当前位置:文档之家› 微积分的发展及意义

微积分的发展及意义

微积分的发展及意义
微积分的发展及意义

微积分的发展及意义

微积分,作为数学的代名词,其错误的概念被广而周知。实际上,数学分析包括微积分、函数论等许多分支学科,它只是数学中的其中一个组成部分。我们现在一般习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,而微积分的基本概念和内容包括微分学和积分学。

微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是微分学和积分学的统称,微积分是建立在实数、函数和极限的基础上的。

它的萌芽、发生与发展经历了漫长的时期。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。终于在十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨建立了微积分,但是还没有建立完整健全的理论体系,直到19世纪初,以柯西为首的科学家们,对微积分的理论进行了认真研究,

建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。随后微积分才开始了其真正的发展之路。

微积分的产生是数学上的伟大创造。它从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。微积分是与应用联系着发展起来的,在形成之初和后来,微积分学极大的推动了数学的发展,同时也极大的推动了物理学、化学、生物学、工程学、经济学等的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。并且在我们的生活中,微积分的应用也不少见,例如,计算在建造一水池,原材料的最省的方法及其价格最优的方法等等。

根据上文所述,我们应该多了解微积分的知识与应用,尤其是能够学以致用,只有这样,我们才能更好的生活与工作。

外国语学院

0905106-11

张露露

the Development and Significance of Calculus Calculus, being as an equivalent of mathematicals, always has its wrong definition in most people's eyes. As the matter of fact, mathematical analysis includes calculus, functions and many other branches of the discipline. Nowadays we are used to equating mathematical analysis with calculus which is the synonym of that. The basic concept of calculus involves in two : differential calculus and integral calculus.

Calculus is a branch of mathematicals, researching functions of the differential, integral and relevant concepts and applications, which is based on real numbers, functions and limit.

Calculus, owning its bud, generation and development, has experienced a long period. In 3rd century BC, Archimedes in ancient Greece solved the problems of parabolic bow area and the volume of rotating hyperbolic body and so on, implying the ideas of modern calculus. When came to 17th century, many scientific problems are ready to be tackled, which brought its incentives to the appearance of calculus. To sum up, there are four main types: the first is to study movement directly seeking real-time speed;The second problem the curve of tangent; The third category the maximum and minimum values of functions; The fourth problem curve length, area and volume curve enclosed, the center of gravity, and effect of a considerable volume of the object pulling on another object. Then in the second half of the 17th century, on the basis of previous work, the

great British scientist Newton and German mathematician Leibniz built up calculus, being viewed as preliminary job. Until the early 19th century, the French Scientific Institute of scientists led by the Cauchy established the limit theory, and later after the German mathematician Weierstrass further standardization of limit theory, a firm foundation for the calculus, it paved the way for the further development of the calculus.

Being a great wonder in the history of mathematicals, calculus comes from the needs of production technology and theoretical science, and in turn widely exert influence on them. Today, the calculus is an indispensable tool for the majority of scientists and technical personnel. Calculus is associated with applications. Not only at the beginning of foundation, but also afterwards calculus greatly promoted the development of mathematics, along with enhancing improvements of the various branches of physics, chemistry, biology, engineering, economics especially doing more contribute to continuous development of these applications because of emergence of the computer. Even in our daily life, we can see the wide application of calculus, like finding out the best way of minimum materials used and the optimal method of the least amount of money devoted when building a pool, and so on.

As discussed above, there is a must for us to have a better understanding of the knowledge of calculus. What's more, only after turning theories into practices can we feel better in life and at work.

定积分的发展史.docx

定积分的发展史 起源 定积分的概念起源于求平面图形的面积和其他一些实际问题。定积分的思想在古代数学家的工作中,就已经有了萌芽。比如古希腊时期阿基米德在公 元前 240 年左右,就曾用求和的方法计算过抛物线弓形及其他图形的面积。 公元 263 年我国刘徽提出的割圆术,也是同一思想。在历史上,积分观念的 形成比微分要早。但是直到牛顿和莱布尼茨的工作出现之前( 17 世纪下半叶),有关定积分的种种结果还是孤立零散的,比较完整的定积分理论还未能形成, 直到牛顿 -- 莱布尼茨公式建立以后,计算问题得以解决,定积分才迅速建立 发展起来。 未来的重大进展,在微积分才开始出现,直到16 世纪。此时的卡瓦列利与 他的indivisibles方法,并通过费尔马工作,开始卡瓦列利计算度N = 9×N的积分奠定现代微积分的基础,卡瓦列利的正交公式。17世纪初巴罗提 供的第一个证明微积分基本定理。 牛顿和莱布尼茨 在一体化的重大进展是在 17 世纪独立发现的牛顿 ?? 和莱布尼茨的微积分 基本定理。定理演示了一个整合和分化之间的连接。这方面,分化比较容易 地结合起来,可以利用来计算积分。特别是微积分基本定理,允许一个要解决 的问题更广泛的类。同等重要的是,牛顿和莱布尼茨开发全面的数学

框架。由于名称的微积分,它允许精确的分析在连续域的功能。这个框架最终成为现代微积分符号积分是直接从莱布尼茨的工作。 正式积分 定积分概念的理论基础是极限。 人类得到比较明晰的极限概念,花了大约 2000 年的时间。在牛顿和莱布尼茨的时代,极限概念仍不明确。因此牛顿和莱布尼茨建立的微积分的理论基础还不十分牢靠,有些概念还比较模糊,由此引起了数学界甚至哲学界长达一个半世纪的争论,并引发了“第二次数学危机”。经过十八、十九世纪 一大批数学家的努力,特别是柯西首先成功地建立了极限理论,魏尔斯特拉斯进一步给出了现在通用的极限的定义,极限概念才完全确立,微积分才有 了坚实的基础,也才有了我们今天在教材中所见到的微积分。现代教科书 中有关定积分的定义是由黎曼给出的。 术语和符号 艾萨克牛顿以上的变量使用一个小竖线表示一体化,或放置在一个盒子里的变量,竖线是很容易混淆。或牛顿用来指示分化和方块符号打印机难以重现,所以这些符号没有被广泛采用。 1675 年戈特弗里德莱布尼茨改编的积分符号,∫,从字母S(“总结”或“总”)。 ∫符号表示的整合 ; A和 B 的下限和上限,分别一体化,定义域的融合 ; f是积,x 在区间 [a ,b] 上的变化进行评估;

微积分的发展和应用

目录 摘要 1 英文摘要 2 1微积分产生的背景 3 1.1萌芽时期 3 1.2准备时期 3 2微积分的建立 4 2.1牛顿 4 2.2莱布尼茨 5 2.3牛顿莱布尼茨创立微积分的比较 7 3微积分的发展及完善 8 4微积分的应用 9 4.1在数学学科中的应用 9 4.2在其他学科中的应用 12 5结语 13 6致谢 14 7参考文献 15

摘要:本篇论文主要介绍了微积分的发展和应用。微积分的发展过程,是从 微积分产生的背景,微积分的建立,微积分的发展与完善这三个方面来介绍。其中背景中简单介绍了萌芽时期古希腊数学家欧多克斯与阿基米德的思想,及中国此时期一些有关思想;准备时期出现的急需解决的问题,及数位数学家的方法。在微积分的建立中着重对牛顿及莱布尼茨建立微积分的过程加以描述,牛顿和莱布尼茨关于建立微积分而作出的杰出贡献, 就在于他们分别提出了微积分的基本原理、三个重要概念流量、流数、瞬和“变量”数学的思想体系。在微积分的发展和完善中对欧拉,柯西和黎曼对微积分的完善做了简单的介绍。应用方面则是从数学学科和其他学科的应用来介绍的。 关键词:微积分牛顿莱布尼茨黎曼积分 Abstract:This thesis mainly talk about the development and application of calculus.The development of caculus can be seen from the three aspects :the backguound of its generatation ,its establish , its develop and its completion. Firstly simply introduced the idea of Eudoxus and Archimedes who were the famous mathematicians in ancient Greek in the budding period of calculus,the idea of Chinese mathematicians and some problems need to be solved in this period. Secondly we provide a detailed description of the outstanding contribution made by Newton and Leibniz. The two great men separately put forward the basic principles of calculus and some important concepts,like fluxion and they proposed the idea of“variable” https://www.doczj.com/doc/2517756214.html,stly we give a brief introduction of Euler,Cauchy and Riemann's accomplishment,which improved and perfected the calculus. The application of the caculas is introducted according to the application of the mathematic branch and other subjects. key words:calculus Newton Leibniz Riemann Integral 浅议微积分的发展与应用 微积分学,是人类思维的伟大成果之一。到今天,微积分已成为基本的数学工具而被广泛地应用于自然科学的各个领域。同样微积分也有着久远的历史,它是经过许多人的努力而建立起来的,下面就来简单介绍一下微积分的建立及发展过程。 1微积分产生的背景 1.1萌芽时期 微积分的萌芽出现得比较早,下面简单介绍一下。 古希腊数学家欧多克斯发展安提丰的“穷竭法”为“设给定两个不相等的量,如果以较大的量减去比它的一半大的量,再以所得量减去比这个量的一半大的量,继续重复这一过程,必有某个量将小于给定的较小的量”。欧多克斯的穷竭法可看作微积分的第一步,但没有明确地用极限概念,也回避了“无穷小”概念,并证明

对《微积分的概念发展史》见解

对《微积分的概念发展史》见解 微积分和数学分析是人类智力的伟大成就之一,其地位介于自然和人文科学之间,成为高等教育成果硕然的中介。微积分发展史和对微积分的研究就是人类智力的斗争和一步步发展的历史,这种延续了500多xl年的斗争历史,深深扎根于人类奋斗的许多方面,并且,只要人们像了解大自然那样去努力认识自己,它就还会继续发展下去。教师、学生和学者若想真正理解数学的力量和表现,就必须从历史的角度来理解这一领域发展至今的现状,以广阔的视野看待数学。 《微积分的概念发展史》这本书以时间为顺序,通过对古希腊乃至更久远时期、中世纪和17世纪关于微积分学构想的描述,剖析了一些阻碍微积分学发展进程的哲学与宗教观点,叙述了微分和积分两方面的发展,以及牛顿、莱布尼茨的伟大贡献。 数学是从古代巴比伦人及埃及人建立起一套数学知识,并以之作为进一步观察的基础的而开始,出现了泰勒斯(Thales),毕达哥拉斯学派(Pythagoras)以及柏拉图(Plato)等等对数学进行演绎的哲学家和数学家,他们认为数学是对终极永恒的现实以及自然和宇宙固有性质的研究,而不是逻辑的一个分支或者是科学技术的所运用的一种工具。 历史到达中世纪,经院派的观点十分盛行,他们认为宇宙“秩序井然”,易于理解。到了14世纪,世人非常清楚的意识到逍遥学派对运动和变化所持的定性观最好能被定量研究所取代。这种信念在萨库的尼古拉斯、开普勒和伽利略的思想中都有体现,在某种程度上也出现在莱昂纳多·达·芬奇的思想中。微积分起源于古希腊数学家在试图表达其关于直线的比率或是比例的直觉观点所遭遇的逻辑困境,他们认为数是离散的,按照数的观点,迷迷糊糊的认为直线是连续的,这样一来,便涉及到在逻辑上不够满意的无穷小的概念。但是,古希腊科学家的严密的思想却将无穷小的观念排除在几何证明之外,并代以穷竭法,这种方法可以避开无穷小的问题,但十分麻烦。不过,14世纪的经院派哲学家对变量展开的定量研究,这种方法很大程度上是辩证的,但是也借助图示。这些哲学和宗教的概念实际上对以后很多数学家的研究起到或多或少的作用或是影响,又好

微积分发展史

微积分发展史 摘要:本文将介绍微积分的由来以及发展过程以及他对于人类发展的重大意义。并且在文章中也会对微积分的一些基本内容和理论等进行说明和归纳 关键词:微积分,微分,积分,建立 一、微积分学的建立 微积分在如今的数学领域中占到了非常重要的地位,并且作为 一门学科,微积分是研究函数的微分、积分以及有关概念和应 用的数学分支。它的起源可以追溯到其诞生的2000多年前, 比如,古代的人用方砌圆,我国庄子的“一尺之棰,日取其半,万世不竭”,魏晋时刘徽的“割圆术”等等,都涉及到了以“直”代“曲” 的极限观念,属于微积分的朴素思想,阿基米德更可称为时微 积分学的先驱,他不仅成功地将“穷竭法”应用于求像抛物线弓 形那样复杂地曲边形地面积中,而且在求积时应用了各种微积 分学地思想。但微积分思想真正形成是在十七世纪,由牛顿总 结和发展了前人的工作,几乎同时建立了微积分的方法和理论 微积分的起源。牛顿是从物理角度建立了微积分的思想,而德 国数学家莱布尼兹从几何角度出发,独立地创立了微积分 (1675-1676)。这两位数学家总结出处理各种有关问题地一般 方法,并揭示出微分学和积分学之间的本质联系。两人各自建

立了微积分学基本定理,并给出微积分的概念、法则、公式及 其符号。这位日后的微积分学的进一步发展奠定了坚实而重要 的基础。微积分的创立,极大地推动了数学地发展,过去很多 初等数学束手无策地问题,通过运用微积分,往往引刃而解。 使得微积分学地创立成为数学发展地一个里程碑式的事件。二、微积分建立的重要意义 恩格斯曾经说过:“在一切理论成就中,未必再有什么像十七世 纪下半叶微积分的发现那样被看作人类精神的最高胜利了。如 果在某个地方我们看到人类精神的纯粹的和惟一的功绩,那就 正是在这里。”在微积分建立之前,人类基本还处于农耕文明时 期。但在微积分建立之后它为创立许多新的学科提供了源泉。 可以说微积分的建立是人类头脑最伟大的创造之一,是人类智 慧的结晶,它极大地推动了科学地进步,并且对社会也有深远 的影响。有了微积分,就有了工业革命,它是世界近代科学的 开端,同时也摧毁了笼罩在天体上的神秘主义、迷信和神学, 对社会产生了极大的影响,使人们进入了现代化的社会。这一 切都表面了微积分学的产生是人类历史上的一次空前飞跃。三、微积分理论的基本介绍和归纳 微积分学是微分学和积分学的总称。微积分学基本定理指出, 求不定积分与求导函数是互为逆运算的过程,而把上下限代入 不定积分即得到积分值,微分则是倒数值与自变量增量的乘积。 作为一种数学的思想微分就是“无限细分”,而积分就是“无限求

微积分心得体会范文

微积分心得体会范文 学好微积分的意义有如下几点: 1 重要性 西方分析权威 R. 柯朗说 :" 微积分 , 或者数学分析 , 是人类思维的伟大成果之一 . 它处于自然科学与人文科学之间的地位 , 使它成为高等教育的一种特别有效的工具 . 微积分是人类智力的伟大结晶 . 它给出一整套的科学方法 , 开创了科学的 __ , 并因此加强与加深了数学的作用 . 恩格斯说 :" 在一切理论成就中 , 未必再有什么像 17 世纪下半叶微积分的发现那样被看作人类精神的最高胜利了 . 微积分已成为现代人的基本素养之一 , 微积分将教会你在运动和变化中把握世界 , 它具有将复杂问题化归为简单规律和算法的能力 . 没有微积分很难理解现代社会正在发生的变化 , 很难跟上时代的脚步 . 2 牛顿革命 牛顿把他的书定名为《自然哲学的数学原理》 , 目的在于向世人昭示他将原理数学化的过程 , 即他构造了一种自然哲学 , 而不是一般的哲学 . 牛顿的《自然哲学的数学原理》 , 不仅在原理的发展上 , 在命题的证明和应用上是数学的。在哲学上引出了 " 决定论

" 的世界观 . 那就是 , 大自然有规律 , 我们能够发现它们 . 对这一世界观表达最清楚的是数学家拉普拉斯 . 在他的《概率的哲学导论》中 , 他雄辩地指出 ," 假设有一位智者 , 在任意给定的时刻 , 他都能洞见所有支配自然界的力和组成自然界的存在物的相互位置 , 假使这一智者的智慧巨大到足以使自然界的数据得到分析 , 他就能将宇宙中最大的天体和最小的原子的运动统统纳入单一的公式之中。 " 3 微积分产生的主要因素 当代著名数学家哈尔莫斯说 , 问题是数学的心脏 . 那么促使微积分产生的主要问题是什么呢微积分的创立首先是为了处理下列四类问题 . 1) 已知物体运动的路程与时间的关系 , 求物体在任意时刻的速度和加速度 . 反过来 , 已知物体运动的加速度与速度 , 求物体在任意时刻的速度与路程 . 困难在于 17 世纪所涉及的速度和加速度每时每刻都在变化 . 计算平均速度可用运动的时间去除运动的距离 . 但对瞬时速度 , 运动的距离和时间都是 0, 这就碰到了 0/0 的问题 . 这是人类第一次碰到这样微妙而费解的问题 .

微积分的起源与发展

微积分的起源与发展 主要内容: 一、微积分为什么会产生 二、中国古代数学对微积分创立的贡献 三、对微积分理论有重要影响的重要科学家 四、微积分的现代发展 一、微积分为什么会产生微积分是微分学和积分学的统称,它的萌芽、发生与发展经历了漫长的时期。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所着的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭” 。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,哥伦布发现新大陆,哥白尼创立日心说,伽利略出版《力学对话》,开普勒发现行星运动规律--航海的需要,矿山的开发,火松制造提出了一系列的力学和数学的问题,这些问题也就成了促使微积分产生的因素,微积分在这样的条件下诞生是必然的。归结起来,大约有四种主要类型的问题: 第一类是研究运动的时候直接出现的,也就是求即时速度的问题。已知物体移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。 困难在于:十七世纪所涉及的速度和加速度每时每刻都在变化。例如,计算瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬刻,移动的距离和所用的时间都是0 ,而0 / 0 是无意义的。但根据物理学,每个运动的物体在它运动的每一时刻必有速度,是不容怀疑的。 第二类问题是求曲线的切线的问题。这个问题的重要性来源于好几个方面:纯几何问题、光学中研究光线通过透镜的通道问题、运动物体在它的轨迹上任意一点处的运动方向问题等。 困难在于:曲线的“切线”的定义本身就是一个没有解决的问题。古希腊人把圆锥曲线的切线定义为“与曲线只接触于一点而且位于曲线的一边的直线”。这个定义对于十七世纪所用的较复杂的曲线已经不适应了。 第三类问题是求函数的最大值和最小值问题。 十七世纪初期,伽利略断定,在真空中以45°角发射炮弹时,射程最大。研究行星运动也涉及最大最小值问题。 困难在于:原有的初等计算方法已不适于解决研究中出现的问题。但新的方法尚无眉目。

学习微积分在数学文化中的价值

第一章绪论 1.1 课题背景和意义 如今,数学已成为大学生的必修课之一,而微积分则是数学学习中的重要的基础课程,贯穿整个数学学习的始终。随着我国教育思想的根本转变,如何贯彻落实素质教育,提高学生运用数学思想在实际运用中的作用则越来越受到社会各界的关注,对于如何通过对微积分的学习来提高我们对数学文化的认识也成为教育部门积极探讨的话题。可见,研究微积分在数学文化中的价值有着重要的现实意义。 所谓微积分,故名思义,它包括微分学和积分学。但在数学发展的长河中,它们是相互独立地发展起来的,先有积分再有微分,最后才有微积分。同时我们也应该看到,微积分的创立远非几个人的工作,它经历了一个漫长而曲折的过程。早期的数学家们勇于开拓并征服了众多的科学领域,把微积分应用到天文学、力学、光学、热学等各个领域,为微积分的发展提供了广阔的空间,并在此过程中形成了数学的一些重要分支,如微分方程、无穷级数、微分几何、变分法、复变函数等等,大大扩展了数学研究的围。所以,微积分的建立与发展对数学历史发展有着重要的意义。 数学的发展有其悠久的历史,尤其是微积分的发展,不但是一部文明史,而且也是一部文化发展的史书。无论是公元600年以前的早期数学,还是公元前600年到300年之间的古希腊数学,数学都作为一门有组织的、独立的和科学的学课而存在。但此时的数学,往往是为数不多的数学家们研究的对象,普及率很低,人们普遍使用的数学仅仅停留在简单的加减乘除阶段。 经过数百年的发展与演变,如今的数学已然已经成为一门大众化的课程,我们从小学开始就学习数学,从简单的加减乘除开始到复杂的高等数学,可以说数学贯穿了我们整个学习生涯,对他的研究已经不在是少数几个数学家的专利,而是我们普及义务教育的基础的和重要的课程。 微积分作为整个数学发展过程中的重要主线,对数学的发展起着举足轻重的作用。17世纪后半叶,英国的牛顿和德国的莱布尼茨以其卓越的天才首先明

第一章 微积分的发展历史简介

第一章 微积分的发展历史简介 1.1微积分的概念 微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。 基本定义 设函数0)(=x f 在],[b a 上有解,在],[b a 中任意插入若干个分点 n n x x x x x a <<<<<=-1210 把区间],[b a 分成n 个小区间 ].,[],,[],,[12110n n x x x x x x - 在每个小区间],[1i i x x -上任取一点)(1i i x i x i <<-ζζ,作函数值)(i f ζ与小区间长度的乘积x i f ?)(ζ并作出和如果不论对],[b a 怎样分法,也不论在小区间上的点i ζ怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数)(x f 在区间[a,b]上的定积分记作K 。 微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 一元微分定义 设函数)(x f y =)在某区间内有定义,0x 及x x ?+0在此区间内。如果函数的增量)()(00x f x x f y -?+=?可表示为 0ox x A y +?=?(其中A 是不依赖于x ?的常数),而x o ?是比x ?高阶的无穷小,那么称函数)(x f 在点0x 是可微的,且x A ?称作函数在点0x 相应于自变量增量x ?的微分,记作dy ,即x A dy ?= 通常把自变量x 的增量x ?称为自变量的微分,记作dx ,即x dx ?=。于是函数)(x f y =的微分又可记作dx x f dy )('=。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。 几何意义 设x ?是曲线)(x f y =上的点M 的在横坐标上的增量,y ?是曲线在点M 对

学习高等数学的目的、作用、内容及方法

学习高等数学的目的、作用、内容及方 法 一、为什么要学习高等数学? 高等数学是高等学校许多专业学生必修的重要基础理论课程。数学主要是 研究现实世界中的"数量关系"与"空间形式"。世界上任何客观存在都有其"数"与"形"的属性特征,并且一切事物都发生变化,遵循量变到质变的规律。 凡是研究量的大小、量的变化、量与量之间关系以及这些关系的变化,就 少不了数学。同样,客观世界存在有各种不同的空间形式。因此,宇宙之大, 粒子之微,光速之快,实事之繁,…无处不用数学。 数学不但研究空间形式与数量关系,还研究现实世界中的任何形式和关系,只要这种形势和关系能抽象出来,用清晰准确的方式表达,即所谓化为数学模型。不但如此,数学还研究在逻辑上可能的形式。 "空间形式"必须理解为一切类似于空间形式的形式:射影空间、非欧几里 得空间、拓扑空间、无穷维空间的空间、微分流形… "数量关系"也要理解为一切类似于数量关系的关系:逻辑关系、语法关系…数学研究的是各种抽象的"数"和"形"的模式结构。 在今天的数学中,"数"和"形"的概念已发展到很高的境地。比如,非数之"数"的众多代数结构,像群、环、域等;无形之形的一些抽象空间,像线性空间、拓扑空间、流形等。 恩格斯说:"要辩证而又唯物地了解自然,就必须掌握数学。" 英国著名哲学家培根说:"数学是打开科学大门的钥匙"。 德国大数学家、天文家、物理学家高斯说:"数学是科学的皇后,她常常屈尊去为天文学和其它自然科学效劳,但在所有的关系中,她都堪称第一。"

马克思还认为:"一种科学,只有当它成功地运用数学时,才能达到真正完善的地步。" 亨普尔说:经验科学中多数更加深刻的定理都是借助数学概念陈述的。 拉奥说:一个国家的科学进步可以用它消耗的数学来衡量。 考特说:数学是人类智慧王冠上最灿烂的明珠。 戴维认为:被人们如此称颂的高科技技术,本质上是一种数学技术。 霍格说:如果一个学生要成为完全合格的、多方面武装的科学家,他在其 发展初期就必定来到一座大门,并且必须通过这座大门,在这座大门上用每种 人类语言刻着同一句话:"这里使用数学语言。" 培根曾说:"数学使人精细" 罗蒙诺索夫把数学称做:"所有思想研究工作的主宰" 伽里略、惠更斯、牛顿都认为:"科学工作中的演绎数学部分所起的作用比实验部分所起的作用要大" 第一个诺贝尔物理奖得主伦琴在回答"科学家需要什么样的修养"这一问题时,说:"第一是数学,第二是数学,第三还是数学。" 被誉为"计算机之父"的冯·诺伊曼认为"数学处于人类智慧的中心领域" 数学史梗概: 第一阶段 数学萌芽时期(远古-公元前5世纪):算术几何形成时期,但它们还未分开,彼此交织在一起,没有形成完整、严格的体系,缺乏逻辑性,基本上看不到命 题证明、演绎、推理。 第二阶段

微积分发展史

微积分发展史 微积分在数学发展史上可以认为是一个伟大的成就,由于微积分的创立不仅解决了当时的一些重要的科学问题,而且由此产生了数学的一些重要分支,如微分方程、无穷级数、微分几何、变分法、复变函数等。这个伟大的成就当然首先应该归功于牛顿(Newton)和莱布尼茨(Leibniz),但是在他们创立微积分之前,微积分问题至少被17世纪十几个大数学家和几十个小数学家探索过,得出了一些有价值的结论,且具有很大启发性。牛顿和莱布尼茨是在前人的基础上将微积分发展到了高峰。 17世纪遇到了哪些问题呢?主要有四类问题。第一类是速度和加速度问题。17世纪遇到的速度和加速度问题大都是变量问题,即变速与变加速。这与17世纪以前所遇到的大量常速问题所不同,如何求速度与加速度成为当时科学家们所关心的问题。第二类是切线问题。17世纪光学是一门重要的学科,例如透镜如何设计,这涉及切线与法线。切线问题在17世纪以前虽也解决过,但只限于圆锥曲线,而切线的定义是只与曲线接触一点的直线,这种情况不能适应17世纪所遇到的复杂的曲线的切线问题,另外物体运动时在它轨迹上的运动方向也涉及切线。第三类是最大值和最小值问题。炮弹的最大射程如何求,行星运行时离开太阳的最远和最近距离如何求,都是17世纪迫切要解决的。第四类是求曲线的长、曲线围成的面积和曲面围成的体积、物体的重心、引力等。这些问题在17世纪之前个别地解决过,但必须有较好的技巧,且方法缺乏一般性。 尝试解决这四类问题在牛顿、莱布尼茨之前已经有过不少经验,罗贝瓦尔(Roberval)从炮弹的水平速度与垂直速度构成矩形的对角线出发,认为这条对角线就是炮弹的轨迹切线。牛顿的老师巴罗(Barrow),也给出了求切线的方法。17世纪开普勒(Kepler)证明了所有内接于球的,具有正方形底的正平行四面体中立方体的容积最大。当越来越接近最大体积时,相应尺寸的变化对体积的变化越来越小(就是我们现在所说的极值处的导数为0)。费马(Fermat)在1629年已经找到与现在求最大值和最小值的方法实质相同的方法。卡瓦列利(Cavalieri)在他老师伽利略(Galileo)和开普勒的影响下,并在他老师的敦促下,考查了微积分,并且获得n为正整数时的积分公式(1639年) 1634年罗贝瓦尔求出了旋轮线x=R(t-s in t),y=R(1-c os t)一个拱下的面积。他还求出了正弦曲线一个拱下的面积及它绕底旋转的体积。一些图形的重心也计算出来了。格利哥利(Gregory)在1647年算出了 以上都是一些具体的结果,在原则性的问题上,如微积分的主要特征——积分与微分互逆,也早为人们所遇到。托里拆利(Torricelli)通过特殊的例子看到了变化率问题本质上是面积问题的反问题。费马同样也在特殊的例子中知道了面积与导数的关系。格利哥利1668年证明了切线问题是面积问题的逆问题。巴罗也看到了这种关系,但他们不是没有看到其普遍意义或一般性,就是没引起重视和看到其重要性。17世纪的前三分之二的时间内,微积分的工作被困拢在一些细节问题里,作用不大的细微末节的推理使数学家们精疲力竭了。

怎么学习微积分

怎么学习微积分 怎么学好微积分 1.尽快适应环境。 大学生活是人生的一大转折点。大学时期注重于培养同学们的独立生活、独立思考、独立分析问题和解决问题的能力,而不像中学那样有一个依赖的环境。新同学尽快适应大学生活,形成一个良好的开端,这对四年的大学生涯是有益的。 2.注意中学数学和微积分的区别与联系。 中学数学课程的中心是从具体数学到概念化数学的转变。中学数学课程的宗旨是为大学微积分作准备。学习数学总要经历由具体到抽象、由特殊到一般的渐进过程。由数引导到符号,即变量的名称;由符号间的关系引导到函数,即符号所代表的对象之间的关系。微积分首先要做的是帮助学生发展函数概念——变量间关系的表述方式。这就把同学们的理解力从数推进到变量、从描述推进到证明、从具体情形推进到一般方程,开始领会到数学符号的威力。但微积分的主要内容是微积分,它继承了中学的训练,它们之间有千丝万缕的联系。 3.尽快适应微积分课程的教学特点。 为了适应21世纪微积分课程的教学改革,微积分课程的教学也发生了很大的变化,在传统的教学手段的基础上,采用了更加具体化、形象化的现代教育技术,这也是一般中学所没有的,因此,同学们在进入大学以后,不仅要注意微积分课程的内容与中学数学的区别与联系,还要尽快适应微积分课程的新的教学特点。认真上好第一节微积分课,严格按照任课老师的要求去做。若能坚持做到,课前预习,课上听讲,课后复习,认真完成作业,课后对所学的知识进行归纳总结,加深对所学内容的理解,从而也就掌握了所学的知识,就不难学好微积分这门课。有些同学就是没有把握好自己,

一看微积分一开始的内容和中学所学内容极其相似,就掉以轻心,认为自己看看就会了,要么不听课,要么不完成作业,结果导致后面的章节听不懂,跟不上,甚至有的同学就一直跟不上,学期未成绩不理想,甚至不及格。记住以下原则: (a)只要有可能,画出示意图.(b)以一步步紧扣、合乎逻辑的方式写下你的求解过程,就像你是在向别人讲解这个求解过程.(c)思考一下为什么要在那里设一道习题,为什么要指定做这道习题?该习题和其他指定的习题有什么关系。 3.使用你的图形计算器和计算机 如果有可能的话,尽可能多地做图形和计算机探究习题,即使是没有指定要你做的题,也要根据图形为重要的概念和关系提供洞察和形象的表示。数学是能展现模式图形计算器或计算机可以使你们不费力地去研究手算起来太困难或冗长而确实需要计算的实际问题和例子。 4.每当学完教材的一节试着独立地对关键之处写一个简短的描述 如果你成功了,你可能解了有关的内容:如果你没有做到,你就会明白在你的理解过程中的差距在那里 微积分在生活中的应用 在现实生活中,我们身边的一切事物都能为数学研究提供服务,实际上,微积分本身就存在于生活的各项事物中,只有不断深入挖掘,才能透过现象见本质,将抽象的数学付诸于具体事物中。当我们对某个抽象的东西难以理解,就应将它还原到具体的事物中,也就是实现“具体―抽象―具体”的思维方式,以求不断进步、不断完善。 (一)排队等待中的极限夹逼定理 在数列极限的夹逼定理中,画出3条与轴线垂直的直线,分别代表3个垂直于平面的平面,从左到右将其标记为Yn,a,Zn,并将a 假设为固定形式,Yn、Zn都向a无限接近,而此时在Yn与Zn之间随意放入平面Xn,此值都是无限向a趋近,这就是夹逼定理的形象

数学的发展历史

数学的发展历史 数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。而数学的历史更从另一个侧面反映了数学的发展。但有一点值得注意的是,人是这一方面的创造者,因此人本身的作用起着举足轻重的作用,首先表现为是否爱数学,是否愿为数学贡献毕生的精力。正是这主导着数学。 数学史是研究数学发展历史的学科,是数学的一个分支,和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 数学出现于包含著数量、结构、空间及变化等困难问题内。一开始,出现于贸易、土地测量及之后的天文学;今日,所有的科学都存在着值得数学家研究的问题,且数学本身亦存在了许多的问题。而这一切都源于数学的历史。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。从历史时代的一开始,数学内的主要原理是为了做测量等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构方面的研究。数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。 数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期: 1.数学萌芽期(公元前600年以前); 2.初等数学时期(公元前600年至17世纪中叶); 3.变量数学时期(17世纪中叶至19世纪20年代); 4.近代数学时期(19世纪20年代至第二次世界大战); 5.现代数学时期(20世纪40年代以来)

[2018年最新整理]微积分发展历程(二)

微积分发展历程(二) 微积分学的诞生 随着时代的发展,实践中提出了越来越多的数学问题,待数学家们加以解决,如曲线切线问题、最值问题、力学中速度问题、变力做功问题……初等数学方法对此越来越无能为力,需要的是新的数学思想、新的数学工具。不少数学家为此做了不懈努力,如笛卡尔、费马、巴罗……并取得了一定成绩,正是站在这些巨人的肩膀上,牛顿、莱布尼兹以无穷思想为据,成功运用无限过程的运算,创立了微积分学。这新发现、新方法的重要性使当时的知识界深感震惊,因而出现了一门崭新的数学分支:数学分析。这一学科的创立在数学发展史上翻开了崭新一页,谱写了光辉动人的乐章。 1)微积分的发展 无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。 不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor )、麦克劳林(C.Maclaurin )、棣莫弗(A.de Moivre )、斯特林(J.Stirling )等。泰勒(1685_1731)做过英国皇家学会秘书。他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理()2 3 ....22..112123v v v x z v x x x x z z z ∴+=++++其中v 为独立变量z 的增量,.x 和. z 为流数。泰勒假定z 随时间均匀变化,故.z 为常数,从而上述公式相当于现代形式的“泰勒公式”: ()()()()2 2!h f x h f x hf x f x '''+=+++。 泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。 泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。 麦克劳林之后,英国数学陷入了长期停滞的状态。微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。与此相对照,在英吉利海峡的另一边,新分析却在莱布尼茨的后继者们的推动下蓬勃发展起来。 2)积分技术与椭圆积分 18世纪数学家们以高度的技巧,将牛顿和莱布尼茨的无限小算法施行到各类不同的函数上,不仅发展了微积分本身,而且作出了许多影响深远的新发现。在这方面,积分技术的推进尤为明显。 当18世纪的数学家考虑无理函数的积分时,他们就在自己面前打开了一片新天地,因为他们发现许多这样的积分不能用已知的初等函数来表示。例如雅各布?伯努利在求双纽线

《高等数学》学习的重要性及学习方法探究

《高等数学》学习的重要性及学习方法 探究 【摘要】:高等数学是理工科学生的一门必修基础课,其重要 性以及对大学生的影响不言而喻。本文通过分析高数学习的意义及 特点,探讨了高等数学课程学习的重要性;同时针对大学生学习特点 以及可能出现的问题,提出了相应的建议。 【关键词】:基础课;高等数学;学习方法 大学高等数学作为一门重要的基础课,在各个专业的重要性不 言而喻。如何提高学生掌握基础高数知识的能力和方法是一个很重 要的课题。作为一名大学教育工作者,通过分析高数学习的课程特 点以及大学生学习的特点,针对性地提出了高数学习的几点相关的 学习方法和建议。 1、高数在理工科专业的地位 高等数学是理工科必修的一门理论基础课程,对于理工科专业 后继课程的学习,以及大学毕业后这类工程技术人员的工作状况, 高等数学课程都起着奠基的作用。如物理,控制科学、计算机科学、工程力学、电工电子学、通信工程、信息科学…等课程,大学生只 有掌握好高等数学的知识后,才能比较顺利地学习其他的专业课程。又如当毕业走向工作岗位后,要很好地解决工程技术中的问题,势 必要经常应用到数学知识。因为在科学技术不断发展的今天,数学 方法已广泛渗透到科学技术的各个领域之中。因此,理工科大学生 在学习上一个很重要的任务是要学好高等数学这门课程,为以后的 学习和工作打下良好的基础。 2、高数课程学习的特点 我们现在学习的高等数学是由微积分学、空间解析几何、微分 方程组成,而微积分学是数学分析中主干部分,而微分方程在科学 技术中应用非常广泛,无处不在。就微积分学,可以对它作如下评价。 一是课堂大。高等数学一般是若干个小班合班上课,课堂上不 允许同学们提问。二是时间长。大学课堂里的每一堂课一般都是100分钟,两节课连上,高等数学也不例外。三是进度快。由于高等数 学的内容十分丰富,但学时又有限,因此每堂课不仅教学内容多,

分数阶微积分发展现状及展望讲课讲稿

精品文档 分数阶微积分发展现状及展望 在数学领域中,大体分为五种研究方向:基础数学,应用数学,计算数学,概率论与数理统计,统计学与控制论。这五个方向对数学在当代的发展都有不可或缺的作用。从研究内容来讲,方程、算子、群论、图论、代数、几何等等都是数学领域重要的研究对象。作为基础数学专业分数阶微分方程方向的博士生,本文将从分数阶微分方程的发展的历史及现状、本人对分数阶微分方程未来发展的看法来介绍分数阶微分的基本知识。 (一)、发展历史及现状 牛顿和莱布尼兹发明的微积分是现代数学与古典数学的分水岭。分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有了比较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到一些问题,如:需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件;因材料或外界条件的微小改变就需要构造新的模型等等。基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 对大多数研究人员和工程师而言,分数阶微积分也许还是比较陌生的,但它实际上早在300多年前就被提出。1695年9月,洛必达(L’Hospital)在给莱布尼兹的著名信件中就写到“对于简单的线性函数f(x)=x,如果函数导数次数为分数而不是整数那会怎样”。这是公认的第一次提及分数阶微分。1832年,刘维尔(Liouville)成功的应用了自己提出的分数阶导数的定义,解决了势理论问题。之后刘维尔发表的一系列文章使他成为分数阶微积分 精品文档

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

学习微积分的感想

学习微积分的感想 这个学期学习了微积分,了解了很多关于微积分的知识,在课堂上的学习和在课下的学习,让我更深层次的了解了他,运用了他。我发现他可以被广泛使用在经济学当中,在我们学习经济的过程中,无时无刻不需要他来帮助我们的学习。 微积分是高等数学中研究函数的微分。积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。在课堂上虽然没有学习的很深奥,但是还是掌握了基本的微积分知识。 在学习的路上也不一直是一帆风顺的,也会遇到很多的困难,在课堂上有时候会听不明白老师的讲解,就需要我们在课前预习,在课堂上听明白了,在课下也要学会复习,学会积极地运用和使用它。才能让我把微积分学习得更透彻。有时候也会有自己思考很久,还是做不出来的题目,这个是个,要告诉自己不能放弃,要坚持次下去,多思考就会得出答案,有时候需要向老师提问,像同学请教,才能够解答出来,不过也不能放弃,要相信自己,坚持不懈的去学习和解答。 这个学期学期微积分使我不仅仅懂得了许多专业上的知识,让我在数学的世界里遨游,也帮助了我学习了经济专业学科的知识,更让

我明白了,遇到了自己不会的题目要坚持下去,找对方法,好好使用它,就能够战胜困难,取得成功,学会运用巧妙地方法,不靠死记硬背,蛮力学习微积分,要学会用智慧去学习,灵活的学习,使用巧妙地方法解题,自己就会轻松很多,也会取得很大的成效。 在今后的学习当中,不管是基础科目,还是专业科目,都要学会坚持不懈,灵活的解决问题,不死记硬背,不放弃,不急躁,认真的对待每一科目的学习 许惠之131010415 13级金融四班

相关主题
文本预览
相关文档 最新文档