curved meridians and non-

circular base sections as well as non-affine sections in the deviatoric plane.The five para?

meter model is readily adjusted to fit a variety of simpler failure conditions:

The von Mises model is obtained if

et?,-^o and a^k'-at^k*0 The Drucker-Prager model is obtained if

a..-lo?anc!

Cl,?loi

The three parameter model of Section2is obtained if (2.13) (2.14)

-£-TT and a^-o(2]5) A corresponding four parameter model is obtained if

^c._£l_£l Affinity Condition(2.16)

Keeping the objective of the failure model in mind local deviations from test results appear rather mean ing less.The main goal of the analysis is a sufficient level of confidence with regard to serviceability and limit load.The fluctuations of experimental measure-

ments make it desirable that the failure model provides primarily conservative estimates of the actual strength values.

19.

Alll.GRADIENTS OF DIFFERENT FAILURE MODELS

In Section3the normality principle is used to establish the direction of the inelastic deformation rate.To this end explicit expressions are developed below for the gradient directions of different classes of failure conditions.

a.Tension Cut-off Model

The tension cut-off condition of eq.(33)is the simplest form of a fracture criterion for

brittle materials.It predicts failure if the major principal stress reaches a limiting value f(?/>-5,-^(3.1)

Normally6t corresponds to the uniaxial tensile strength,-ft In the case of the maximum stress criterion the gradient direction is collinear with the unit vector C,

&|£*h e i'-0'°-°.°'°i(3.2)

b.Von Mises Model

The von Mises criterion is applied extensively as yield condition for metals.It predicts plastic flow if the average shear stress ta eq.(6),reaches a limiting value Sy

-fCtaV tra-

Normally G>y corresponds to the uniaxial strength5Y-ra|cu eq.17,or an equivalent shear strength value The gradient is in this case col linear with the direction of the devia?toric stress

££üi^J_

dSt2t^3*?ot,ck'o(3.4) which is defined by

6**i1*?.-?*-*.?,^i-*?-*.,??-?.-?r?,o,o,o^(3>5)

c.Drucker-Prager Model

The Drucker-Prager criterion is often applied as yield condition for rocks and soils.It pre?dicts failure if the average stresses5?,T-a,satisfy the constraint condition eq.(15)

tc?..*?v-f£+£^-'(3-6)

The gradient has in this case hydrostatic as well as deviatoric components.From the chainrule of differentiation we obtain

The hydrostatic contribution follows from the first term

&3fe-TS,T?i(3-8) with

钢筋混凝土结构习题及答案

钢筋混凝土结构习题及答案 一、填空题 1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生的 超过了混凝土的极限抗拉强度而开裂的。 2、随着纵向配筋率的提高,其斜截面承载力 。 3、弯起筋应同时满足 、 、 ,当设置弯起筋仅用于充当支座负弯矩时,弯起筋应同时满足 、 ,当允许弯起的跨中纵筋不足以承担支座负弯矩时,应增设支座负直筋。 4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A 、I ;B 、I a ;C 、II ;D 、II a ;E 、III ;F 、III a 。①抗裂度计算以 阶段为依据;②使用阶段裂缝宽度和挠度计 算以 阶段为依据;③承载能力计算以 阶段为依据。 5、界限相对受压区高度b ζ需要根据 等假定求出。 6、钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在 弯矩范围内,假定其刚度为常数,并按 截面处的刚度进行计算。 7、结构构件正常使用极限状态的要求主要是指在各种作用下 和 不超过规定的限值。 8、受弯构件的正截面破坏发生在梁的 ,受弯构件的斜截面破坏发生在梁 的 ,受弯构件内配置足够的受力纵筋是为了防止梁发生 破坏,配置足够的腹筋是为了防止梁发生 破坏。 9、当梁上作用的剪力满足:V ≤ 时,可不必计算抗剪腹筋用量,直接按构造配置箍筋满足max min ,S S d d ≤≥;当梁上作用的剪力满足:V ≤ 时,仍可不必计算 抗剪腹筋用量,除满足max min ,S S d d ≤≥以外,还应满足最小配箍率的要求;当梁上作用的 剪力满足:V ≥ 时,则必须计算抗剪腹筋用量。 10、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;

2016年秋《钢筋混凝土结构》期末考试复习题

机密★启用前 大连理工大学网络教育学院 2016年秋《钢筋混凝土结构》 期末考试复习题 ☆注意事项:本复习题满分共:400分。 一、单项选择题 1、混凝土的极限压应变随混凝土强度等级的提高而()。C A.增加B.不变 C.减小D.不确定 2、偏心受拉构件破坏时()。B A.远侧钢筋一定屈服B.近侧钢筋一定屈服 C.远侧、近侧钢筋都屈服D.无法判断 3、对适筋梁,当受拉钢筋刚达到屈服时,其状态的说法错误的是()。A A.达到极限承载力 B.εc<εcu=0.0033 C.εs=εy D.受拉区产生一定宽度的裂缝,并沿梁高延伸到一定高度 4、以下是预应力钢筋混凝土结构对混凝土的材料性能的要求,错误的是()。C A.强度高B.快硬早强 C.高水灰比,并选用弹性模量小的骨料D.收缩、徐变小 5、后张法预应力混凝土构件的预应力损失不包括()。C A.锚具变形和钢筋内缩引起的预应力损失 B.预应力筋与孔道壁之间的摩擦引起的预应力损失 C.混凝土加热养护时的温差预应力损失 D.预应力筋的松弛产生的预应力损失 6、钢筋与混凝土能够共同工作的基础,以下说法不正确的是()。C A.混凝土硬化后与钢筋之间有良好的粘结力 B.钢筋与混凝土的线膨胀系数十分接近 C.钢筋与混凝土的强度很接近 D.能够充分发挥混凝土抗压、钢筋抗拉的特点 7、梁的正截面破坏形式有适筋梁破坏、超筋梁破坏、少筋梁破坏,它们的破坏性质属于()。D A.适筋梁、超筋梁属延性破坏,少筋梁属脆性破坏

B.超筋梁、少筋梁属延性破坏,适筋梁属脆性破坏 C.少筋梁、适筋梁属延性破坏,超筋梁属脆性破坏 D.超筋梁、少筋梁属脆性破坏,适筋梁属延性破坏 8、关于受扭构件中的抗扭纵筋说法不正确的是()。A A.在截面的四角可以设抗扭纵筋也可以不设抗扭纵筋 B.应尽可能均匀地沿周边对称布置 C.在截面的四角必须设抗扭纵筋 D.抗扭纵筋间距不应大于200mm,也不应大于截面短边尺寸 9、关于预应力混凝土,以下说法错误的是()。D A.先张法适用于批量、工厂化生产的小型构件B.后张法采用锚具施加预应力 C.先张法的张拉控制应力一般要高于后张法D.预应力损失在构件使用过程中不再发生 10、在使用荷载作用下,钢筋混凝土轴心受拉构件平均裂缝宽度与()因素无关。D A.钢筋直径和表面形状B.有效配筋率 C.混凝土保护层厚度D.混凝土强度等级 11、《混凝土结构设计规范》规定混凝土强度等级按()确定。B A.轴心抗压强度标准值B.立方体抗压强度标准值 C.轴心抗压强度设计值D.立方体抗压强度设计值 12、受弯构件斜截面承载力计算中,验算截面的最小尺寸是为了防止发生()。B A.斜拉破坏B.斜压破坏 C.剪压破坏D.超筋破坏 13、对于钢筋混凝土构件,裂缝的出现和开展会使其()。A A.长期刚度B降低B.变形减小 C.承载力减小D.长期刚度B增加 14、以下关于混凝土的变形性能,说法不正确的是()。C A.混凝土强度越高,其应力-应变曲线下降段的坡度越陡 B.混凝土试件受到横向约束时,可以提高其延性 C.混凝土的切线模量就是其初始弹性模量 D.养护条件对混凝土的收缩有重要影响 15、以下不属于超过结构或构件承载能力极限状态的是()。D A.构件的截面因强度不足而发生破坏B.结构或构件丧失稳定性 C.结构转变为机动体系D.结构或构件产生过大的变形 16、下列有关混凝土的材料特性以及混凝土结构特点的说法中,错误的是()。C A.抗压强度高,而抗拉强度却很低 B.通常抗拉强度只有抗压强度的1/8~1/20 C.破坏时具有明显的延性特征 D.钢筋混凝土梁的承载力比素混凝土梁大大提高 17、下列哪一项不属于混凝土结构的缺点()。C

混凝土原理作业有答案

一、判断题 1、在材料破坏得情况下,小偏心受压构件纵向力承载力随弯矩增加而减少,相反,大偏心受压构件纵向力得承载力却随弯矩增加而增加。 A、错误 B、正确 正确答案:B 2、钢筋混凝土双筋梁不会出现超筋梁。 A、错误B、正确 正确答案:A 3、钢筋混凝土梁纵向受拉钢筋得“理论断点”就是其实际断点。 A、错误B、正确 正确答案:A 4、与矩形截面梁相比,T形截面梁既节省拉区混凝土,又减轻自重,所以,任何情况都比矩形截面好。 A、错误B、正确 正确答案:A 5、在其它条件相同得情况下,采用预应力可以显著提高构件破坏时得承载能力. A、错误B、正确 正确答案:A 6、荷载弯矩越大,钢筋混凝土梁越有可能发生脆性破坏。 A、错误 B、正确 正确答案:A 7、当温度变化时,因钢筋与混凝土得线膨胀系数不同会破坏二者得黏结。 A、错误 B、正确 正确答案:A 8、分批张拉得后张法预应力混凝土构件中,最后张拉批钢筋因混凝土弹性压缩引起得预应力损失最大。 A、错误 B、正确 正确答案:A 9、当纵向受拉钢筋弯起时,保证斜截面受弯承载力得构造措施就是:钢筋伸过其正截面中得理论断点至少0、5h0. A、错误 B、正确 正确答案:A 10、钢筋混凝土受弯构件得变形及裂缝宽度验算属于承载能力极限状态。 A、错误 B、正确 正确答案:A 二、单选题 1、极限状态法正截面抗弯强度计算所依据得应力阶段就是()。 A、弹性阶段I B、受拉区混凝土即将开裂阶段Ia C、带裂工作阶段II D、破坏阶段III 正确答案:D 2、大偏心受压构件破坏时,可能达不到其设计强度得就是()。 A、受拉钢筋应力

B、受压钢筋应力 C、受压区混凝土应力 D、受拉区混凝土应力 正确答案:B 3、减少摩擦引起得预应力损失得措施没有()。 A、二级升温 B、两端同时张拉 C、涂润滑油 D、采用超张拉 正确答案:A 4、后张法分批张拉预应力钢筋时,因混凝土弹性压缩引起得预应力损失最大得就是()。A、第一批张拉得预应力钢筋 B、第二批张拉得预应力钢筋 C、倒数第一批张拉得预应力钢筋 D、倒数第二批张拉得预应力钢筋 正确答案:A 5、下列关于钢筋混凝土大偏心受压构件正截面承载力(材料破坏)说法正确得就是()。 A、随着弯矩增加,抵抗纵向力得能力Nu增加 B、随着弯矩增加,抵抗纵向力得能力Nu减少 C、随着弯矩增加,抵抗纵向力得能力Nu不变 D、随着弯矩增加,抵抗纵向力得能力Nu可能增加,也可能家少 正确答案:A 6、防止钢筋混凝土受弯构件受剪中得斜压破坏得措施就是()。 A、保证纵向受拉钢筋得配筋率 B、B C、保证为适筋梁 D、保证最小截面尺寸 正确答案:D 7、钢筋混凝土轴心受压柱采用旋筋柱可明显提高其()。 A、强度承载力 B、刚度 C、稳定性 D、施工速度 正确答案:A 8、普通钢筋混凝土梁受拉区混凝土()。 A、不出现拉应力 B、不开裂 C、必须开裂但要限制其宽度 D、开裂且不限制其宽度 正确答案:C 9、部分预应力就是指这样得情况,即预应力度λ为()。 A、λ=0 B、λ=1 C、0<λ〈1

混凝土破坏准则1

混凝土破坏准则 三轴受力下的混凝土强度准则-------古典 1.混凝土破坏准则的定义:混凝土在空间坐标破坏曲面的规律。 2.混凝土破坏面一般可以用破坏面与偏平面相交的断面和破坏曲面的子午线来表现。 (偏平面是与静水压力轴垂直的平面,破坏曲面的子午线即静水压力轴和与破坏曲面成某一角度θ的一条线形成的平面) (b) (1)最大拉应力强度准则(rankine强度准则)古典模型 按照这个强度准则,混凝土材料中任一点的强度达到单轴抗拉强度ft时,混凝土即达到破坏。 σ1=ft,σ2=ft, σ3= ft. 将上面的条件代入三个主应力公式中得到: 当00≤θ≤600度,且有σ1≥σ2≥σ3时,破坏准则为σ1=ft.即: θ θ σ cos 3 2 3 cos 3 2 2 1 2 J I f J f t m t = - = - 可以得()0 3 3 2 , , 1 2 2 1 = - + =f I J J I t COS fθ θ 因为J I 2 12 , 3 = =ρ ξ所以0 3 cos 2 ) , , (= - + =f t fξ θ ρ θ ξ ρ

在pi 平面上有:0=ξ,所以03 cos 2=-f t θρ,故θρcos 23f t = (2)Tresca 强度准则 Tresca 提出当混凝土材料中一点应力到达最大剪应力的临界值K 时,混凝土材料即达到极限强度: K =---)2 1 ,21,21max( 1 33221σσσσσσ 他的强度准则中的破坏面与静水压力 I 1 ξ的大小没有关系,子午线是与ξ平行的平行 线,在偏平面是为一正六边形,破坏面在空间是与静水压力轴平行的正六边形凌柱体。 (3)von Mises 强度理论 他提出的理论与三个剪应力都有关 取: [] 2)(2)(2)(21 13322 1*-+*-+*-σσσσσσ=K 的形式 用应力不变量来表示为:03)( 22 =-=K f J J 注:von 的强度准则的破坏面在偏平面是为圆形,较tresca 强度准则的正六边形在有限元计算中处理棱角较简单,所以其在有限元中应有很广,但其强度与ξ没有关系,拉压破坏强度相等与混凝土的性能不符。 莫尔-库仑强度理论

钢筋混凝土受弯构件正截面的破坏机理

钢筋混凝土受弯构件正截面的破坏机理截面形式:梁、板常用矩形,T形,Ⅰ形,槽形等。 下面以单筋矩形截面梁为例进行分析,其余截面形状梁可参考单筋矩形截面梁。单筋截面梁又分为适筋梁,超筋梁,少筋梁。 适筋梁正截面受弯承载力的实验: 一、实验装置 二、实验梁

三、弯矩-曲率图 适筋梁正截面受弯的全过程划分为三个阶段——未裂阶段、裂缝阶段、破坏阶段。 第一阶段:从加载开始至混凝土开裂瞬间,也叫整体工作阶段。 荷载很小时,弯矩很小,各纤维应变也小,混凝土基本处于弹性阶段,截面变形符合平截面假设。(垂直 于杆件轴线的各平截面(即杆的横截面)在杆件受拉伸、压缩或纯弯曲而变形后仍然为平面,并且同变形 后的杆件轴线垂直。根据这一假设,若杆件受拉伸或压缩,则各横截面只作平行移动,而且每个横截面的 移动可由一个移动量确定;若杆件受纯弯曲,则各横截面只作转动,而且每个横截面的转动可由两个转角确定。利用杆件微段的平衡条件和应力-应变关系,即可求出上述移动量和转角,进而可求出杆内的应变和应力。如果杆上不仅有力矩,而且还有剪力,则横截面在变形后不再为平面。但对于细长杆,剪力引起的变形远 小于弯曲变形,平截面假设近似可用。)荷载-挠度曲线(弯矩-曲率曲线)基本接近直线。拉力由钢筋和混凝土共同承担,变形相同,钢筋应力很小。受拉受压区混凝土均处于弹性工作阶段,应力、应变分布均为三角形。继续加载,弯矩增大,应变也随之增大。混凝土受拉边缘出现塑性变形,受拉应力图呈曲线,中性轴上移。继续加载,受拉区边缘混凝土达到极限

拉应变,即将开裂。 第二阶段:从混凝土开裂到受拉钢筋应力达到屈服强度,又称带裂工作阶段。 在弯矩作用下受拉区混凝土开裂,退出工作,开裂前混凝土承担的拉力转移到钢筋上,钢筋承担的应力突增,中性轴大幅度上移。随着荷载不断增大,裂缝越来越到,混凝土逐步退出工作,截面抗弯刚度降低,弯矩-曲率曲线有明显的转折。 荷载继续增加,钢筋拉应力、挠度变形不断增大,裂缝宽度也不断开展,受压区混凝土面积不断减小,应力和应变不断增加,受压区混凝土弹塑性特性表现得越来越显著,受压区应力图形逐渐呈曲线分布。当钢筋应力达到屈服强度时,梁的受力性能将发生质变。 正常工作的梁一般都处于第二阶段,该阶段的应力状态为正常使用阶段和裂缝宽度计算的依据。 第三阶段:从受拉筋屈服至受压区混凝土被压碎,又称为破坏阶段。

《混凝土结构原理》在线作业

一、单选题(共40道试题,共80分。) V 1.JGJ55—2000中的混凝土配合比计算,下列不正确的是() A.W/C计算公式适用于混凝土强度等级小于C50级的混凝土; B.W/C计算公式中水泥的强度为水泥28d抗压强度实测值; C.粗骨料和细骨料用量的确定可用重量法或体积法; D.其计算公式和有关参数表格中的数值均系以干燥状态骨料为基准。 正确答案:A满分:2分 2.混凝土配合比试验应采用个不同的水灰比,至少为() A.3 B.2 正确答案:A满分:2分 3.水泥混合砂浆标准养护相对湿度() A.50%-70% B.60%-80% 正确答案:B满分:2分 4.下面不是硬化后砂浆性能的是() A.砂浆强度; B.粘结力 C.耐久性; D.保水性 正确答案:D满分:2分 5.混凝土坍落度的试验中,下列不正确的是() A.坍落度底板应放置在坚实水平面上; B.把按要求取得的混凝土试样用小铲分二层均匀地装入筒内; C.每层用捣棒插捣25次; D.插捣应沿螺旋方向由外向中心进行。 正确答案:B满分:2分 6.关于高强混凝土,不正确的是() A.水泥用量不宜大于550kg/m3; B.水泥及矿物掺合料总量不应大于600kg/m3 C.强度等级为C50及其以上的混凝土; D.矿物掺合料包括膨胀剂 正确答案:C满分:2分 7.不属于《普通混凝土力学性能试验方法标准》GB/T50081-2002中试件制作方法的是() A.人工插捣捣实 B.振动台振实 C.插入式振捣棒振实 D.平板振动器 正确答案:D满分:2分 8.《普通混凝土力学性能试验方法标准》GB/T50081-2002中立方体抗压强度的试验步骤中,下列不正确的是()

钢筋和混凝土的力学性能.

《混凝土结构设计原理》习题集 第1章 钢筋和混凝土的力学性能 一、判断题 1~5错;对;对;错;对; 6~13错;对;对;错;对;对;对;对; 二、单选题 1~5 DABCC 6~10 BDA AC 11~14 BCAA 三 、填空题 1、答案:长期 时间 2、答案:摩擦力 机械咬合作用 3、答案:横向变形的约束条件 加荷速度 4、答案:越低 较差 5、答案:抗压 变形 四、简答题 1.答: 有物理屈服点的钢筋,称为软钢,如热轧钢筋和冷拉钢筋;无物理屈服点的钢筋,称为硬钢,如钢丝、钢绞线及热处理钢筋。 软钢的应力应变曲线如图2-1所示,曲线可分为四个阶段:弹性阶段、屈服阶段、强化阶段和破坏阶段。 有明显流幅的钢筋有两个强度指标:一是屈服强度,这是钢筋混凝土构件设计时钢筋强度取值的依据,因为钢筋屈服后产生了较大的塑性变形,这将使构件变形和裂缝宽度大大增加以致无法使用,所以在设计中采用屈服强度y f 作为钢筋的强度极限。另一个强度指标是钢筋极限强度u f ,一般用作钢筋的实际破坏强度。 图2-1 软钢应力应变曲线 硬钢拉伸时的典型应力应变曲线如图2-2。钢筋应力达到比例极限点之前,应力应变按直线变化,钢筋具有明显的弹性性质,超过比例极限点以后,钢筋表现出越来越明显的塑性性质,但应力应变均持续增长,应力应变曲线上没有明显的屈服点。到达极限抗拉强度b 点后,同样由于钢筋的颈缩现象出现下降段,至钢筋被拉断。

设计中极限抗拉强度不能作为钢筋强度取值的依据,一般取残余应变为0.2%所对应的应力σ0.2作为无明显流幅钢筋的强度限值,通常称为条件屈服强度。对于高强钢丝,条件屈服强度相当于极限抗拉强度0.85倍。对于热处理钢筋,则为0.9倍。为了简化运算,《混凝土结构设计规范》统一取σ0.2=0.85σb ,其中σb 为无明显流幅钢筋的极限抗拉强度。 图2-2硬钢拉伸试验的应力应变曲线 2.答: 目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。 热轧钢筋分为热轧光面钢筋HPB235、热轧带肋钢筋HRB335、HRB400、余热处理钢筋RRB400(K 20MnSi ,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。 3.答: 钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。 4.答: 混凝土标准立方体的抗压强度,我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)规定:边长为150mm 的标准立方体试件在标准条件(温度20±3℃,相对温度≥90%)下养护28天后,以标准试验方法(中心加载,加载速度为0.3~1.0N/mm 2/s),试件上、下表面不涂润滑剂,连续加载直至试件破坏,测得混凝土抗压强度为混凝土标准立方体的抗压强度f ck ,单位N/mm 2。 A F f ck f ck ——混凝土立方体试件抗压强度; F ——试件破坏荷载; A ——试件承压面积。 5. 答: 我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)采用150mm×150mm×300mm 棱

钢筋混凝土受弯构件破坏形式

适筋梁(延性) 适筋梁是指在生产实践中广泛应用的含有适量配筋的梁,它的破坏特点如前所述;钢筋首先进入屈服阶段,再继续增加荷载后,混凝土受压破坏,我们称这种破坏形式“适筋梁”。适筋梁的破坏不是突然发生的,破坏前裂缝与扰度有明显的增长,故适筋破坏属延性破坏,适筋梁的钢筋与混凝土均能充分发挥作用,且破坏前有明显的预兆,古正截面承载力计算是建立在适筋梁基础上的。 超筋梁(脆性) 如果在梁内放置的纵向受拉钢筋过多,在荷载作用下,受压混凝土边缘已达到弯曲受压的极限变形,而受拉钢筋的应力远小于屈服强度。此时混凝土已被压碎,不能再承担压力,虽然钢筋尚未屈服,但梁因不能继续承担弯矩而破坏,我们称此种破坏为超筋破坏。 超筋破坏是受拉钢筋未屈服,而混凝土是由于混凝土抗压强度,故破坏有一定的突然性,缺乏必要的预兆,具有脆性破坏的性质,梁的破坏是由于混凝土抗压强度的耗尽,钢筋强度没有得到充分利用,因此超筋梁的承载力与钢筋强度无关,仅取决与混凝土的抗压强度。因为它破坏时缺乏足够的预兆,设计时不允许出现 少筋梁 如在受拉区配置的钢筋过少,开始加荷时,拉力由受拉的钢筋与混凝土共同承担,当继续增加荷载至构件开裂时,裂缝截面混凝土所承担的拉力几乎全部转移给钢筋,使钢筋应力突然剧增。因此钢筋过少,其应力很快到达钢筋的屈服强度,甚至经过流富而进入强化阶段。此

时梁的裂缝开展很大,扰度也不小于,而且这种裂缝与扰度是不可恢复的。 基于上述,配筋率低于的梁称为少筋梁,这种梁一旦开裂,及标志这破坏,尽管开裂后仍保留一定的承载力实际上是不能利用的。少筋梁的强度取决于混凝土的抗拉强度,属于脆性破坏,因此是不安全的,故在建筑结构中不允许采用。

混凝土结构设计原理课程作业

第一章、绪论 1,某工程师用买来的正版软件进行结构设计,后发现软件错误,并导致工程事故,谁应为工程事故承担赔偿责任? 答:首先,作为设计者应当对所做设计负责,故设计的工程师应对首先对事故承担责任;其次,在完成赔偿后的工程师,可以对设计中所有可能产生的错误进行分析,如果确是软件原因,在依法律程序处理。 2,线弹性分析方法和弹性分析方法各有什么不同的含义,弹塑性分析方法和非线性分析方法各有什么不同含义? 答:线弹性分析方法是弹性分析方法的组成部分,除此之外还包括非线弹性分析方法;弹塑性分析方法,包含材料进入塑性阶段考虑材料塑性变形能力,非线性分析方法仅涉及材料的非线弹性阶段,不包括材料塑性变形能力。 3,试验分析方法怎样在混凝土结构设计中应用? 答:当结构或其部分的体形不规则和受力状态复杂而又无恰当的简化分析方法时,可采用实验分析方法。 4,什么情况下混凝土结构设计采用弹塑性分析方法? 答:由于该方法比较复杂,计算工作量大,各种分线性本构关系尚不够完善和统一,至今应用分为仍然有限,主要应用于复杂,重要的结构工程的分析和罕遇地震作用下的结构分析。 5,什么情况下结构分析时完全不能考虑弹塑性因素,只能采用弹性分析方法?答:对于直接承受动力荷载的构件,以及要求不出现裂缝或处于三 a 、三b类环境情况下的结构,主梁、承受冲击荷载的构件等由于在设计时要有足够的安全储备,因此不能采用弹塑性分析方法,仅能用弹性分析方法。 第二章、钢筋和混凝土的力学性能 1,应力——应变曲线是否反应力混凝土结构用钢筋的所有性能? 答:钢筋的应力——应变曲线反映的是钢筋的受力性能,包括强度,延性等;并不能够反映结构受力时钢筋的冷弯性能,可焊性,以及钢材内部成分对钢材其他性能有较大影响的因素。 2,高性能混凝土的基本特征有哪些? 解:高性能混凝土(HPC)具有较好的耐久性、工作性、适用性、强度、体积稳定性和经济性。 (1)自密实性。高性能混凝土的用水量较低,流动性好,抗离析性高,从而具有较优异的填充性; (2)体积稳定性。高性能混凝土的体积稳定性较高,表现为具有高弹性模量、低收缩与徐变、低温度变形;

影响混凝土强度的主要因素

影响混凝土强度的主要因素 硬化后的混凝土在未受到外力作用之前,由于水泥水化造成的化学收缩和物理收缩引起砂浆体积的变化,在粗骨料与砂浆界面上产生了分布极不均匀的拉应力,从而导致界面上形成了许多微细的裂缝。另外,还因为混凝土成型后的泌水作用,某些上升的水分为粗骨料颗粒所阻止,因而聚集于粗骨料的下缘,混凝土硬化后就成为界面裂缝。当混凝土受力时,这些预存的界面裂缝会逐渐扩大、延长并汇合连通起来,形成可见的裂缝,致使混凝土结构丧失连续性而遭到完全破坏。强度试验也证实,正常配比的混凝土破坏主要是骨料与水泥石的粘结界面发生破坏。所以,混凝土的强度主要取决于水泥石强度及其与骨料的粘结强度。而粘结强度又与水泥强度等级、水灰比及骨料的性质有密切关系,此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1)水灰比 水泥强度等级和水灰比是决定混凝土强度最主要的因素。也是决定性因素。 水泥是混凝土中的活性组成,在水灰比不变时,水泥强度等级愈高,则硬化水泥石的强度愈大,对骨料的胶结力就愈强,配制成的混凝土强度也就愈高。如常用的塑性混凝土,其水灰比均在0.4~0.8之间。当混凝土硬化后,多余的水分就残留在混凝土中或蒸发后形成气孔或通道,大大减小了混凝土抵抗荷载的有效断面,而且可能在孔隙周围引起应力集中。因此,在水泥强度等级相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度也愈高。但是,如果水灰比过小,拌合物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,将导致混凝土强度严重下降。参见图3—1。 图3—1混凝土强度与水灰比的关系 a)强度与水灰比的关系 b)强度与灰水比的关系 2)骨料的影响 当骨料级配良好、砂率适当时,由于组成了坚强密实的骨架,有利于混凝土强度的提高。如果混凝土骨料中有害杂质较多,品质低,级配不好时,会降低混凝土的强度。 由于碎石表面粗糙有棱角,提高了骨料与水泥砂浆之间的机械啮合力和粘结力,所以在原材料、坍落度相同的条件下,用碎石拌制的混凝土比用卵石拌制的混凝土的强度要高。 骨料的强度影响混凝土的强度。一般骨料强度越高,所配制的混凝土强度越高,这在低水灰比和配制高强度混凝土时, 特别明显。骨料粒形以三维长度相等或相近的球形或立方体

钢筋混凝土模拟试题及答案

模拟试题 一、??? 1.采用边长为100mm的非标准立方体试块做抗压试验时,其抗压强度换算系数为0.95。 2.钢材的含碳量越大,钢材的强度越高,因此在建筑结构选钢材时,应选用含碳量较高的钢筋。 3.在进行构件承载力计算时,荷载应取设计值。 4.活载的分项系数是不变的,永远取1.4。 5.承载能力极限状态和正常使用极限状态都应采用荷载设计值进行计算,这样偏于安全。 6.在偏心受压构件截面设计时,当时,可判别为大偏心受压。 7.配筋率低于最小配筋率的梁称为少筋梁,这种梁一旦开裂,即标志着破坏。尽管开裂后仍保留有一定的承载力,但梁已经发生严重的开裂下垂,这部分承载力实际上是不能利用的。 8.结构设计的适用性要求是结构在正常使用荷载作用下具有良好的工作性能。 9. 对于一类环境中,设计使用年限为100年的结构应尽可能使用非碱性骨料。 10.一些建筑物在有微小裂缝的情况下仍能正常使用,因此不必控制钢筋混凝土结构的小裂缝裂缝。 11.混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。 12.对任何类型钢筋,其抗压强度设计值。 13.在进行构件变形和裂缝宽度验算时,荷载应取设计值。 14.以活载作用效应为主时,恒载的分项系数取1.35 。 15.结构的可靠指标越大,失效概率就越大,越小,失效概率就越小。

16.在偏心受压破坏时,随偏心距的增加,构件的受压承载力与受弯承载力都减少。 17.超筋梁的挠度曲线或曲率曲线没有明显的转折点。 18.结构在预定的使用年限内,应能承受正常施工、正常使用时可能出现的各种荷载、强迫变形、约束变形等作用,不考虑偶然荷载的作用。 19.对于一类环境,设计使用年限为100年的结构中混凝土的最大氯离子含量为0.06%。 20.钢筋混混凝土受弯、受剪以及受扭构件同样存在承载力上限和最小配筋率的要求。 21.钢筋经冷拉后,强度和塑性均可提高。 22.适筋破坏的特征是破坏始自于受拉钢筋的屈服,然后混凝土受压破坏。 23. 实际工程中没有真正的轴心受压构件. 24.正常使用条件下的钢筋混凝土梁处于梁工作的第?阶段。 25.梁剪弯段区段内,如果剪力的作用比较明显,将会出现弯剪斜裂缝。 26.小偏心受压破坏的的特点是,混凝土先被压碎,远端钢筋没有受拉屈服。 27.当计算最大裂缝宽度超过允许值不大时,可以通过增加保护层厚度的方法来解决。 28.结构在正常使用和正常维护条件下,在规定的环境中在预定的使用年限内应有足够的耐久性。 29.对于一类环境中,设计使用年限为100年的钢筋混混凝土结构和预应力混凝土结构的最低混凝土强度等级分别为C10和C20. 30.对于钢筋混凝土结构,在掌握钢筋混凝土构件的性能、分析和设计,必须注意决定构件破坏特征及计算公式使用范围的某些配筋率的数量界限问题。 ?? ??????

混凝土破坏准则 william-warnke模型

Constitutive model for the triaxial behaviour of concrete Author(en):William, K.J. / Warnke, E.P. Objekttyp:Article Zeitschrift:IABSE reports of the working commissions = Rapports des commissions de travail AIPC = IVBH Berichte der Arbeitskommissionen Band(Jahr):19(1974) Persistenter Link:https://www.doczj.com/doc/2518510500.html,/10.5169/seals-17526 Erstellt am:22.08.2011 Nutzungsbedingungen Mit dem Zugriff auf den vorliegenden Inhalt gelten die Nutzungsbedingungen als akzeptiert. Die angebotenen Dokumente stehen für nicht-kommerzielle Zwecke in Lehre, Forschung und für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot k?nnen zusammen mit diesen Nutzungsbedingungen und unter deren Einhaltung weitergegeben werden. Die Speicherung von Teilen des elektronischen Angebots auf anderen Servern ist nur mit vorheriger schriftlicher Genehmigung des Konsortiums der Schweizer Hochschulbibliotheken m?glich. Die Rechte für diese und andere Nutzungsarten der Inhalte liegen beim Herausgeber bzw. beim Verlag. SEALS Ein Dienst des Konsortiums der Schweizer Hochschulbibliotheken c/o ETH-Bibliothek, R?mistrasse 101, 8092 Zürich, Schweiz retro@seals.ch http://retro.seals.ch

中南大学混凝土结构设计原理作业参考答案

《混凝土结构设计原理》作业参考答案 作业一 一、填空题: 1. 1.05 0.95 接触摩阻力 2.化学胶着力 摩擦力 机械咬合力 3.最小配筋率 4.斜拉破坏 剪压破坏 斜压破坏 脆性破坏 5.少筋破坏 适筋破坏 超筋破坏 适筋破坏 脆性破坏 二、名词解释: 1.剪跨比:是一个无量纲常数,用 m =M /(Qh 0)来表示,此处M 和Q 分别为剪弯区段中某个竖直截面的弯矩和剪力,h 0为截面有效高度。 2.《规范》规定的混凝土立方体抗压强度是:边长为150mm 立方体试件、在20°C ±3°C 的温度、相对湿度在95%以上的潮湿空气中、养护28天、按标准制作方法和试验方法测得的具有95%保证率的混凝土抗压强度。 3.预应力筋张拉后,由于混凝土和钢材的性质以及制作方法上原因,预应力筋中预应力会从控制应力开始逐步减少,并经过相当长时间最终稳定下来,这种应力的降低称为预应力损失。 4.当偏心受压构件的相对偏心距00/e h 较小,或受拉侧纵向钢筋配置较多时,受拉侧的钢筋应力较小,没有达到屈服或承受压力,截面是由于受压区混凝土首先压碎而达到破坏。 5.混凝土在长期不变的荷载作用下,混凝土的应变随时间的增加二持续增长的现象。 三、简单题: 1.钢筋混凝土结构中的钢筋和混凝土两种不同的材料为什么能共同工作? 钢筋与混凝土之所以能共同工作,主要是由于:两者间有良好的粘结力、相近的温度线膨胀系数和混凝土对钢筋的保护作用。 2.什么是结构的承载能力极限状态?它的表现特征包括哪些方面? 承载能力极限状态:是指结构或结构构件达到最大承载力或不适于极限承载的变形或变位的状态。四个表现特征: (1)整个结构或结构的一部分作为刚体失去平衡,如滑动、倾覆等; (2)结构构件或连接处因超过材料强度而破坏(包括疲劳破坏),或因过度的塑性变形而不能继续承载; (3)结构转变成机动体系;(4)结构或结构构件丧失稳定,如柱的压屈失稳等。 3.预应力混凝土结构中传递和保持预应力的主要方式有哪些? 预应力混凝土结构,后张法是靠工作锚具来传递和保持预加应力的;先张法则是靠粘结力来传递并保持预加应力的。 4.偏心受压构件的破坏特征如何?主要取决于什么因素? 破坏特征:大偏心受压构件的破坏从受拉钢筋开始,受拉钢筋先达到屈服强 度,然后受压区混凝土被压坏;小偏心受压构件的破坏从受压区开始,受压 区边缘混凝土先达到极限压应变而破坏,受拉钢筋一般达不到屈服强度。 主要影响因素:相对偏心距大小和配筋率。 四、计算题:

混凝土结构设计原理作业(附答案)

CHENG 混凝土结构设计原理 第一章钢筋混凝土的力学性能 1、钢和硬钢的应力—应变曲线有什么不同,其抗拉设计值fy各取曲线上何处的应力值作为依据? 答:软钢即有明显屈服点的钢筋,其应力—应变曲线上有明显的屈服点,应取屈服强度作为钢筋抗拉设计值fy的依据。 硬钢即没有明显屈服点的钢筋,其应力—应变曲线上无明显的屈服点,应取残余应变为0.2%时所对应的应力σ0.2作为钢筋抗拉设计值fy的依据。 2、钢筋冷加工的目的是什么?冷加工的方法有哪几种?各种方法对强度有何影响? 答:冷加工的目的是提高钢筋的强度,减少钢筋用量。 冷加工的方法有冷拉、冷拔、冷弯、冷轧、冷轧扭加工等。 这几种方法对钢筋的强度都有一定的提高, 4、试述钢筋混凝土结构对钢筋的性能有哪些要求? 答:钢筋混凝土结构中钢筋应具备:(1)有适当的强度;(2)与混凝土黏结良好;(3)可焊性好;(4)有足够的塑性。 5、我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级?用什么符号表示? 答:我国用于钢筋混凝土结构的钢筋有4种:热轧钢筋、钢铰丝、消除预应力钢丝、热处理钢筋。 我国的热轧钢筋分为HPB235、HRB335、HRB400和RRB400三个等级,即I、II、III 三个等级,符号分别为 ( R ) 。 6、除凝土立方体抗压强度外,为什么还有轴心抗压强度? 答:立方体抗压强度采用立方体受压试件,而混凝土构件的实际长度一般远大于截面尺寸,因此采用棱柱体试件的轴心抗压强度能更好地反映实际状态。所以除立方体抗压强度外,还有轴心抗压强度。 7、混凝土的抗拉强度是如何测试的? 答:混凝土的抗拉强度一般是通过轴心抗拉试验、劈裂试验和弯折试验来测定的。由于轴心拉伸试验和弯折试验与实际情况存在较大偏差,目前国内外多采用立方体或圆柱体的劈裂试验来测定。 8、什么是混凝土的弹性模量、割线模量和切线模量?弹性模量与割线模量有什么关系? 答:混凝土棱柱体受压时,过应力—应变曲线原点O作一切线,其斜率称为混凝土的弹性模量,以E C表示。 连接O点与曲线上任一点应力为σC 处割线的斜率称为混凝土的割线模量或变形摸量,以E C‘表示。 在混凝土的应力—应变曲线上某一应力σC 处作一切线,其应力增量与应变增量的比值称为相应于应力为σC 时混凝土的切线模量C E'' 。 弹性模量与割线模量关系: ε ν ε '== ela C c C c E E E (随应力的增加,弹性系数ν值减小)。 9、什么叫混凝土徐变?线形徐变和非线形徐变?混凝土的收缩和徐变有什么本质区别? 答:混凝土在长期荷载作用下,应力不变,变形也会随时间增长,这种现象称为混凝土的徐变。 当持续应力σC ≤0.5f C 时,徐变大小与持续应力大小呈线性关系,这种徐变称为线性徐变。当持续应力σC >0.5f C 时,徐变与持续应力不再呈线性关系,这种徐变称为非线性徐变。 混凝土的收缩是一种非受力变形,它与徐变的本质区别是收缩时混凝土不受力,而徐变是受力变形。 10、如何避免混凝土构件产生收缩裂缝? 答:可以通过限制水灰比和水泥浆用量,加强捣振和养护,配置适量的构造钢筋和设置变形缝等来避免混凝土构件产生收缩裂缝。对于细长构件和薄壁构件,要尤其注意其收缩。 第二章混凝土结构基本计算原则 1.什么是结构可靠性?什么是结构可靠度? 答:结构在规定的设计基准使用期内和规定的条件下(正常设计、正常施工、正常使用和维修),完成预定功能的能力,称为结构可靠性。 结构在规定时间内与规定条件下完成预定功能的概率,称为结构可靠度。 2.结构构件的极限状态是指什么? 答:整个结构或构件超过某一特定状态时(如达极限承载能力、失稳、变形过大、裂缝过宽等)就不能满足设计规定的某一功能要求,这种特定状态就称为该功能的极限状态。 按功能要求,结构极限状态可分为:承载能力极限状态和正常使用极限状态。 3.承载能力极限状态与正常使用极限状态要求有何不同? 答:(1)承载能力极限状态标志结构已达到最大承载能力或达到不能继续承载的变形。若超过这一极限状态后,结构或构件就不能满足预定的安全功能要求。承载能力极限状态时每一个结构或构件必须进行设计和计算,必要时还应作倾覆和滑移验算。

混凝土结构习题概要

混凝土结构习题集3

北京科技大学土木与环境工程学院2007年5月

综合练习 一、 填空题 1 .抗剪钢筋也称作腹筋,腹筋的形式可以是 和 。 2.无腹筋梁中典型的斜裂缝主要有 裂缝和 裂缝。 3.对梁顶直接施加集中荷载的无腹筋梁,随着剪跨比λ的 ,斜截面受剪承载力有增高的趋势。当剪跨比对无腹筋梁破坏形态的影响表现在:一般3λ>常为 破坏;当1λ<时,可能发生 破坏;当13λ<<时,一般是 破坏。 4.无腹筋梁斜截面受剪有三种主要破坏形态。就其受剪承载力而言,对同样的构件, 破坏最低, 破坏较高, 破坏最高;但就其破坏性质而言,均属于 破坏。 5.影响无腹筋梁斜截面受剪承载力的主要因素有 、 和 。 6.剪跨比反映了截面所承受的 和 的相对大笑,也是 和 的相对关系。 7.梁沿斜截面破坏包括 破坏和 破坏 8.影响有腹筋梁受剪承载力的主要因素包括 、 、 和 。 9.在进行斜截面受剪承载力的设计时,用 来防止斜拉破坏,用 的方法来防止斜压破坏,而对主要的剪压破坏,则给出计算公式。 10.如按计算不需设计箍筋时,对高度h> 的梁,仍应沿全梁布置箍筋;对高度h= 的梁,可仅在构件端部各 跨度范围内设置箍筋,但当在构件中部跨度范围内有集中荷载作用时,箍筋应沿梁全长布置;对高度为 以下的梁,可不布置箍筋。 11.纵向受拉钢筋弯起应同时满足 、 和 三项要求。 12.在弯起纵向钢筋时,为了保证斜截面有足够的受弯承载力,必须把弯起钢筋伸过其充分利用点至少 后方可弯起。 13.纵向受拉钢筋不宜在受拉区截断,如必须截断时,应延伸至该钢筋理论截断点以外,延伸长度满足 ;同时,当/c d V V V ≤时,从该钢筋强度充分利用截面延伸的长度,尚不应小于 ,当/c d V V V >时,从该钢筋强度充分利用截面延伸的长度尚不应小于 。 14.在绑扎骨架中,双肢箍筋最多能扎结 排在一排的纵向受压钢筋,否则应采用四肢箍筋;或当梁宽大于400㎜,一排纵向受压钢筋多于 时,也应采用四肢箍筋。 15.当纵向受力钢筋的接头不具备焊接条件而必须采用绑扎搭结时,在从任一接头中心 至 1.3倍搭结长度范围内,受拉钢筋的接头比值不宜超过 ,当接头比值为 或 时,钢筋的搭结长度应分别乘以1.2及1.2。受压钢筋的接头比值不宜超过 。 16.简支梁下部纵向受力钢筋伸入支座的锚固长度用s l α表示。当/c d V V V ≤时,

混凝土结构原理试卷B卷及答案

一、单选题(每小题 1 分,共计 30 分,将答案填写在下列表格中) 专业 年级 混凝土结构设计原理 试题 考试类型:闭卷 试卷类型:B 卷 考试时量: 120 分钟 1、钢筋与混凝土能共同工作的主要原因是( ) A 、防火、防锈 B 、混凝土对钢筋的握裹及保护 C 、混凝土与钢筋有足够的粘结力,两者线膨胀系数接近 D 、钢筋抗拉而混凝土抗压 2、属于有明显屈服点的钢筋有( ) A 、冷拉钢筋 B 、钢丝 C 、热处理钢筋 D 、钢绞线。 3、混凝土的受压破坏( ) A 、取决于骨料抗压强度 B 、取决于砂浆抗压强度 C 、是裂缝累计并贯通造成的 D 、是粗骨料和砂浆强度已耗尽造成的 4、与素混凝土梁相比,适量配筋的钢混凝土梁的承载力和抵抗开裂的能力( )。 A 、均提高很多 B 、承载力提高很多,抗裂提高不多 C 、抗裂提高很多,承载力提高不多 D 、均提高不多 5、规范规定的受拉钢筋锚固长度 l a 为( )。 A 、随混凝土强度等级的提高而增大; B 、随钢筋等级提高而降低; C 、随混凝土等级提高而减少,随钢筋等级提高而增大;

' ' D 、随混凝土及钢筋等级提高而减小; 6、混凝土强度等级是由( )确定的。 A 、 f cu ,k B 、 f ck C 、 f c D 、 f tk 7、下列哪种状态属于超过承载力极限状态的情况( ) A 、裂缝宽度超过规范限值 B 、挠度超过规范限值 C 、结构或者构件被视为刚体而失去平衡 D 、影响耐久性能的局部损坏 8、钢筋混凝土构件承载力计算中关于荷载、材料强度取值说法正确的是( ) A 、荷载、材料强度都取设计值 B 、荷载、材料强度都取标准值 C 、荷载取设计值,材料强度都取标准值 D 、荷载取标准值,材料强度都取设计值 9、对长细比大于 12 的柱不宜采用螺旋箍筋,其原因是( ) A 、这种柱的承载力较高 B 、施工难度大 C 、抗震性能不好 D 、这种柱的强度将由于纵向弯曲而降低,螺旋箍筋作用不能发挥 10、螺旋筋柱的核心区混凝土抗压强度高于 f c 是因为( )。 A 、螺旋筋参与受压 B 、螺旋筋使核心区混凝土密实 C 、螺旋筋约束了核心区混凝土的横向变形 D 、螺旋筋使核心区混凝土中不出现内裂缝 11、在钢筋混凝土双筋梁、大偏心受压和大偏心受拉构件的正截面承载力计算中,要求受压区 高度 x ≥ 2a s 是为了( ) A 、保证受压钢筋在构件破坏时达到其抗压强度设计值 B 、防止受压钢筋压屈 C 、避免保护层剥落 D 、保证受压钢筋在构件破坏时达到其极限抗压强度 12、( )作为受弯构件正截面承载力计算的依据。 A 、Ⅰa 状态; B 、Ⅱa 状态; C 、Ⅲa 状态; D 、第Ⅱ阶段 13、下列哪个条件不能用来判断适筋破坏与超筋破坏的界限( ) A 、 ξ ≤ ξb ; B 、 x ≤ ξb h 0 ; C . x ≤ 2a s ; D 、 ρ ≤ ρ max 14、受弯构件正截面承载力中,T 形截面划分为两类截面的依据是( ) A 、计算公式建立的基本原理不同

混凝土强度等级为C30.

一、填空题 1、混凝土强度等级为C30,表示混凝土 为30N/mm 2。 2、混凝土在长期不变荷载作用下将产生 变形,混凝土在空气中凝结硬化时将产生 变形。 3、钢筋的塑性变形性能通常用 和 两个指标来衡量。 4、钢筋与混凝土之间的粘结力由胶结力 、 和 三部分组成。 5、建筑结构的极限状态可分为 和 两类。 6、受弯构件正截面破坏的主要形态有 、 和 三种。 7、适筋梁三个受力阶段中,梁正截面抗裂验算的依据是_____阶段,第Ⅱ阶段是梁使用阶段 变形和裂缝宽度的依据;正截面受弯承载力计算的依据是 ___阶段。 8、双筋矩形截面梁正截面承载力计算公式的适用条件之一为s a x 2 ,其目的是为了保 证 。 9、影响受弯构件斜截面受剪承载力的主要因素有 、混凝土强度、 、纵筋配筋率、斜截面上的骨料咬合力以及截面尺寸和形状等。 10、为保证受弯构件斜截面受弯承载力,纵向钢筋弯起点应在该钢筋的充分利用截面以外, 该弯起点至充分利用截面的距离为 。 11、偏心受压构件长柱计算中,侧向挠曲而引起的附加弯矩是通过 来加以考虑的。 12、受扭构件中受扭纵向受力钢筋在截面四角必须设置,其余纵向钢筋应沿截面周边 布置。 13、受弯构件按正常使用极限状态进行变形和裂缝宽度验算时,应按荷载效应的标准组合并 考虑荷载 的影响。 二、单项选择题 1、混凝土强度等级按照 ( )确定。 A .立方体抗压强度标准值; B .立方体抗压强度平均值; C .轴心抗压强度标准值; D .轴心抗压强度设计值。 2、同一强度等级的混凝土,各种强度之间的关系是( )。 A .t cuk c f f f >> B .t c cuk f f f >> C .c t cuk f f f >> D .c cuk t f f f >> 3、下列哪个项目不是结构上的作用效应( )? A.柱内弯矩 B.梁的挠度 C.屋面雪荷载 D.地震作用引起的剪力 4、提高受弯构件正截面受弯承载力最有效的方法是( )。 A.提高混凝土强度等级 B.增加保护层厚度 C.增加截面高度 D.增加截面宽度 5、正常设计的梁发生正截面破坏或斜截面破坏时,其破坏形式分别为( )。

相关主题
文本预览
相关文档 最新文档