当前位置:文档之家› 12v升压48v电路图大全(五款模拟电路设计原理图详解)

12v升压48v电路图大全(五款模拟电路设计原理图详解)

12v升压48v电路图大全(五款模拟电路设计原理图详解)

12v升压48v电路图大全(五款模拟电路设计原理图详解)

12v升压48v电路图(一)直流-直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为48V,由于在通信系统中仍存在24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将48V基础电源通过直流-直流变换器变换到相应电压种类的直流电源,以供实际使用。

DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制

(1)Buck电路--降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。

(2)Boost电路--升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。

(3)Buck-Boost电路--降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。

(4)Cuk电路--降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。

还有Sepic、Zeta电路。

上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。

12v升压48v电路图(二)SX1328是一款宽电压输出,DC-DC转换器。输入电压范围是15V至32V,输出电压范围是5V至42V可调,内部MOSFET输出开关电流可高达3A,400KHz开关频率,内置软启动功能、过压保护、短路保护,采用标准的TO263-5无铅封装。同时,该芯片可用于升降压稳压方案:10V~30V输入、输出稳定在12V,高效率、低成本、性能卓越。SX1328应用电路非常简单,外围器件极少。

12v升压48v电路图(三)电动车用,48V/12V直流转换器是为了给整车照明及信号供电的装置,其电压输出为满足大灯照明(12V/35W)、转向灯(12V/8W2)和喇叭(12V /36W)分别使用或共同使用而设计,并能对负载过载起保护作用,其工作原理图见图1。

直流升压斩波电路课程设计

湖南工学院 课程设计说明书 课题名称:直流升压斩波电路的设计专业名称:自动化 学生班级:自本0903班 学生姓名:曾盛 学生学号: 09401040322 指导教师:桂友超

电力电子技术课程设计任务书 一、设计任务和要求 (1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。 (2)掌握基本电路的数据分析、处理;描绘波形并加以判断。 (3)能正确设计电路,画出线路图,分析电路原理。 (4)广泛收集相关资料。 (5)独立思考,刻苦专研,严禁抄袭。 (6)按时完成课程设计任务,认真、正确的书写课程设计报告。 二、设计内容 (1)明确设计任务,对所要设计地任务进行具体分析,充分了解系统性能,指标要求。 (2)制定设计方案。 (3)迸行具体设计:单元电路的设计;参数计算;器件选择;绘制电路原理图。 (4)撰写课程设计报告(说明书):课程设计报告是对设计全过程的系统总结。 三、技术指标 斩波电路输出电压为340±5V,直流升压斩波电路输入电压为直流流24V~60V,输出功率为100W。

绪论 ........................................................... - 1 - 第1章直流升压斩波电路的设计思想 .............................. - 3 - 1.1直流升压斩波电路原理..................................... - 3 - 1.2参数计算................................................. - 4 - 第2章直流升压斩波电路驱动电路设计 ............................ - 5 - 第3章直流升压斩波电路保护电路设计 ............................ - 6 - 3.1过电流保护电路........................................... - 6 - 3.2过电压保护电路........................................... - 6 - 第4章直流升压斩波电路总电路的设计 ............................ - 7 - 第5章直流升压斩波电路仿真 .................................... - 8 - 5.1仿真模型的选择........................................... - 8 - 5.2仿真结果及分析........................................... - 8 - 第6章设计总结 ............................................... - 10 - 参考文献 ...................................................... - 11 - 附录:元件清单 ................................................ - 12 -

经典模拟、数字电路设计

实验一 单级阻容耦合放大器设计 一、设计任务书 1.已知条件 电源电压V cc =+12V,信号源U s =10mV,内阻R s =600Ω,负载R L =2k Ω。 2.主要技术指标 输入电阻R i >2k Ω,频率响应20Hz ~500kHz,输出电压U o ≥0.3V,输出电阻R O <5k Ω,电路工作稳定。 3.实验用仪器 双踪示波器一台,信号发生器一台,直流稳压电源一台,万用表一台。 二、电路设计 1.电路形式讨论 由于电压增益A V =U O /U S =30,采用一级放大电路即可,要求电路工作稳定,采用分压式电流负反馈偏置电路,输入电阻比较大和频率响应比较宽,引入一定的串联负反馈,电路如图。 2.具体电路设计 (1)静态工作点选择 I CQ =2mA,V BQ =3V (选择硅管) (2)晶体管的选择 78) (2 =+=L s i V R R R A β取100, U CEO >V CC =12V,I CM >2I CQ =4mA, P CM >I CQ V CC =24mW, f T >1.5βf H =75MHz 选择9014:U CEO >20V,I CM >100mA, P CM >300mW,f T >80MHz,Cb'c<2.5pF (3)元件参数的计算 R E =(V BQ -0.7)/I CQ ≈1.2k Ω I BQ =I CQ /β=20μA 则 Ω== k I V R BQ BQ B 15102,R B2=15k Ω Ω=-= k I V V R BQ BQ CC B 45101,取标称值47k Ω Ω≈++=k mA I mV r EQ be 6.1) (26) 1(300β, 取R F =10Ω.则Ω=++=k R r R F be i 16.2)1('β Ω==k R R R R i B B i 12.2////'21,取A V =40,

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

模拟电路课程设计..

模拟电子技术课程设计任务书 一、课程设计的任务 通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 二、课程设计的基本要求 1、掌握电子电路分析和设计的基本方法。包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。 2、培养一定的自学能力、独立分析问题的能力和解决问题的能力。包括:学会自己分析解决问题的方;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、再判断的基本方法解决实验中出现的一般故障;能对实验结果独立地进行分析,进而做出恰当的评价。 3、掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。 4、巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。 5、通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。

三、课程设计任务 课题4 逻辑信号电平测试器的设计 (一)设计目的 1、学习逻辑信号电平测试器的设计方法; 2、掌握其各单元电路的设计与测试方法; 3、进一步熟悉电子线路系统的装调技术。 (二)设计要求和技术指标 在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障原因。使用这些仪器能较准确地测出被测点信号电平的高低和被测信号的周期,但使用者必须一面用眼睛看着万用表的表盘或者示波器的屏幕,一面寻找测试点,因此使用起来很不方便。 本课题所设计的仪器采用声音来表示被测信号的逻辑状态,高电平和低电平分别用不同声调的声音来表示,使用者无须分神去看万用表的表盘或示波器的荧光屏。 1、技术指标: (1)测量范围:低电平<1V,高电平>3V; (2)用1.5KH Z的音响表示被测信号为高电平; (3)用500H Z的音响表示被测信号为低电平;

模拟电路基础 教案

教师教案(2011—2012学年第一学期) 课程名称:模拟电路基础 授课学时:64学时 授课班级:20XX级光电2-4专业任课教师:钟建 教师职称:副教授 教师所在学院:光电信息学院 电子科技大学教务处

第1章半导体材料及二极管(讲授8学时+综合训练2学时) 一、教学内容及要求(按节或知识点分配学时,要求反映知识的深度、广度,对知识点的掌握程度(了解、理解、掌握、灵活运用),技能训练、能力培养的要求等) 1.1 半导体材料及其特性:理解并掌握本征半导体与杂质半导体(P型与N 型)的导电原理,本征激发与复合、多子与少子、漂移电流与扩散电流的区别;理解并掌握PN结的形成原理(耗尽层、空间电荷区和势垒区的含义);理解PN 结的单向导电特性与电容效应。(2学时) 1.2 PN结原理:PN结的形成:耗尽层、空间电荷区和势垒区的含义,PN结的单向导电特性,不对称PN结。(2学时) 1.3 晶体二极管及应用:理解并掌握二极管单向导电原理及二极管伏安特性方程;理解二极管特性随温度变化的机理;理解并掌握二极管的四种等效电路及选用原则与区别;理解并掌握二极管主要参数;了解不同种类二极管区别(原理),了解硅管与锗管的区别;理解稳压二极管的工作原理。(4学时) 二、教学重点、难点及解决办法(分别列出教学重点、难点,包括教学方式、教 学手段的选择及教学过程中应注意的问题;哪些内容要深化,那些内容要拓宽等等) 重点:半导体材料及导电特性,PN结原理,二极管单向导电特性及二极管方程,二极管伏安特性曲线及其温度特性。 难点:晶体二极管及应用,PN结的反向击穿及应用。 三、教学设计(如何讲授本章内容,尤其是重点、难点内容的设计、构思) 重点讲解二极管的单向导电性,二极管单向导电特性及二极管方程,二极管伏安特性曲线及其温度特性,二极管导通电压与反向饱和电流,二极管的直流电阻与交流电阻。反向击穿应用:设计基本稳压管及电路。

12v升压48v电路图大全(五款模拟电路设计原理图详解)

12v升压48v电路图大全(五款模拟电路设计原理图详解) 12v升压48v电路图(一)直流-直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为48V,由于在通信系统中仍存在24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将48V基础电源通过直流-直流变换器变换到相应电压种类的直流电源,以供实际使用。 DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制 (1)Buck电路--降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。 (2)Boost电路--升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。 (3)Buck-Boost电路--降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。 (4)Cuk电路--降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电容传输。 还有Sepic、Zeta电路。 上述为非隔离型电路,隔离型电路有正激电路、反激电路、半桥电路、全桥电路、推挽电路。 12v升压48v电路图(二)SX1328是一款宽电压输出,DC-DC转换器。输入电压范围是15V至32V,输出电压范围是5V至42V可调,内部MOSFET输出开关电流可高达3A,400KHz开关频率,内置软启动功能、过压保护、短路保护,采用标准的TO263-5无铅封装。同时,该芯片可用于升降压稳压方案:10V~30V输入、输出稳定在12V,高效率、低成本、性能卓越。SX1328应用电路非常简单,外围器件极少。 12v升压48v电路图(三)电动车用,48V/12V直流转换器是为了给整车照明及信号供电的装置,其电压输出为满足大灯照明(12V/35W)、转向灯(12V/8W2)和喇叭(12V /36W)分别使用或共同使用而设计,并能对负载过载起保护作用,其工作原理图见图1。

模拟电子技术电路设计

一、课程设计目的 1通过课程设计了解模拟电路基本设计方法以及对电路图进行仿真,加深对所学理论知识的理解。 2通过解决比较简单的电路图,巩固在课堂上所学的知识和实验技能。 3综合运用学过的知识,并查找资料,选择、论证方案,完成电路设计并进行仿真,分析结果,撰写报告等工作。 4 使学生初步掌握模拟电子技术电路设计的一般方法步骤,通过理论联系实际提高和培养学生分析、解决实际问题的能力和创新能力。 二、方案论证 2.1设计思路 一般来说,正弦波振荡电路应该具有以下四个组成部分: 1.放大电路 2.反馈网络 3.选频网络 4.稳幅环节 其中放大电路和反网络构成正反馈系统,共同满足条件1=? ? F A 选频网络的作用是实现单一频率的正弦波振荡。稳幅环节的作用是使振荡幅度达到稳定,通常可以利用放大元件的非线形特性来实现。 如果正弦波振荡电路的选频网络由电阻和电容元件组成,通常成为RC振荡电路。 2.2工作原理

1.电路组成 振荡电路的电路图如2.3原理图所示。其中集成运放A 工作在放大电路,RC 串并联网络是选频网络,而且,当 f f o = 时,它是一个接成正反馈的反馈 网络。另外,R f 和R ' 支路引入一个负反馈。由原理图可见 RC 串并联网络中的串联支路和并联支路,以及负反馈支路中的R F 和R ' ,正好组成一个电桥的四个臂,所以又称文氏电桥振荡电路。 2.振荡频率和起振条件 (1)振荡频率 为了判断电路是否满足产生振荡的相位平衡条件,可假设在集成运放的同相输入端将电路断开,并加上输入电压? Ui 。由于输入电压加在同相输入端,故集成运放的输出电压与输入电压同相,即0=A ?已经知道,当 f f o = 时,RC

直流升压电路原理图

几款直流升压电路 直流升压就是将电池提供的较低的直流电压,提升到需要的电压值,其基本的工作过程都是:高频振荡产生低压脉冲——脉冲变压器升压到预定电压值——脉冲整流获得高压直流电,因此直流升压电路属于DC/DC电路的一种类型。 在使用电池供电的便携设备中,都是通过直流升压电路获得电路中所需要的高电压,这些设备包括:手机、传呼机等无线通讯设备、照相机中的闪光灯、便携式视频显示装置、电蚊拍等电击设备等等。 一、几种简单的直流升压电路 以下是几种简单的直流升压电路,主要优点:电路简单、低成本;缺点:转换效率较低、电池电压利用率低、输出功率小。这些电路比较适合用在万用电表中,替代高压叠层电池。

二、24V供电CRT高压电源 一些照相机CRT使用11.4cm(4.5英寸)纯平面CRT作为显示部件,其高压部件的阳极电压为+20kV,聚焦极电压为+3.2kV,加速极电压为+1000V,高压部件供电为直流24V。以下电路是为替换维修这些显示器的高压部件而设计(电路选自网络文章,原作者不详)。该电路的设计也可为其他升压电路设计提供参考。 基本原理:NE555构成脉冲发生器,调节电位器VR2可使之产生频率为20kHz左右的脉冲,电位器VR1调脉宽。TR1为推动级,脉冲变压器T1采用反极性激励,即TR1导通时TR2截止,TR1截止时TR2导通,D3、C9、VR3、R7及D4、R6、TR3组成高压保护电路。VR2用于调频率,调节VR2可调整高压大小。 VR2选用精密可调电阻。T2可选用彩电行输出变压器变通使用。笔者选用的是东洋SE-1438G系列35cm(14英寸)彩电的行输出变压器,采用此变压器阳极电压可达20kV,再适当选取R8的阻值使加速极电压为+1000V、R9的阻值使聚焦极电压为+3.2kV即可。整个部件采用铝盒封装,铝壳接地,这样可减少对电路干扰。 直流升压电压电路图集锦: 三极管升压电路:

模拟电路设计方案书微积分电路设计方案书

模拟电路设计(九)微分、积分电路 作者:宇量文章来源:Internet 点击数:613 更新时间:2007-1-28 23:13:57 内容标题导览:|积分电路|OP增幅积分电路的误差|利用实验观察积分电路的动作|微分电 路| 本章节要介绍如何利用电阻与电容制作负归返电路,进行微分与积分的演算,由于积分电路几乎都是使用模拟电路,为了使工程人员对对微分与积分有更深入的了解,因此最后会复习相关基础理论。 积分电路 积分电路属于应用非常广泛的电路,而且积分电路几乎都是使用模拟电路。积分的运作可以使信号的变动平均化,同时降低杂信的影响。由于最近几乎不再使用OP增幅器单体的积分演算电路,因此接着要讨论的对象是以可将波形作A-D转换,同时还可将数字资料作积分的电路为主。 ?积分电路的概念 图1(a)是积分电路的基本概念,该电路的输出入特性可用下式表示: 通常V out(0) 的初期值会被视为0,不过实际动作时却往往无法忽略,这种情况必需使后述的积分电容短路,同时尽量使0 reset。若使用式(1)的符号重新整理,则输出入传达关数G(jω)可用下

示表示: 以上式子若作成图标就变成图1(b)的频率特性图,图中的积分电路的gain会与频率成反比,并以-6dB/oct速度变化,而位相则延迟900。 图1 积分电路的概念图与频率特性 ?利用CR的积分电路 图2(a)是CR积分电路,假设图2(b)输入信号V ST(step关数)时,输出V out就可用下示表示:

CR为具备时间次元的时定数(T)。图2(c)是时间与输出电压的反应特性,如果超过5T以上等待时间,输出电压几乎可说是与输入电压相同,本电路的输出入传达关数G(jω)如下所示: 图3的点线表示频率特性并非真实的积分电路,若要获得近似性积分动作,必需是在ω>1/CR 的前提下才能达成,具体方法是使ω>10/CR 。

工程师常用模拟电路设计1

工程师常用模拟电路设计、计算、仿真及制作 湖北民族大学杨庆 概述 模拟电路是电子技术类工程师必须熟练掌握的课程,在模拟电路中有许多基本电路是工程师们在设计电子系统必不可少的。例如,几乎绝大部分的电子系统都需要将交流电源变为直流电源,供电子系统使用,因此整流、滤波、稳压等模拟电路就成为电子工程师必须熟练掌握的电路。又如,各种传感器采集的信号通常都非常微弱,必须放大到一定程度,才能利用计算机处理,因此各种放大电路也就是工程师们必须熟练掌握的电路。但是在实际工作中,模拟电路往往并没有引起工程师们的足够重视。有鉴于此,本书将模拟电路中的常用电路的设计、计算、仿真及制作做一个归纳,供工程师及电子爱好者参考。 第一章二极管及其应用电路 1.1整流二极管及其应用电路 1.1.1二极管半波整流及电容滤波电路 1)二极管半波整流电路 最简单的二极管整流电路是二极管半波整流电路,其电路原理如图1.1所示。半波整流电路的计算参数主要有如下: V L=0.45V1 V D=V1 I L=V L/R L=0.45V1/R L 2)二极管半波整流电容滤波电路 二极管半波整流电容滤波电路如图1.2所示。半波整流电容滤波电路的计算参数主要有如下: V L=0.6V2 V D=V2 I L=V L/R L=0.6V2/R L 半波整流电路由于其纹波太大,应用较少,但在对电压要求不高时,由于其电路简单,仍然有一些应用,特别在输入交流电压的频率较高时,应用不少。 电路图1.1和电路图1.2仿真如图1.3及1.4所示。

D1 RL V1XSC1 A B Ext Trig + +_ _+_ 二极管半波整流电路简单,只要二极管极性注意不接反就行。 1.1.2二极管全波整流电路 1)二极管全波整流电路 常见的二极管全波整流电路如图1.5所示。全波整流电路的计算参数主要有如下: V L =0.9V 1 V D =2V 1 I L =V L /R L =0.9V 1/R L 全波整流电路需用一个双绕组变压器,通过二极管D1、D2将变压器次级电压V1整流变成两个同向的半波整流电压在RL 上合成为一个全波整流电压,其仿真波形图如图1.7所示。 2)二极管全波整流电容滤波电路 图1.1二极管半波整流电路图1.2二极管半波整流电容滤波电路 图1.3图1.1仿真输出电压波形图1.4图1.2仿真输出电压波形 图1.5全波整流电路

开关直流升压电源(BOOST)设计

电气与电子信息工程学院 《电力电子装置设计与制作》 课程设计报告 名称:开关直流升压电源(BOOST)设计专业名称:电气工程及其自动化 班级: 13级电气工程及其自动化(专升本)班学号: 姓名: 指导教师:南光群张智泉 设计时间:2014年11月24日——12月5日 设计地点:K2-306及K2-414实验室

开关电源装置设计与制作报告成绩评定表 指导教师签字:

《电力电子装置设计与制作》课程设计任务书 2014~2015学年第一学期 学生姓名:专业班级:13级电气工程及其自动化(专升本)班指导教师:张智泉南光群工作部门:电气与电子信息工程学院 一、课程设计题目:电力电子装置设计与制作 二、课程设计内容 根据题目选择合适的输入输出电压进行电路设计,在Protel或OrCAD软件上进行原理图绘制;满足设计要求后,再进行硬件制作和调试。如实验结果不满足要求,则修改设计,直到满足要求为止。 设计题目选: 题目二:开关直流升压电源(BOOST)设计 主要技术指标: 1)输入交流电压220V(可省略此环节)。 2)输入直流电压在8-18V之间。 3)输出直流电压10-25V,输出电压相对变化量小于2%。 4)输出电流1A。 5)采用脉宽调制PWM电路控制。

三、进度安排 四、基本要求 1、独立设计原理图各部分电路的设计; 2、制作硬件实物,演示设计与调试的结果。 3、写出课程设计报告。内容包括电路图、工作原理、实际测量波形、调试分析、测量精度、结论和体会。 4、写出设计报告:不少于3000字,统一复印封面并用A4纸写出报告。 ○1封面、课程设计任务书 ○2摘要,关键词(中英文) ○3方案选择,方案论证 ○4系统功能及原理。(系统组成框图、电路原理图) ○5各模块的功能,原理,器件选择 ○6实验结果以及分析 ○7设计小结 ○8附录---参考文献

《模拟电子技术基础》学习心得

《模拟电子技术基础》学习心得 自动化一班刘文杰20151506087 时间过得真快,为期一学期的《模拟电子技术基础》的学习就快结束了。还清晰记得开学初刚拿到这本书的时候,面对如此厚的一本书,彷佛感受到了今后学习的艰辛。刚开始接触时,感觉这门课真的很难,虽然时间花得比较多,但还是收效甚微。在后来的几个星期,我下定决心坚持预习,在自己的努力下,终于跟上了老师的思路和进度,收效与时间成正比。总的来说,感觉对这门课程的吸收还是比较理想的。 很高兴自己能够遇上如此负责的老师。每次上课听着老师亲切的声音和不间断的讲解,我都彷佛能够看到老师辛苦备课的情形。听了老师的课后,我对书中内容的了解更加清晰和深刻了,课后不用花很多时间来巩固,有种事半功倍的成就感。老师对作业的要求也使我获利不少,因为老师每次交作业后都会仔细讲解一番。我觉得这样自己能够更加积极主动地去对待作业,可以更加自由地支配作业、预习、巩固的时间,使时间的利用率最高。另一方面,我觉得老师不仅是传授我们知识,更是教我们如何做人,尤其是在守时和尊重人方面。要想获得他人的尊重,首先要学会尊重他人。 上完了这学期的《模拟电子技术基础》课,收获了很多,既扩充了自己的知识和思维,又懂得如何更加完善地做人。第一,掌握一些思考的方法,对待问题比较严谨。解决一个问题,应该选用正确的方法,否则将会很难甚至无法解决一

个问题。例如,在求不同组态负反馈的电压放大倍数时,不同组态有不同的方法,方法上必须要对应。对于同一问题的不同解法,尤其要注意方法的适用范围,在合适的范围内使用方法。例如,在用微变等效电路求解有关基本放大电路时,只有输入信号是低频小信号时才成立,否则会造成很大的误差甚至是错误。在分析一些比较复杂的问题时,要学会站在更高的层次看待问题,要学会模块化地分析问题而不局限于其中的每个元件。例如,在运算放大电路分析中,在掌握基本模块如反相比例运放、同相比例运放等的前提下,对一些较为复杂的电路,可利用叠加原理看成是这些基本模块的叠加,从而简化问题的分析。第二,对一些工程思想有了初步的认识。俗话说:人无完人。当然作为每个具体的电路,在具有优点的同时肯定具有缺点的。我们分析问题的时候,不能一味地钻牛角尖,幻想找到一个能够十全十美解决问题的方法。很多时候,我们可以根据实际的要求,作一些合理的近似。先主要考虑最主要因素的影响,而忽略一些次要因素的影响,然后再在主要因素主导的方向下,结合实际的要求考虑其他次要因素。这样做往往能很大程度上简化问题,但又不会产生很大的误差。最后,自己更加深刻体会到了守时的重要性。虽然我们不能驾驭时间,但时间观淡薄的人将不会有很大的成就。守时不是一种形式,而是一种态度! 黑夜中的船因有灯塔而不会迷失方向,而我坚信:《模拟电子技术基础》课上的收获,将使我终生受用。

一种非常实用的Boost升压电路原理详解

一种实用的BOOST电路 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC /DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boos t拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

经典的20个模拟电路原理及其电路图汇总

经典的20个模拟电路原理及其电路图对模拟电路的掌握分为三个层次:初级层次:是熟练记住这二十个电路,清楚这二十个电路的作用。只要是电子爱好者,只要是学习自动化、电子等电控类专业的人士都应该且能够记住这二十个基本模拟电路。 中级层次:是能分析这二十个电路中的关键元器件的作用,每个元器件出现故障时电路的功能受到什么影响,测量时参数的变化规律,掌握对故障元器件的处理方法;定性分析电路信号的流向,相位变化;定性分析信号波形的变化过程;定性了解电路输入输出阻抗的大小,信号与阻抗的关系。有了这些电路知识,您极有可能成长为电子产品和工业控制设备的出色的维修维护技师。 高级层次:是能定量计算这二十个电路的输入输出阻抗、输出信号与输入信号的比值、电路中信号电流或电压与电路参数的关系、电路中信号的幅度与频率关系特性、相位与频率关系特性、电路中元器件参数的选择等。达到高级层次后,只要您愿意,受人尊敬的高薪职业--电子产品和工业控制设备的开发设计工程师将是您的首选职业。 一、桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形: 3、计算:Vo, Io,二极管反向电压。

二、电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐压值选择。 三、信号滤波器 1、信号滤波器的作用: 与电源滤波器的区别和相同点: 2、LC 串联和并联电路的阻抗计算,幅频关系和相频关系曲线。 3、画出通频带曲线。 计算谐振频率。

四、微分和积分电路 1、电路的作用,与滤波器的区别和相同点。 2、微分和积分电路电压变化过程分析,画出电压变化波形图。 3、计算:时间常数,电压变化方程,电阻和电容参数的选择。

升压(自举)电路原理

自举电路也叫升压电路,利用自举升压二极管,自举升压电容等电子元件,使电容放电电压和电源电压叠加,从而使电压升高.有的电路升高的电压能达到数倍电源电压。 升压电路原理 举个简单的例子:有一个12V的电路,电路中有一个场效应管需要15V的驱动电压,这个电压怎么弄出来?就是用自举。通常用一个电容和一个二极管,电容存储电压,二极管防止电流倒灌,频率较高的时候,自举电路的电压就是电路输入的电压加上电容上的电压,起到升压的作用。 升压电路只是在实践中定的名称,在理论上没有这个概念。升压电路主要是在甲乙类单电源互补对称电路中使用较为普遍。甲乙类单电源互补对称电路在理论上可以使输出电压Vo达到Vcc的一半,但在实际的测试中,输出电压远达不到Vcc的一半。其中重要的原因就需要一个高于Vcc的电压。所以采用升压电路来升压。 开关直流升压电路(即所谓的boost或者step-up电路)原理 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图1. 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

《模拟电路课程设计》设计课题与要求

11级《模拟电路课程设计》设计课题与要求 一、设计课题 设计课题1、直流稳压电源 (输入电压为220V,50Hz市电,输出为直流稳定电压)。 A:分立元件方式 技术要求:额定输出电压:12v,10-14v连续可调;额定输出电流1.5A; 满载纹波峰峰值小于60mv; 稳压系数Sv≤5×10-3; 主要测量内容:最大输出电流,纹波峰峰值,稳压系数,电压调整率。 B:集成稳压方式(不可使用可调三端器件) 技术要求:额定输出电流2A; 额定输出电压:12V,10-14V连续可调; 保护电路(过热、过流、过压); 满载纹波峰峰值小于60mv; 输出电阻不大于0.5Ω; 稳压系数Sv≤3×10-3; 主要测量内容:最大输出电流,输出电阻,纹波峰峰值,稳压系数,电压调整率。 设计课题2、音响放大器(简单音频通带放大电路)(输入语音信号-麦克风)注:功放电路原则上不使用功放集成电路。 技术要求:前置放大、功放:输入灵敏度不大于10mV rms,f L≤500Hz,f H≥10kHz; 有音量控制功能; 额定输出功率P O≥5W(测试频率:1kHz); 负载:扬声器(8Ω、5W)。 主要测量内容:最大输出功率,输出电阻,输入灵敏度,f L,f H。 设计课题3、信号发生器 技术要求:产生三种波型(方波,三角波,正弦波) 频率范围:1k~10KHz; 输出内阻:不大于50Ω; 负载50Ω时输出电压不小于5V; (加功放时可使用集成功放电路1W) 主要测量内容:输出信号频率范围,输出电阻,输出功率。 二、要求 1、每位同学至少完成一个设计课题的原理图和参数设计、Proteus或Multisim软件仿真与作品Protel电路板制作,最终完成产品制作以及调试,提交一份课题的设计与测试报告(包括电子版和打印件),课题设计与设计报告的主要内容包括电路图、设计与计算过程、测试数据与分析等。 2、有能力的同学可以完成多个设计课题。 3、依据作品现场测试的指标评定课程成绩。

升压降压电源电路工作原理

b o o s t升压电路工作原理 boost升压电路是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一: 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。

如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付.

升压电路原理的分析

boost升压电路 2009-06-09 16:18 开关直流升压电路(即所谓的boost或者step-up电路)原理 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。

一些补充 1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。

升压电路的原理与实现

龙源期刊网 https://www.doczj.com/doc/251762956.html, 升压电路的原理与实现 作者:袁幸杰郑轶卢涛冯向超 来源:《电子技术与软件工程》2018年第05期 摘要随着新能源技术的不断发展,对电力变换技术也提出了更高的要求,尤其许多新能源电池自身的属性决定其输出的电压较低而电流较大,无法被用电设备直接使用,需要进行电力变换。本文针对新能源电池输出电压低、电流大这一特点。对三种不同的升压方式进行了对比,提出并实现了一种基于BOOST拓扑的升压变换电路并在此基础上进行了损耗分析。最后针对溶解氧海水电池搭建了一套电池升压管理系统,实现了低电压大电流的条件下的高效率直流升压变换,并在近海测试中取得了较好的测试效果,有效解决了该问题。 【关键词】BOOST升压电路海水电池超低压升压电池管理 随着新能源电池的不断涌现对电力变换技术也提出了更高的要求,尤其是在光伏及海水发电等领域,通常电池本身输出的电压较低而电流较大,不能直接为用电设备所用。而现有的电力变换技术通常不能够高效率的进行电能由此造成了电能无法得到充分利用。国外如荷兰等国家已经针对这一问题进行了较多的探索,其采用DCDC方式能够高效率的进行电能转换,而 目前国内并没有相应的成熟技术与产品在实际中应用。文章在对比了推挽、全桥等多种升压方法的基础上提出了一种基于BOOST拓扑的超低压升压的实现方法,能够实现升压比大于10 的低电压、大电流情况下的高效率电压转换,转换效率达到75%以上。 溶解氧海水电池作为一种以海水为电解质能够提供长期、稳定电能的新型电池,对深海观测具有重要意义,应用前景非常广泛。但是由于海水电池采用开放式结构,输出电压低电流大并且各组电池无法进行串联对海水电池输出的低电压进行升压变换是海水电池应用于水下设备的必由之路。 1 工作原理 1.1 升压方案选择 目前,DC-DC直流升压变换电路有多种结构形式,主要方式有:单端式、半桥式、全桥式、推挽式。 其中推挽式是基于逆变升压的原理,推挽式升压电路必须使用带有中心抽头的变压器,增大了变压器偏磁的风险,而且推挽式开关电源方案不适合负载变化较大的场合。桥式升压电路同样是基于逆变升压的原理。采用推挽式与桥式升压方式需要先对海水电池输出的直流电进行逆变而后再进行整流,这两种升压方式由于结构较为复杂,转换过程中的开关损耗过高,而且由于输入过低对变压器的性能要求较高,难以实现高效率的升压变换。

Boost升压斩波电路

总目录 引言 (2) 1 升压斩波工作原理 (2) 1.1 主电路工作原理 (2) 2 升压斩波电路的典型应用 (4) 3 设计内容及要求 (6) 3.1输出值的计算 (7) 4硬件电路 (7) 4.1控制电路 (7) 4.2 触发电路和主电路 (9) 4.3.元器件的选取及计算 (10) 5.仿真 (11) 6.结果分析 (14) 7.小结 (14) 8.参考文献 (14)

引言 随着电力电子技术的迅速发展,高压开关稳压电源已广泛用于计算机、通信、工业加工和航空航天等领域。所有的电力设备都需要良好稳定的供电,而外部提供的能源大多为交流,电源设备担负着把交流电源转换为电子设备所需的各种类别直流任务。但有时所供的直流电压不符合设备需要,仍需变换,称为DC/DC 变换。直流斩波电路作为直流电变成另一种固定电压的DC-DC变换器,在直流传动系统.、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。直流斩波技术已被广泛运用开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波能领域得到了广泛的应用。但以IGBT为功率器件的直流斩波电路在实际应用中需要注意以下问题:(1)系统损耗的问;(2)栅极电阻;(3)驱动电路实现过流过压保护的问题。 直流斩波电路实际上采用的就是PWM技术,这种电路把直流电压斩成一系列脉冲,改变脉冲的占空比来获得所需要的输出电压。PWM控制方式是目前才用最广泛的一种控制方式,它具有良好的调整特性。随电子技术的发展,近年来已发展各种集成式控制芯片,这种芯片只需外接少量元器件就可以工作,这不但简化设计,还大幅度的减少元器件数量、连线和焊点 1 升压斩波工作原理 1.1 主电路工作原理 1)工作原理 假设L和C值很大。V处于通态时,电源E向电感L充电,电流恒定I1,电容C向负载R供电,输出电压Uo恒定。 V处于断态时,电源E和电感L同时向电容C充电,并向负载提供能量。

相关主题
文本预览
相关文档 最新文档