当前位置:文档之家› 新版化工原理习题答案(03)第三章 非均相混合物分离及固体流态化-题解

新版化工原理习题答案(03)第三章 非均相混合物分离及固体流态化-题解

新版化工原理习题答案(03)第三章 非均相混合物分离及固体流态化-题解
新版化工原理习题答案(03)第三章 非均相混合物分离及固体流态化-题解

第三章 非均相混合物分离及固体流态化

1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m 3,直径为0.04 mm 的球形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m 3,球形度

6.0=φ的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s ,颗粒的等体积当量直径是多

少?(3)密度为7 900 kg/m 3,直径为6.35 mm 的钢球在密度为1 600 kg/m 3的液体中沉降150 mm 所需的时间为7.32 s ,液体的黏度是多少?

解:(1)假设为滞流沉降,则:

2

s t

()18d u ρρμ

-=

查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15??=-μ,所以,

()()()m 1276.0s m 1081.11881.9205.126501004.0185

2

3s 2t =???-??=-=--μρρg d u

核算流型:

3

t 5

1.2050.12760.04100.3411.8110

du Re ρμ--???===

(2)采用摩擦数群法

()()s 123

t 5

23

434 1.8110

2650 1.2059.81431.9

3 1.2050.1g Re u μρρξρ---=

??-?=

=??

依6.0=φ,9.431Re

1

=-ξ,查出:t e

t 0.3u d Re ρμ

=

=,所以: 5

5e 0.3 1.8110 4.50610m 45μm 1.2050.1

d --??==?=?

(3)假设为滞流沉降,得:

2

s t

()18d g u ρρμ-=

其中 s m 02049.0s m 32.715.0t ===θh u 将已知数据代入上式得:

()s Pa 757.6s Pa 02049

.01881

.91600790000635.02?=???-=μ

核算流型

t 0.006350.020491600

0.0308116.757

du Re ρμ??===<

2.用降尘室除去气体中的固体杂质,降尘室长5 m ,宽5 m ,高4.2 m ,固体杂质为球形颗粒,密度为3000 kg/m 3。气体的处理量为3000(标准)m 3/h 。试求理论上能完全除去的

最小颗粒直径。

(1)若操作在20 ℃下进行,操作条件下的气体密度为1.06 kg/m 3,黏度为1.8×10-5 Pa ?s 。 (2)若操作在420 ℃下进行,操作条件下的气体密度为0.5 kg/m 3,黏度为3.3×10-5 Pa ?s 。 解:(1)在降尘室内能够完全沉降下来的最小颗粒的沉降速度为:

m 03577.0m 5

5360027320

2733000s v,t =??+?

==bl q u 设沉降在斯托克斯区,则:

2

t ()0.0357718s d g u ρρμ

-==

51.98510m 19.85μm d -=

?=

核算流型:

5t t 5

1.985100.03577 1.06

0.041811.810du Re ρ

μ--???===

原设滞流区正确,能够完全除去的最小颗粒直径为1.985×10-5 m 。

(2)计算过程与(1)相同。完全能够沉降下来的最小颗粒的沉降速度为:

s m 0846.0s m 5

53600273420

2733000s v,t =??+?

==bl q u 设沉降在斯托克斯区,则:

54.13210m 41.32μm d -=

=?=

核算流型:

5t t 5

4.132100.08460.5

0.052913.310du Re ρ

μ--???===

原设滞流区正确,能够完全除去的最小颗粒直径为4.132×10-5 m 。

3.对2题中的降尘室与含尘气体,在427 ℃下操作,若需除去的最小颗粒粒径为10 μm ,试确定降尘室内隔板的间距及层数。

解:取隔板间距为h ,令

t

L h u u =

则 t L

h u u

=

(1) s m 1017.0m 2

.45273

42727336003000s v,=?+?==bH q u

10 μm 尘粒的沉降速度

()()()m 10954.4m 10

31.31881

.95.0300010101835

2

6s 2t ---?=???-??=-=μρρg d u

由(1)式计算h

∴ 0.244m m 10954.41017.05

3=??=

-h 层数2.17244.02

.4===h H n 取18层

0.233m m 18

2.418===H h 核算颗粒沉降雷诺数:

644

t t 5

1010 4.954100.5e 7.51013.310du R ρ

μ----????===?

核算流体流型:

e 52250.233

(

)0.10170.5

5.23368621003.310

bh u d u b h Re ρρμμ-????+====

密度ρ=996.9 kg/m 3,黏度μ=0.897 3×10-3 Pa ?s 。固体颗粒为棱长0.08~0.7mm 的正方体。已知:方铅矿密度ρs1=7 500 kg/m 3,石英矿密度ρs2=2 650 kg/m 3。 假设粒子在上升水流中作自由沉降,试求(1)欲得纯方铅矿粒,水的上升流速至少应为多少?(2)所得纯方铅矿粒的尺寸范围。 解:(1)水的上升流速 为了得到纯方铅矿粒,应使全部石英粒子被溢流带出,因此,水的上升流速应等于或略大于最大石英粒子的自由沉降速度。 对于正方体颗粒 ,应先算出其当量直径和球形度。设l 代表棱长,V p 代表一个颗粒的体积。 颗粒的当量直径为

()m 10685.8m 107.0π

6π6π6433

3333

p e -?=?===-l V d

因此,颗粒的球形度,

2

e

s 2p π0.8066d S S l

φ=

=== 用摩擦数群法计算最大石英粒子的沉降速度,即

32s 2t

2

4()e 3d g

R ρρρξμ

-=

17538)108973.0(381

.99.996)9.9962650()10685.8(42

334=????-???=

--

已知s φ=0.806,由图3-3查得Re t =70,则

m/s 07255.0m/s 10685.89.996108973.0704

3

e t t =????==--ρμd Re u

所以水的上升流速应取为0.07255 m/s 或略大于此值。 (2)纯方铅矿粒的尺寸范围 所得到的纯方铅矿粒中尺寸最小者应是沉降速度恰好等于0.07255 m/s 的粒子。用摩擦数群法计算该粒子的当量直径:

1

s1t

23

t

4()e 3g

R u μρρξρ--=

2011

.0)07255

.0(9.996381.9)9.9967500(108973.04323=???-??=- 已知s φ =0.806,由图3-3查得Re t =30,则

m 10722.3m 07255

.09.996108973.03043

t t e --?=???==u Re d ρμ

与此当量直径相对应的正方体棱长为

m 103m π

610722.3π

64

3

4

3

e

-?=?=

=

-d l

所得纯方铅矿粒的棱长范围为0.3~0.7 mm 。

5.用标准型旋风分离器处理含尘气体,气体流量为0.4 m 3/s 、黏度为3.6×10-5 Pa ?s 、密度为0.674 kg/m 3,气体中尘粒的密度为2 300 kg/m 3。若分离器圆筒直径为0.4 m ,(1) 试估算其临界粒径、分割粒径及压力降。(2)现在工艺要求处理量加倍,若维持压力降不变,旋风分离器尺寸需增大为多少?此时临界粒径是多少?(3)若要维持原来的分离效果(临界粒径),应采取什么措施?

解:临界直径c d =式中 m 1.04

4.04===

D B ,2/D h = Ne =5

s m 20m 2

4.01.04

.0s

v,=?

=

=

hB

q u 将有关数据代入,得

μm 10698.6m 10698.6m π

23002051

.0106.3965e ?=?=?????=

--d

分割粒径为

()()

μm 778.4m 10778.4m 674.02300204

.0106.327.027.065s i 50=?=-???=-=--ρρμu D d

压强降为

Pa 4.1078Pa 674.02

20822

2

i =??==?ρξu p

(2)i u p ,?不变

v,s v,s i 24

q q u hB =

=?

m 5657.0m 20

4

.0288i

s v,=??=

=

u q D m 1096.7m 20

2300514.345657

.0106.3927

.0965i

s e e --?=????

??==

u N B

d ρπμ

所以,处理量加倍后,若维持压力降不变,旋风分离器尺寸需增大,同时临界粒径也会增大,分离效率降低。

(3)若要维持原来的分离效果(临界粒径),可采用两台圆筒直径为0.4 m 的旋风分离器并联使用。

6.在实验室里用面积0.1 m 2的滤叶对某悬浮液进行恒压过滤实验,操作压力差为67 kPa ,测得过滤5 min 后得滤液1 L ,再过滤5 min 后,又得滤液0.6 L 。试求,过滤常数e V K ,,并写出恒压过滤方程式。

解:恒压过滤方程为: θK qq q =+e 2

2 由实验数据知: min 51=θ,231/m m 01.01

.0001

.0==

q min 101=θ,231/m m 016.0=q 将上两组数据代入上式得: K q 5)01.0(2)01.0(e 2=+ K q 10)016.0(2)016.0(e 2=+ 解得 23e /m m 007.0=q

/s m 108min /m 108.42725--?=?=K 所以,恒压过滤方程为

θ72108014.0-?=+q q (m 3/m 2,s )

或 θ921080014.0-?=+V V (m 3,s )

7.用10个框的板框过滤机恒压过滤某悬浮液,滤框尺寸为635 mm×635 mm×25 mm 。

已知操作条件下过滤常数为/s m 10225-?=K ,23e /m m 01.0=q , 滤饼与滤液体积之比为v =0.06。试求滤框充满滤饼所需时间及所得滤液体积。

解:恒压过滤方程为θK qq q =+e 22

θ5210202.0-?=+q q

332c m 1008.0m 025.0635.010=??=V

33

c m 680.1m 06

.01008.0===

v V V ,222m 0645.8m 102635.0=??=A 2323/m m 208.0/m m 0645.8680.1===A V q

代入恒压过滤方程

θ52102208.001.02208.0-?=??+ 得 min 52.39s 2.2317==θ

8.在0.04 m 2的过滤面积上以1×10-4 m 3/s 的速率进行恒速过滤试验,测得过滤100 s 时,过滤压力差为3×104 Pa ;过滤600 s 时,过滤压力差为9×104 Pa 。滤饼不可压缩。今欲用框内尺寸为635 mm×635 mm×60 mm 的板框过滤机处理同一料浆,所用滤布与试验时的相同。过滤开始时,以与试验相同的滤液流速进行恒速过滤,在过滤压强差达到6×104 Pa 时改为恒压操作。每获得1 m 3滤液所生成的滤饼体积为0.02 m 3。试求框内充满滤饼所需的时间。 解:第一阶段是恒速过滤,其过滤时间θ与过滤压差之间的关系可表示为: b a p +=?θ

板框过滤机所处理的悬浮液特性及所用滤布均与试验时相同,且过滤速度也一样,因此,上式中a ,b 值可根据实验测得的两组数据求出: 3×104=100a+b 9×104=600a+b 解得 a=120,b=1.8×104 即 4108.1120?+=?θp

恒速阶段终了时的压力差Pa 1064R ?=?p ,故恒速段过滤时间为

s 350s 120

108.110644R R =?-?=-?=a b p θ

恒速阶段过滤速度与实验时相同

m/s 105.2m/s 04

.010134

R --?=?==θA V u

23233R R R /m m 875.0/m m 350105.2=??==-θu q 根据方程3-71,

120 =a 2

R

2R

==k u ru μυ

4e R e R 108.1?===k

q

u q u r b υμ

解得: s)/(Pa m 10208528??=-.k ,23e /m m 3750.q = 恒压操作阶段过滤压力差为6×104 Pa ,所以

/s m 10250.6/s m 10610208.52223248--?=????=?=p k K 板框过滤机的过滤面积222m 8065.0m 635.02=?=A

滤饼体积及单位过滤面积上的滤液体积为 322c m 0242.00.06m 635.0=?=V

2323c /m m 5.1/m m 02

.08065.00242

.0/)(

=?==υA V q 应用先恒速后恒压过滤方程

)()(2)(R R e 2

R 2θθ-=-+-K q q q q q

将K 、q e 、q R 、q 的数值代入上式,得:

()

()()3501025.6875.05.137.02875.05.13222-?=-?+--θ

解得 s 5.662=θ

9. 在实验室用一个每边长0.16 m 的小型滤框对碳酸钙颗粒在水中的悬浮液进行过滤试验。操作条件下在过滤压力差为275.8 kPa ,浆料温度为20 ℃。已知碳酸钙颗粒为球形,密度为2 930 kg/m 3。悬浮液中固体质量分数为0.072 3。滤饼不可压缩,每1 m 3滤饼烘干后的质量为1 620 kg 。实验中测得得到1 L 滤液需要15.4 s ,得到2 L 滤液需要48.8 s 。试求过滤常数e K V 和,滤饼的空隙滤ε,滤饼的比阻r 及滤饼颗粒的比表面积a 。

解:根据过滤实验数据求过滤常数e V K ,

已知s 4.15=θ,3m 001.0=V ;s 8.48=θ,3m 002.0=V 及222m 0512.0m 16.02=?=A 代入恒压过滤方程式 θ2e 22KA VV V =+

K V 2e 360512.04.1510210?=?+--

K V 52e 36100512.08.48104104---??=?+?

联立以上两式,解得/s m 10234.425-?=K ,34e m 10547.3-?=V 滤饼的空隙滤 4471.02930

1620

1=-

=ε 悬浮液的密度 33F s F m k g /m 1050k g /m )10009277

.029300723.0(1)1(1=????

?

?

?

???+=-+=

ρ

ρρX X 以1 m 3悬浮液为基准求ν 滤饼体积33

s m 04686.0m 1620

0723.01050=?=

V , 滤液体积m 9531.01s =-=V V

∴ 0492.09531

.004686

.0s

===

V

V ν

滤饼不可压缩时,rv

p

p k K μ?=

?=22 所以,滤饼比阻为21425

33

m 10648.2m 10

234.40492.010108.27522----?=?????=?=vK p r μ 颗粒的比表面积 3

26325.02

3145.023m

m 10935.3m m ))4472.01(54471.010648.2())1(5(?=-???=-=εεr a 10.板框压滤机过滤某种水悬浮液,已知框的长×宽×高为810 mm×810 mm×42 mm ,总

框数为10,滤饼体积与滤液体积比为ν=0.1,过滤10 min ,得滤液量为1.31 m 3

,再过滤10 min ,共得滤液量为1.905 m 3,试求(1)滤框充满滤饼时所需过滤时间;(2)若洗涤与辅助时间共45 min ,求该装置的生产能力(以得到的滤饼体积计)。 解:(1)过滤面积22m 122.1310281.0=??=A 由恒压过滤方程式求过滤常数

K V 6010122.1331.1231.12e 2??=?+ K V 6020122.13905.12905.12e 2??=?+

联立解出3e m 1376.0=V ,/s m 10010.225-?=K 恒压过滤方程式为θ321034612752.0-?=+V V

33c m 2756.0m 10042.081.081.0=???=V

3m 756.2==

v

V V c

代入恒压过滤方程式求过滤时间

()()min 23.40s 2414s 10461.3/756.22752.0756.232==??+=-θ

(2)生产能力

/h m 206.0/s m 10823.4/s m 60

4524142756

.03353D

w c

=?=?+=

++=

-θθθV Q

11.在3

1067?Pa 压力下对硅藻土在水中的悬浮液进行过滤试验,测得过滤常数K =5×10-5 m 2/s ,q e =0.01 m 3/m 2,滤饼体积与滤液体积之比υ=0.08。现拟用有38个框的BMY50/810-25型板框压滤机在310134?Pa 压力下过滤上述悬浮液。试求:(1)过滤至滤框内部全部充满滤渣所需的时间;(2)过滤完毕以相当于滤液量1/10的清水洗涤滤饼,求洗涤时间;(3)若每次卸渣、重装等全部辅助操作共需15 min ,求过滤机的生产能力(m 3滤液/h )。

解:(1)硅藻土,01.0=s ,可按不可压缩滤饼处理

p k K ?=2,e q 与p ?无关

Pa 101343?=?p 时,/s m 10124-?=K ,23e /m m 01.0=q

332c m 6233.0m 38025.081.0=??=V ,222m 86.49m 81.0238=??=A

33c m 791.7m 08.06233.0===

v V V ,232

3/m m 1563.0/m m 86

.49791.7==q 代入恒压过滤方程式求过滤时间

θ42101563.001.021563.0-=??+ s 6.275=θ (2)洗涤

3w m 7791.01.0==V V

()()()m 10748.3m 01.01563.0886.491088413334e e 2E W --?=+??=+=+=

??? ??=???

??q q KA V V KA d dV d dV θθ s 9.207s 003748.07791.0/W

W W ==

???

??=θθd dV V (3)生产能力

()/h m 27.20/h m 3600

/60159.2076.2757913

.733D

W =?++=

++=

θθθV

Q

12. 用一小型压滤机对某悬浮液进行过滤试验,操作真空度为400 mmHg 。测得,

/s m 10425-?=K ,233e /m m 107-?=q ,υ=0.2。现用一台GP5-1.75型转筒真空过滤机在相

同压力差下进行生产(过滤机的转鼓直径为1.75 m ,长度为0.9 m ,浸没角度为120o),转速为1 r/min 。已知滤饼不可压缩。试求此过滤机的生产能力及滤饼厚度。

解:过滤机回转一周的过滤时间为

s 20s 1

360120

6060=?

===n ψψT θ 由恒压过滤方程求此过滤时间可得滤液量

452108104014.0--?=?=+θq q

解得23/m m 02214.0=q

过滤面积22m 946.4πm 9.075.1=?==DL A π 所得滤液33m 1095.0m 946.402214.0=?==qA V 转筒转一周的时间为

s n

6060

= 所以转筒真空过滤机的生产能力为/h m 57.6/h m 1095.01606033=??==nV Q 转筒转一周所得滤饼体积33c m 02190.0m 1095.02.0=?==vV V

滤饼厚度mm 4.4m 10428.4m 946

.402190.03c =?===-A V δ

化工原理下册复习题

吸收 一填空 (1) 在吸收塔某处,气相主体浓度y=0.025,液相主体浓度x=0.01,气相传质分系数k y=2kmol/m2·h,气相传质总K y=1.5kmol/m2·h,则该处气液界面上气相浓度y i应为?0.01????。平衡关系y=0.5x。 (2) 逆流操作的吸收塔,当吸收因素A<1且填料为无穷高时,气液两相将在塔底达到平衡。 (3) 在填料塔中用清水吸收混合气中HCl,当水量减少时气相总传质单元数N OG增加。 (4) 板式塔的类型有;板式塔从总体上看汽液两相呈逆流接触,在板上汽液两相呈错流接触。 (5) 在填料塔中用清水吸收混合气中NH3,当水泵发生故障使上水量减少时,气相总传质单元数NOG (增加)(增加,减少)。 (6) 对接近常压的低浓度溶质的气液平衡系统,吸收操作中温度不变,压力增加,可使相平衡常数???减小?(增大、减小、不变),传质推动力??增大?(增大、减小、不变),亨利系数??不变(增大、减小、不变)。 (7) 易溶气体溶液上方的分压(小),难溶气体溶液上方的分压(大) ,只要组份在气相中的分压(大于)液相中该组分的平衡分压,吸收就会继续进行。 (8) 压力(减小),温度( 升高),将有利于解吸的进行;吸收因素(A= L/mV ) ,当 A>1 时,对逆流操作的吸收塔,若填料层为无穷高时,气液两相将在塔(顶)达到平衡。 (9) 在逆流吸收塔操作时,物系为低浓度气膜控制系统,如其它操作条件不变,而气液流量按比例同步减少,则此时气体出口组成y2将 (减小),液体出口组成将(增大),回收率将。 (10) 当塔板中(气液两相达到平衡状态),该塔板称为理论板。 (11) 吸收过程的传质速率方程N A=K G( )=k y( )。 (12) 对一定操作条件下的填料吸收塔,如将填料层增高一些,则塔的H OG将不变,N OG将增大。 (13)吸收因数A可表示为 mV/L,它在X–Y图上的几何意义是平衡线斜率与操作线斜率之比。 (14)亨利定律的表达式为;亨利系数E的单位为 kPa 。 (15) 某低浓度气体吸收过程,已知相平衡常数m=1 ,气膜和液膜体积吸收系数分别为k y a=2× 10-4kmol/m3.s, k x a=0.4kmol/m3.s, 则该吸收过程为(气膜阻力控制)及气膜阻力占总阻力的百分数分别为 99.95% ;该气体为易溶气体。 二选择 1.根据双膜理论,当被吸收组分在液相中溶解度很小时,以液相浓度表示的总传质系数 B 。 A大于液相传质分系数 B 近似等于液相传质分系数 C小于气相传质分系数 D 近似等于气相传质分系数 2.单向扩散中飘流因子 A 。

化工原理下册 习题 及章节总结 (陈敏恒版)

第八章课堂练习: 1、吸收操作的基本依据是什么?答:混合气体各组分溶解度不同 2、吸收溶剂的选择性指的是什么:对被分离组分溶解度高,对其它组分溶解度低 3、若某气体在水中的亨利系数E值很大,说明该气体为难溶气体。 4、易溶气体溶液上方的分压低,难溶气体溶液上方的分压高。 5、解吸时溶质由液相向气相传递;压力低,温度高,将有利于解吸的进行。 6、接近常压的低浓度气液平衡系统,当总压增加时,亨利常数E不变,H 不变,相平衡常数m 减小 1、①实验室用水吸收空气中的O2,过程属于(B ) A、气膜控制 B、液膜控制 C、两相扩散控制 ②其气膜阻力(C)液膜阻力A、大于B、等于C、小于 2、溶解度很大的气体,属于气膜控制 3、当平衡线在所涉及的范围内是斜率为m的直线时,则1/Ky=1/ky+ m /kx 4、若某气体在水中的亨利常数E值很大,则说明该气体为难溶气体 5、总传质系数与分传质系数之间的关系为l/KL=l/kL+1/HkG,当(气膜阻力1/HkG) 项可忽略时,表示该吸收过程为液膜控制。 1、低含量气体吸收的特点是L 、G 、Ky 、Kx 、T 可按常量处理 2、传质单元高度HOG分离任表征设备效能高低特性,传质单元数NOG表征了(分离任务的难易)特性。 3、吸收因子A的定义式为L/(Gm),它的几何意义表示操作线斜率与平衡线斜率之比 4、当A<1时,塔高H=∞,则气液两相将于塔底达到平衡 5、增加吸收剂用量,操作线的斜率增大,吸收推动力增大,则操作线向(远离)平衡线的方向偏移。 6、液气比低于(L/G)min时,吸收操作能否进行?能 此时将会出现吸收效果达不到要求现象。 7、在逆流操作的吸收塔中,若其他操作条件不变而系统温度增加,则塔的气相总传质单元高度HOG将↑,总传质单元数NOG 将↓,操作线斜率(L/G)将不变。 8、若吸收剂入塔浓度x2降低,其它操作条件不变,吸收结果将使吸收率↑,出口气体浓度↓。 9、在逆流吸收塔中,吸收过程为气膜控制,若进塔液体组成x2增大,其它条件不变,则气相总传质单元高度将( A )。 A.不变 B.不确定 C.减小 D.增大 吸收小结: 1、亨利定律、费克定律表达式 2、亨利系数与温度、压力的关系;E值随物系的特性及温度而异,单位与压强的单位一致;m与物系特性、温度、压力有关(无因次) 3、E、H、m之间的换算关系 4、吸收塔在最小液气比以下能否正常工作。 5、操作线方程(并、逆流时)及在y~x图上的画法 6、出塔气体有一最小值,出塔液体有一最大值,及各自的计算式 7、气膜控制、液膜控制的特点 8、最小液气比(L/G)min、适宜液气比的计算 9、加压和降温溶解度高,有利于吸收 减压和升温溶解度低,有利于解吸

化工原理第三章沉降与过滤课后习题及答案(1)

第三章 沉降与过滤 沉 降 【3-1】 密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。 解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=?? 颗粒密度/31030p kg m ρ=,直径4410p d m -=? 假设为过渡区,沉降速度为 ()(.)()./..11 2 2 223 34 5449811030410179225225241100835p t p g u d m s ρρμρ --??-???==??=? ???????????? 验算 .Re ..45 4101790.835 =24824110 p t d u ρμ--???==? 为过渡区 【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。 " 解 在斯托克斯区,沉降速度计算式为 ()/2 18t p p u d g ρρμ=- 由此式得(下标w 表示水,a 表示空气) ()()22 18= p w pw p a pa t w a d d u g ρρρρμμ--= pw pa d d = 查得20℃时水与空气的密度及黏度分别为 ./,.339982 100410w w kg m Pa s ρμ-==?? ./,.35120518110a a kg m Pa s ρμ-==?? 已知玻璃球的密度为/32500p kg m ρ=,代入上式得 .961pw pa d d = = ·

【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -??,颗粒密度为4000kg/m 3。试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s (3)此降尘室每小时能处理多少m 3的气体 解 已知,/./.6336101040001121810pc p d m kg m kg m Pa s ρρμ--=?===??,, (1) 沉降速度计算 假设为层流区 () .()(.) ./.2626 9811010400011001181821810pc p t gd u m s ρρμ ---??-= ==?? 验算..Re .66 101000111000505221810pc t d u ρ μ --???= ==

化工原理第三章题库.doc

沉降与过滤一章习题及答案 一、选择题 1、 一密度为7800 kg/m 3 的小钢球在相对密度为1.2的某液体中的自由沉降速度为在20℃水中沉降速度的1/4000,则此溶液的粘度为 (设沉降区为层流)。D ?A 4000 mPa ·s ; ?B 40 mPa ·s ; ?C 33.82 Pa ·s ; ?D 3382 mPa ·s 2、含尘气体在降尘室内按斯托克斯定律进行沉降。理论上能完全除去30μm 的粒子,现气体处理量增大1倍,则该降尘室理论上能完全除去的最小粒径为 。D A .m μ302?; B 。m μ32/1?; C 。m μ30; D 。m μ302? 3、降尘室的生产能力取决于 。 B A .沉降面积和降尘室高度; B .沉降面积和能100%除去的最小颗粒的沉降速度; C .降尘室长度和能100%除去的最小颗粒的沉降速度; D .降尘室的宽度和高度。 4、降尘室的特点是 。D A . 结构简单,流体阻力小,分离效率高,但体积庞大; B . 结构简单,分离效率高,但流体阻力大,体积庞大; C . 结构简单,分离效率高,体积小,但流体阻力大; D . 结构简单,流体阻力小,但体积庞大,分离效率低 5、在降尘室中,尘粒的沉降速度与下列因素 无关。C A .颗粒的几何尺寸 B .颗粒与流体的密度 C .流体的水平流速; D .颗粒的形状 6、在讨论旋风分离器分离性能时,临界粒径这一术语是指 。C A. 旋风分离器效率最高时的旋风分离器的直径; B. 旋风分离器允许的最小直径; C. 旋风 分离器能够全部分离出来的最小颗粒的直径; D. 能保持滞流流型时的最大颗粒直径 7、旋风分离器的总的分离效率是指 。D A. 颗粒群中具有平均直径的粒子的分离效率; B. 颗粒群中最小粒子的分离效率; C. 不同粒级(直径范围)粒子分离效率之和; D. 全部颗粒中被分离下来的部分所占的质量分率 8、对标准旋风分离器系列,下述说法哪一个是正确的 。C A .尺寸大,则处理量大,但压降也大; B .尺寸大,则分离效率高,且压降小; C .尺寸小,则处理量小,分离效率高; D .尺寸小,则分离效率差,且压降大。 9、恒压过滤时, 如滤饼不可压缩,介质阻力可忽略,当操作压差增加1倍,则过滤速率为原来的 。 B A. 1 倍; B. 2 倍; C.2倍; D.1/2倍 10、助滤剂应具有以下性质 。B A. 颗粒均匀、柔软、可压缩; B. 颗粒均匀、坚硬、不可压缩; C. 粒度分布广、坚硬、不可压缩; D. 颗粒均匀、可压缩、易变形 11、助滤剂的作用是 。B A . 降低滤液粘度,减少流动阻力; B . 形成疏松饼层,使滤液得以畅流; C . 帮助介质拦截固体颗粒; D . 使得滤饼密实并具有一定的刚性 12、下面哪一个是转筒真空过滤机的特点 。B A .面积大,处理量大; B .面积小,处理量大; C .压差小,处理量小; D .压差大,面积小 13、以下说法是正确的 。B A. 过滤速率与A(过滤面积)成正比; B. 过滤速率与A 2 成正比; C. 过滤速率与滤液体积成正比; D. 过滤速率与滤布阻力成反比 14、恒压过滤,如介质阻力不计,过滤压差增大一倍时,同一过滤时刻所得滤液量 。C A. 增大至原来的2倍; B. 增大至原来的4倍; C. 增大至原来的 倍; D. 增大至原 来的1.5倍 15、过滤推动力一般是指 。 B

化工原理下册题库300题讲解学习

化工原理下册题库 300题

化工原理(下)题库(1) 一、选择题(将正确答案字母填入括号内) 1、混合物中某组分的质量与混合物质量之比称为该组分的( A )。 A. 质量分数 B. 摩尔分数 C. 质量比 2、关于精馏塔中理论的叙述错误的是( B )。 A.实际上不存在理论塔板 B. 理论塔板仅作为衡量实际塔板效率的一个标准。 C. 理论塔板数比实际塔板数多 3、在精馏塔中每一块塔板上( C )。 A. 只进行传质作用 B. 只进行传热作用 C. 同时进行传热传质作用 4、气体吸收过程中,吸收速率与推动力成( A )。 A. 正比 B. 反比 C. 无关 5、气体的溶解度很大时,溶质的吸收速率主要受气膜一方的阻力所控制,故称为( A )。 A. 气膜控制 B. 液膜控制 C. 双膜控制 6、普通温度计的感温球露在空气中,所测得的温度为空气的( A )温度。 A. 干球 B. 湿球 C. 绝热饱和 7、混合物中某组分的物质的量与混合物物质的量之比称为该组分的(B )。

A. 质量分数 B. 摩尔分数 C. 质量比 8、在蒸馏过程中,混合气体中各组分的挥发性相差越大,越(B )进行分离。 A. 难 B. 容易 C. 不影响 9、气体吸收过程中,吸收速率与吸收阻力成( B )。 A. 正比 B. 反比 C. 无关 10、气体的溶解度很小时,溶质的吸收速率主要受液膜一方的阻力所控制,故称为( B )。 A. 气膜控制 B. 液膜控制 C. 双膜控制 11、某二元混合物,进料量为100kmol/h,xF=0.6,要求得 到塔顶xD不小于0.9,则塔顶最大产量为( B ) A 60kmol/h B 66.7kmol/h C 90kmol/h D 不能定 12、二元溶液连续精馏计算中,进料热状态的变化将引起以下 线的变化 ( B ) 。 A平衡线 B 操作线与q线 C平衡线与操作线 D 平衡线与q线 13、下列情况 ( D ) 不是诱发降液管液泛的原因。 A液、气负荷过大 B 过量雾沫夹带 C塔板间距过小 D 过量漏液 14、以下有关全回流的说法正确的是( A、C )。 A、精馏段操作线与提馏段操作线对角线重合 B、此时 所需理论塔板数量多

《化工原理》试题库答案

《化工原理》试题库答案 一、选择题 1.当流体在密闭管路中稳定流动时,通过管路任意两截面不变的物理量是(A)。 A.质量流量 B.体积流量 C.流速 D.静压能 2. 孔板流量计是( C )。 A. 变压差流量计,垂直安装。 B. 变截面流量计,垂直安装。 C. 变压差流量计,水平安装。 D. 变截面流量计,水平安装。 3. 下列几种流体输送机械中,宜采用改变出口阀门的开度调节流量的是(C)。 A.齿轮泵 B. 旋涡泵 C. 离心泵 D. 往复泵 4.下列操作中,容易使离心泵产生气蚀现象的是(B)。 A.增加离心泵的排液高度。 B. 增加离心泵的吸液高度。 C. 启动前,泵内没有充满被输送的液体。 D. 启动前,没有关闭出口阀门。 5.水在规格为Ф38×的圆管中以s的流速流动,已知水的粘度为1mPa·s则其流动的型态为(C)。 A.层流 B. 湍流 C. 可能是层流也可能是湍流 D. 既不是层流也不是湍流 6.下列流体所具有的能量中,不属于流体流动的机械能的是(D)。 A. 位能 B. 动能 C. 静压能 D. 热能 7.在相同进、出口温度条件下,换热器采用(A)操作,其对数平均温度差最大。 A. 逆流 B. 并流 C. 错流 D. 折流 8.当离心泵输送液体密度增加时,离心泵的(C)也增大。 A.流量 B.扬程 C.轴功率 D.效率 9.下列换热器中,需要热补偿装置的是(A)。 A.固定板式换热器 B.浮头式换热器型管换热器 D.填料函式换热器 10. 流体将热量传递给固体壁面或者由壁面将热量传递给流体的过程称为(D)。 A. 热传导 B. 对流 C. 热辐射 D.对流传热 11. 流体在管内呈湍流流动时B。 ≥2000 B. Re>4000 C. 2000

化工原理第二版(下册)夏清贾绍义课后习题解答带图资料

化工原理第二版夏清,贾绍义 课后习题解答 (夏清、贾绍义主编.化工原理第二版(下册).天津大学出版) 社,2011.8.) 第1章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯 和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃) 80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B *,P A *,由于总压 P = 99kPa,则由x = (P-P B *)/(P A *-P B *)可得出液相组成,这样就可以得到一组绘平衡t-x 图数据。

以t = 80.1℃为例 x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃ 2.正戊烷(C 5H 12 )和正己烷(C 6 H 14 )的饱和蒸汽压数据列于本题附表,试求P = 13.3kPa下该 溶液的平衡数据。 温度 C 5H 12 223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C 6H 14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C 5H 12 (A)和C 6 H 14 (B)的饱和蒸汽压 以t = 248.2℃时为例,当t = 248.2℃时 P B * = 1.3kPa 查得P A *= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A *(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B *(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时 x = (P-P B *)/(P A *-P B *) =(13.3-2.826)/(13.3-2.826)= 1 平衡气相组成以260.6℃为例 当t= 260.6℃时 y = P A *x/P = 13.3×1/13.3 = 1 同理得出其他温度下平衡气液相组成列表如下 t(℃) 260.6 275.1 276.9 279 289 x 1 0.3835 0.3308 0.0285 0

化工原理第三章沉降与过滤课后习题及答案

第三章 沉降与过滤 沉 降 【3-1】 密度为1030kg/m 3 、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。 解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=?? 颗粒密度/31030p kg m ρ=,直径4410p d m -=? 假设为过渡区,沉降速度为 ()(.)()./..11 2 2 223 34 5449811030410179225225241100835p t p g u d m s ρρμρ --??-???==??=? ???????????? 验算 .Re ..45 4101790.835 =24824110 p t d u ρμ--???==? 为过渡区 【3-2】密度为2500kg/m 3 的玻璃球在20℃的水中和空气中以相同的速度沉降。试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。 解 在斯托克斯区,沉降速度计算式为 ()/2 18t p p u d g ρρμ=- 由此式得(下标w 表示水,a 表示空气) ()()22 18= p w pw p a pa t w a d d u g ρρρρμμ--= pw pa d d = 查得20℃时水与空气的密度及黏度分别为 ./,.339982 100410w w kg m Pa s ρμ-==?? ./,.35120518110a a kg m Pa s ρμ-==?? 已知玻璃球的密度为/32500p kg m ρ=,代入上式得 .961pw pa d d = = 【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -??,颗

南工大化工原理第三章 习题解答

第三章习题 1)有两种固体颗粒,一种是边长为a的正立方体,另一种是正圆柱体,其高度 和形状系数的计 为h,圆柱直径为d。试分别写出其等体积当量直径 2)某内径为0.10m的圆筒形容器堆积着某固体颗粒,颗粒是高度h=5mm,直径 d=3mm的正圆柱,床层高度为0.80m,床层空隙率、若以1atm,25℃ 的空气以0.25空速通过床层,试估算气体压降。 [解] 圆柱体: 3)拟用分子筛固体床吸附氯气中微量水份。现以常压下20℃空气测定床层水力特性,得两组数据如下: 空塔气速0.2,床层压降14.28mmH2O

0.693.94mmH2O 试估计25℃、绝对压强1.35atm的氯气以空塔气速0.40通过此床层的压降。 (含微量水份氯气的物性按纯氯气计)氯气, [解]常压下, 欧根公式可化简为 3)令水通过固体颗粒消毒剂固定床进行灭菌消毒。固体颗粒的筛析数据是:0.5~ 0.7mm,12%;0.7~1.0mm,25.0%;1.0~1.3,45%;1.3~1.6mm,10.0%; 1.6~ 2.0mm,8.0%(以上百分数均指质量百分数)。颗粒密度为1875。 固定床高350mm,截面积为314mm2。床层中固体颗粒的总量为92.8g。以 20℃清水以0.040空速通过床层,测得压降为677mmH2O,试估算颗粒的形状系数 值。

4)以单只滤框的板框压滤机对某物料的水悬浮液进行过滤分离,滤框的尺寸为 0.20×0.20×0.025m。已知悬浮液中每m3水带有45㎏固体,固体密度为 1820。当过滤得到20升滤液,测得滤饼总厚度为24.3mm,试估算滤饼的含水率,以质量分率表示。 6)某粘土矿物加水打浆除砂石后,需过滤脱除水份。在具有两只滤框的压滤机中做恒压过滤实验,总过滤面积为0.080m2,压差为3.0atm,测得过滤时间与滤液量数据如下: 过滤时间,分:1.20 2.70 5.23 7.25 10.87 14.88 滤液量,升:0.70 1.38 2.25 2.69 3.64 4.38

化工原理下册部分题

1. 某双组分理想物系当温度t=80℃时,P A°=,P B°=40kPa,液相摩尔组成x A=,试求:⑴与此液相组成相平衡的汽相组成y;⑵相对挥发度α。 解:(1)x A=(P总-P B°)/(P A°-P B°) ; =(P总-40)/(-40) ∴P总=; y A=x A·P A°/P总=×/= (2)α=P A°/P B°=/40= 5. 某精馏塔在常压下分离苯-甲苯混合液,此时该塔的精馏段和提馏段操作线方程分别为y=+和y'=',每小时送入塔内75kmol的混合液,进料为泡点下的饱和液体,试求精馏段和提馏段上升的蒸汽量为多少(kmol/h)。 解:已知两操作线方程: y=+(精馏段) y′=′(提馏段) ∴R/(R+1)= R= x D / (R+1)= x D=×= ! 两操作线交点时, y=y′x=x′ ∴+= x F = 饱和液体进料q=1, x F = x = 提馏段操作线经过点(x W,x W) ∴y′=x w =-x W= 由全塔物料衡算F=D+W F x F = D x D + W x W D =(x F—x W)/(x D-x W)F = ∵饱和液体进料 V′=V=L+D=(R+1)D=×=h - 6. 已知某精馏塔进料组成x F=,塔顶馏出液组成x D=,平衡关系y=x+,试求下列二种情况下的最小回流比R min。⑴饱和蒸汽加料;⑵饱和液体加料。解:R min = (x D-y q)/(y q -x q ) (1) ; y q= x q + (2) ;

y q= qx q/ (q-1)-x f / (q-1) (3) ⑴q=0, 由(3) y q=x f=,由(2) x q = , R min = 由(3) x q =x f =,由(2) y q =×+=, R min= 用常压精馏塔分离双组分理想混合物,泡点进料,进料量100kmol/h,加料组成为50% ,塔顶产品组成x D=95%,产量D=50kmol/h,回流比R=2R min,设全塔均为理论板,以上组成均为摩尔分率。相对挥发度α=3。求:(最小回流比) 2.精馏段和提馏段上升蒸汽量。3.列出该情况下的精馏段操作线方程。解:1. y=αx/[1+(α-1)x]=3x/(1+2x) 泡点进料q=1, x q = x F = , y q =3×(1+2×=2= R min / (R min+1)= : R min=4/5= 2. V=V′=(R+1)D=(2×+1)×50=130kmol/h 3. y=[R/(R+1)]x + x D / (R+1)=+ 12. 某精馏塔用于分离苯-甲苯混合液,泡点进料,进料量30kmol/h,进料中苯的摩尔分率为,塔顶、底产品中苯的摩尔分率分别为和,采用回流比为最小回流比的倍,操作条件下可取系统的平均相对挥发度α=。(1)求塔顶、底的产品量;(2)若塔顶设全凝器,各塔板可视为理论板,求离开第二块板的蒸汽和液体组成。 解:(1)F=D+W ,Fx F=Dx D+Wx W 30=D+W ,30×= D×+W× ∴D= / h W= / h (2)x q=x F= , y q =αx q/[1+ (α—1)x q ] =×[1+ —1)×] = R min =(x D-y q)/(y q-x q)=—/ —=, ? R = ×R min =×= 精馏段的操作线方程为: y = [R / (R+1)]x +x D/(R+1)

化工原理课后习题答案上下册

下册第一章蒸馏 1. 苯酚(C 6H 5OH)(A )和对甲酚(C 6H 4(CH 3)OH)(B )的饱和蒸气压数据为 试按总压P =75mmHg(绝压)计算该物系的“t-x-y ”数据, 此物系为理想体系。 解: 总压 P=75mmHg=10kp 。 由拉乌尔定律得出 0 A p x A +0 B p x B =P 所以 x A = 000B A B p p p p --;y A =p p A 00B A B p p p p --。 因此所求得的t-x-y 数据如下: t, ℃ x y 1 1

0 0. 2. 承接第一题,利用各组数据计算 (1)在x=0至x=1范围内各点的相对挥发度i α,取各i α的算术平均值为α,算出α对i α的最大相对误差。 (2)以平均α作为常数代入平衡方程式算出各点的“y-x ”关系,算出由此法得出的各组 y i 值的最大相对误差。 解: (1)对理想物系,有 α=00 B A p p 。所以可得出 t, ℃ i α 算术平均值α= 9 ∑i α=。α对i α的最大相对误差= %6.0%100)(max =?-α ααi 。 (2)由x x x x y 318.01318.1)1(1+=-+= αα得出如下数据: t, ℃ x 1 0 y 1 0 各组y i 值的最大相对误差==?i y y max )(%。 3.已知乙苯(A )与苯乙烯(B )的饱和蒸气压与温度的关系可按下式计算: 95.5947 .32790195.16ln 0 -- =T p A 72 .6357.33280195.16ln 0 --=T p B 式中 0 p 的单位是mmHg,T 的单位是K 。

化工原理试题库下册

第3章非均相物系分离 一、选择题 恒压过滤且介质阻力忽略不计时,如粘度降低20%,则在同一时刻滤液增加()。A、11.8%;B、9.54%; C、20%; D、44% 板框式压滤机由板与滤框构成,板又分为过滤板和洗涤板,为了便于区别,在板与框的边上设有小钮标志,过滤板以一钮为记号,洗涤板以三钮为记号,而滤框以二钮为记号,组装板框压滤机时,正确的钮数排列是(). A、1—2—3—2—1 B、1—3—2—2—1 C、1—2—2—3—1 D、1—3—2—1—2 与沉降相比,过滤操作使悬浮液的分离更加()。 A、迅速、彻底 B、缓慢、彻底 C、迅速、不彻底 D、缓慢、不彻底 多层隔板降尘室的生产能力跟下列哪个因素无关()。 A、高度 B、宽度 C、长度 D、沉降速度 降尘室的生产能力()。 A、与沉降面积A和沉降速度ut有关 B、与沉降面积A、沉降速度ut和沉降室高度H有关 C、只与沉降面积A有关 D、只与沉降速度ut有关 现采用一降尘室处理含尘气体,颗粒沉降处于滞流区,当其它条件都相同时,比较降尘室处理200℃与20℃的含尘气体的生产能力V的大小()。 A、V200℃>V20℃ B、V200℃=V20℃ C、V200℃

判断 有效的过滤操作是()。 A、刚开始过滤时 B、过滤介质上形成滤饼层后 C、过滤介质上形成比较厚的滤渣层 D、加了助滤剂后 当固体粒子沉降时,在层流情况下,Re =1,其ζ为()。 A、64/Re B、24/Re C、0.44 D、1 含尘气体通过降尘室的时间是t,最小固体颗粒的沉降时间是t 0,为使固体颗粒都能沉降下来,必须(): A、tt0 颗粒作自由沉降时,Ret在()区时,颗粒的形状系数对沉降速度的影响最大。 A、斯托科斯定律区 B、艾伦定律区 C、牛顿定律区 D、不确定(天大99) 恒压过滤,单位面积累积滤液量q与时间τ的关系为()。 旋风分离器的分割粒径d50是() A、临界粒径dc的2倍 B、临界粒径dc的2倍 C、粒级效率ηpi=0.5的颗粒直径

化工原理下(天津大学版)_习题答案

第五章蒸馏 1.已知含苯0.5(摩尔分率)的苯-甲苯混合液,若外压为99kPa,试求该溶液的饱和温度。苯和甲苯的饱和蒸汽压数据见例1-1附表。 t(℃)80.1 85 90 95 100 105 x 0.962 0.748 0.552 0.386 0.236 0.11 解:利用拉乌尔定律计算气液平衡数据 查例1-1附表可的得到不同温度下纯组分苯和甲苯的饱和蒸汽压P B*,P A*,由于总压 P = 99kPa,则由x = (P-P B*)/(P A*-P B*)可得出液相组成,这样就可以得到一组绘平衡t-x图数据。 以t = 80.1℃为例x =(99-40)/(101.33-40)= 0.962 同理得到其他温度下液相组成如下表 根据表中数据绘出饱和液体线即泡点线 由图可得出当x = 0.5时,相应的温度为92℃

2.正戊烷(C5H12)和正己烷(C6H14)的饱和蒸汽压数据列于本题附表,试求P = 1 3.3kPa下该溶液的平衡数据。 温度C5H12223.1 233.0 244.0 251.0 260.6 275.1 291.7 309.3 K C6H14 248.2 259.1 276.9 279.0 289.0 304.8 322.8 341.9 饱和蒸汽压(kPa) 1.3 2.6 5.3 8.0 13.3 26.6 53.2 101.3 解:根据附表数据得出相同温度下C5H12(A)和C6H14(B)的饱和蒸汽压 以t = 248.2℃时为例,当t = 248.2℃时P B* = 1.3kPa 查得P A*= 6.843kPa 得到其他温度下A?B的饱和蒸汽压如下表 t(℃) 248 251 259.1 260.6 275.1 276.9 279 289 291.7 304.8 309.3 P A*(kPa) 6.843 8.00012.472 13.30026.600 29.484 33.42548.873 53.200 89.000101.300 P B*(kPa) 1.300 1.634 2.600 2.826 5.027 5.300 8.000 13.300 15.694 26.600 33.250 利用拉乌尔定律计算平衡数据 平衡液相组成以260.6℃时为例 当t= 260.6℃时x = (P-P B*)/(P A*-P B*)

新版化工原理习题答案(03)第三章 非均相混合物分离及固体流态化-题解

第三章 非均相混合物分离及固体流态化 1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m 3,直径为0.04 mm 的球形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m 3,球形度 6.0=φ的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s ,颗粒的等体积当量直径是多 少?(3)密度为7 900 kg/m 3,直径为6.35 mm 的钢球在密度为1 600 kg/m 3的液体中沉降150 mm 所需的时间为7.32 s ,液体的黏度是多少? 解:(1)假设为滞流沉降,则: 2 s t ()18d u ρρμ -= 查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15??=-μ,所以, ()()()m 1276.0s m 1081.11881.9205.126501004.0185 2 3s 2t =???-??=-=--μρρg d u 核算流型: 3 t 5 1.2050.12760.04100.3411.8110 du Re ρμ--???===

化工原理 习题解答

第二章流体输送机械 一.填空题 1. 离心泵的基本结构包括如下三部分:______,_____,_______。 泵壳;叶轮;轴封装置。 2. 离心泵的主要参数有:______,______,______,________。 ***答案*** 流量;扬程;功率;效率。 3. 离心泵的特性曲线有:_______________,__________,_____________。 ***答案*** 压头H---流量q曲线;功率P---流量q曲线;效率η--流量q曲线。4. 离心泵的工作点是如下两条曲线的交点:_____________,________________。 ***答案*** 泵特性曲线H--Q;管路特性曲线H--Q. 5. 调节离心泵流量的方法有:____________,____________,_______________。 ***答案*** 改变管路特性曲线;改变泵的特性;离心泵的串并联 6. 液体输送设备有:_________,________,__________,__________,________。 ***答案*** 离心泵;往复泵;齿轮泵;螺杆泵;旋涡泵等。 7. 气体输送设备有:________,_________,___________。 ***答案*** 通风机;鼓风机;压缩机 8. 离心泵标牌上写上P e-q e表示____,η-q e____,He-Qe表示____。 ***答案*** 功率曲线,效率曲线,扬程曲线。 9. 泵起动时,先关闭泵的出口开关的原因是________________。 ***答案*** 降低起动功率,保护电机,防止超负荷而受到损伤。 10. 离心泵的流量调节阀安装在离心泵___管路上,关小出口阀门后,真空表的读数____,压力表的读数___。 ***答案*** 出口减小增大 11. 离心泵的安装高度超过允许安装高度时,离心泵会发生____现象。 ***答案*** 气蚀 12. 离心泵的扬程含义是________________________。 ***答案*** 离心泵给单位重量的液体所提供的能量。 13. 离心泵铭牌上标明的流量和扬程指的是________时的流量和扬程。 ***答案*** 效率最高 14. 泵铭牌上的轴功率和允许吸上真空高度是指_______时的数值。 ***答案*** 效率最大 15. 离心泵的流量常用________调节。 ***答案*** 出口阀 16. 往复压缩机的实际工作循环由_ _ _、_ _ _、_ _ _和_ _ _四个阶段组成。 ***答案*** 膨胀、吸气、压缩、排气 17. 离心泵起动时,如果泵内没有充满液体而存在气体时,离心泵就不能输送液体。这种现象称为_ _ _ _现象。 ***答案*** 气缚 18. 为防止气蚀现象发生,离心泵在运转时,必须使泵入口处的压强___________饱和蒸汽压。 ***答案*** 大于输送温度下该液体的。 二.解答题 1. 在化工生产和设计中,对流体输送机械的基本要求是什么?

化工原理选择题(含答案)

流体流动 一、单选题 3.层流与湍流的本质区别是()。D A 湍流流速>层流流速; B 流道截面大的为湍流,截面小的为层流; C 层流的雷诺数<湍流的雷诺数; D 层流无径向脉动,而湍流有径向脉动。 5.在静止的流体内,单位面积上所受的压力称为流体的()。 C A 绝对压力; B 表压力; C 静压力; D 真空度。 6.以绝对零压作起点计算的压力,称为()。A A 绝对压力; B 表压力; C 静压力; D 真空度。 7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。D A 真空度; B 表压力; C 相对压力; D 绝对压力。 8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。 A A 大于; B 小于; C 等于; D 近似于。 9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。 A A 压力表; B 真空表; C 高度表; D 速度表。 10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。D A 大气压; B 表压力; C 相对压力; D 绝对压力。 11. 流体在圆管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的 关系为()。B A. Um=1/2Umax; B. Um≈0.8Umax; C. Um=3/2Umax。 12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。A A. 与指示液密度、液面高度有关,与U形管粗细无关; B. 与指示液密度、液面高度无关,与U形管粗细有关; C. 与指示液密度、液面高度无关,与U形管粗细无关。 13.层流底层越薄( )。C A. 近壁面速度梯度越小; B. 流动阻力越小; C. 流动阻力越大; D. 流体湍动程度越小。 14.双液体U形差压计要求指示液的密度差( ) C A. 大; B. 中等; C. 小; D. 越大越好。 15.转子流量计的主要特点是( )。C A. 恒截面、恒压差; B. 变截面、变压差; C. 变截面、恒压差; 16.层流与湍流的本质区别是:( )。D A. 湍流流速>层流流速; B. 流道截面大的为湍流,截面小的为层流; C. 层流的雷诺数<湍流的雷诺数; D. 层流无径向脉动,而湍流有径向脉动。 18.某离心泵入口处真空表的读数为200mmHg ,当地大气压为101kPa, 则泵入口处的绝对压强为()。A A. 74.3kPa; B. 101kPa; C. 127.6kPa。 19.在稳定流动系统中,水由粗管连续地流入细管,若粗管直径是细管的2倍,则细管流速是粗管的()倍。C A. 2; B. 8; C. 4。

化工原理(下册)——填空题,选择题及答案

化工原理——吸收部分复习题(1) 1、用气相浓度△y为推动力的传质速率方程有两种,以传质分系数表达的速率方程为____________________,以传质总系数表达的速率方程为___________________________。 N A = k y (y-y i) N A = K y (y-y e) 2、吸收速度取决于_______________,因此,要提高气-液两流体相对运动速率,可以_______________来增大吸收速率。 双膜的扩散速率减少气膜、液膜厚度 3、由于吸收过程气相中的溶质分压总_________ 液相中溶质的平衡分压,所以吸收操作线总是在平衡线的_________。增加吸收剂用量,操作线的斜率_________,则操作线向_________平衡线的方向偏移,吸收过程推动力(y-y e)_________。 大于上方增大远离增大 4、用清水吸收空气与A的混合气中的溶质A,物系的相平衡常数m=2,入塔气体浓度Y1 = 0.06,要求出塔气体浓度Y2 = 0.006,则最小液气比为_________。 1.80 5、在气体流量,气相进出口组成和液相进口组成不变时,若减少吸收剂用量,则传质推动力将_________,操作线将_________平衡线。 减少靠近 6、某气体用水吸收时,在一定浓度范围内,其气液平衡线和操作线均为直线,其平衡线的斜率可用_________常数表示,而操作线的斜率可用_________表示。 相平衡液气比 7、对一定操作条件下的填料吸收塔,如将塔料层增高一些,则塔的H OG将_________,N OG 将_________ (增加,减少,不变)。 不变增加 8、吸收剂用量增加,则操作线斜率_________,吸收推动力_________。(增大,减小,不变) 增大增大 9、计算吸收塔的填料层高度,必须运用如下三个方面的知识关联计算:_________、_________、_________。 平衡关系物料衡算传质速率。 10、填料的种类很多,有________、_________、_________、________、___________、______________。 拉西环鲍尔环矩鞍环阶梯环波纹填料丝网填料 11、填料选择的原则是_________________________________________。. 表面积大、空隙大、机械强度高、价廉、耐磨并耐温。 12、在选择吸收剂时,首先要考虑的是所选用的吸收剂必须有__________________。 良好的选择性,即对吸收质有较大的溶解度,而对惰性组分不溶解。 13、填料塔的喷淋密度是指_____________________________。 单位塔截面上单位时间内下流的液体量(体积)。(也可理解为空塔液速) 14、填料塔内提供气液两相接触的场所的是__________________。

相关主题
文本预览
相关文档 最新文档